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Colour image filtering with component-graphs

Benoit Naegel Nicolas Passat
Université de Strasbourg Université de Reims Champagne-Ardenne
CNRS, ICube CReSTIC
Strasbourg, France Reims, France
Abstract—Mathematical morphology, initially devoted to bi- — generally relies on two strategies, namely marginal ard ve

nary and grey-level image processing, also offers opportunitiet  torial processing [14]. The first consists of splitting thredue
develop efficient tools for multivalued — and in particular, colour set into several totally ordered ones, while the second e&fin
— images. In this context, connected operators are increasingly aq hoc total order relations on them. However, both stragegi
considered as a relevant way to obtain such tools, mainly for  5iier the structural information gathered by the colourcesa
image filtering and segmentation purposes. In this article, We 1456 this issue, a multivalued extension of the comptne
focus on connected operators based on component-trees and tree, namely the c;omponent—graph was introduced in [15]

their extension to multivalued images, namely component-graphs. . ? X
Beyond the classical colour-handling strategies, we show how @and declined under several variants of DAGs, of varying spac

component-graphs can be algorithmically used to efficiently ~Ccomplexity and richness [16].
handle the whole structural information gathered by colour

spaces, in order to finally design original image filtering tools. In this article, we first recall the basics of component-

graphs (Sec. IlI). Then, we propose algorithmic solutions to
build the different variants of component-graphs, and tmne
struct the associated filtered images, with a focus on colour
. INTRODUCTION spaces, that are organised as lattices (Sec. Ill). We finally
] i i ) propose experimental results of filtering on colour images,
Mathematical morphology [1] was first defined on binary the standard RGB and HSV spaces (Sec. IV).
images, and then on grey-level ones [2]. Its extension to
multivalued €.g, colour, multispectral, label) images is an
important task, motivated by potential applications in tiplé
areas. Several contributions have been devoted to thisfispec  Let Q be a nonempty finite set. Given an adjacency
purpose (see [3] for a recent survey). relation onQ, we define for anyX ¢ Q, the (equivalence)
connectedness relation as the reflexive-transitive atostithis
fadjacency orK. The set of all the connected components.,(
equivalence classes) of, is notedC[X].

II. COMPONENTGRAPH

In the theoretical framework of mathematical morphology;,
the notion of connected operators [4], [5] gathers powerfu
image processing tools that mainly rely on hierarchicalgea
representations,e., tree structures, which are indeed partition  Let V be a nonempty finite set equipped with an order
hierarchies: component-trees [6], level-line trees [dhaby  relation <. We note< and < the strict and cover relations
partition trees [8]etc. The extension of the induced tree-basedassociated ta, respectively. We assume that, €) admits a
connected operators to multivalued images is an increlgsingminimum, noted..

i h field. . . :
considered research field Let us consider an image: Q — V. Each binary level

The difficulties raised by these extensions depend on theet (1) = {x € Q| v < I(X)} € Q is divided into connected
impact of the “colour” space on the induced data structurescomponents, gathered into the partitiopi,(1)]. The union
A first family of strategies consists of preserving the tree
structure, as proposed in [9] for binary partition trees, in ® = UC[/lvU)] 1)
[10] for level-line trees, or in [11] for component-trees. A vev
second consists of dealing with more complex data strustureof all these partitions can be equipped with the inclusion
that are no longer trees, but directed acyclic graphs (DAGS) i . i
as proposed for component-tree extensions. Such DAG-based L€t us suppose thatV(<) is totally ordered,i.e., | is a
approaches — studied in multivalued imaging, but also irprey-level image. We can then define the component-trée of
non-standard connectivity approaches [12], [13] — are more pefinition 1 ([6]): The component-tre& of | is the Hasse
challenging. However, they allow us to use the full struatur diagram of the partially ordered sab ().
information gathered by the colour spaces, and thus to devel B
accurate image processing tools. Less formally, the component-tree is a hierarchical data
] structure —.e., a rooted tree — that models a grey-level image
We focus on the case of the component-tree and its extetby considering its binary level sets obtained from sucwessi

sions. In order to handle — partially ordered — colour spates  thresholdings. Its root i€, while its leaves are the flat zones
component-tree — that requires a total order on the valuespa of | of locally maximal values.

The research leading to these results has received fundingthe French The component-tree can b.e efﬁCie‘.ntly. built [17]. Moreover,
Agence Nationale de la Rechercf@rant Agreement ANR-10-BLAN-0205). it is well-suited for grey-level image filtering methodsyielg
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Fig. 1. (a) Animagd : Q — V, withV = {a,..., j}. (b) The Hasse diagram
of the ordered set\{ <) (each value ol is associated to a “false” colour).
(c-1) Thresholded images, (1) for v e V. (m-0) The component-graphs bf
The letters (A—S) in nodes correspond to the connected coemt®in (c—I).

on attribute-based [18] strategies. In particular, congodn
trees have been involved in a classical antiextensiveififier
scheme [6], [19] which will be recalled in Sec. IIl.

If we relax the totality constraint or;, thenT does no

longer have a tree structure, in most cases. This has nadivat
the introduction of a more general notion of component-grap

To define this notion, we enrich the s®t by assigning

to each connected component the value of its level set. T
obtained set of valued connected components is then defin

as

o = |_Jeraml x v 2)

veV

We then extend the inclusion relation @n by considering
these values. We obtain the order relatiomn ® defined as

(X1, V1) 2 (X2, V2) © (X1 € X2) V (X1 = X2) A (V2 < V1)) (3)

We can finally define the notion of component-graph as
follows.

Definition 2 ([15], [16]): The component-grapli® of | is
the Hasse diagran®( <) of the partially ordered set¥ ).

The component-graph can be declined into three variants
(see Fig. 1), noted®, & and ®& — of decreasing space
complexity and richness — by also considering the following
two subsets 0B, namely

O ={(XV)e®|Y(XV)eB,V £V}
O={(X,V)eO®|Ixe X, Vv=I1(X}

(4)
(%)

By contrast with the component-tree, the component-graph
does not have a tree structure, in general. Nevertheless, it
a relevant extension of the component-tree since both metio
are compatible for grey-level images.

Proposition 3 ([16]): If (V, <) is a totally ordered set, then
two of the three variants of component-graphs, nanelgnd
®, are isomorphic to the component-tree.

Ill. FILTERING METHODOLOGY

Component-graphs inherit the (de)composition formula
classically associated to component-trees, namely

I=\7CK

where\/ is the supremum operatat,is the pointwise order on
functions induced by, and for any X,v) € ©, Cixy) : Q = V
is the cylinder function defined b§x)(x) = v if x € X and
1 otherwise.

(6)

In the framework of component-trees, this formula led to an
antiextensive filtering scheme for grey-level images [&B][
This scheme can then be extended to the case of component-
graphs. It consists of the following three successive steps

(i) construction of the component-graghof I;
(i)  reduction of® into a reduced component-gragh
(i)  reconstruction of a filtered imade< | from 6.

In [20], Step {i) was already discussed. In the sequel of
this section, we mainly describe how to deal with St@pi .,
how to build the component-graph(s); and how to deal with
Step (ii), with a focus on the colour (lattice) spaces.

A. Component-graph construction

By contrast with the component-tree, computing a

hfomponent—graph raises structural and algorithmic diffiest

EE particular, the classical component-tree constructtgo-
fithms [17] cannot be directly extended to the cases where
(V,<) is not totally ordered. More precisely, two main issues
have to be faced:i) the existence of neighbour points with
non-comparable values, that requires to potentially explo
around each point, an extensive area to define the links batwe
nodes; andi() the maintenance of the transitive reduction
of the graph. In this context, we present algorithms for the
computation of®, ® and 6.



Algorithm 1: Computation of6 (or &)

Algorithm 2: Computation of®

Input: | : Q — V (input image)
Input: (V. <) (lattice of values)
Output: Component-graplb (or ®)

Input: | : Q — V (input image)
Input: (V, <) (lattice of values)
Output: Component-grapl®

1 foreachveV do 1 rag=computeRAG(l)
2 | foreach pe Q do 2 foreach p € rag do
3 foreach q € Q do 3 regionToNode[p]=0
4 | inQueue[q]=false 4 | _pg.put(p,prio(I(p)))
5 if isLeq(v,I(p))then 5 while (pg.empty())do
6 fifo.push(p) 6 p=pq.front()
7 inQueue[p]=true 7 if regionToNode[p]==0then
/| Create new node /1 Canonical region: create new node
8 n=makeNode(v) 8 regionToNode[p]=makeNode(l(p))
9 graph.insert(n) 9 regionToNode[p].add(p)
10 while (!fifo.empty())do 10 fifo.push(p)
11 g=fifo.front() 11 while (!fifo.empty())do
/1 Add pixel g to current node n 12 g=fifo.front()

12 n.add(q) 13 foreach neighbour r of qdo
13 foreach neighbour r of gdo 14 if (isLeq(l(p),I(r))) then
14 if isLeq(v,I(r)) then 15 if (I(p)==I(r)) then
15 if inQueue[r]==false then /1 p and r belong to the sanme node
16 fifo.push(r) 16 regionToNode[r]=regionToNode[p]
17 inQueue[r]=true . eI;e

B 18 isChild=true

L = 19 foreach father n of node regionToNode[ido
- 20 if 1(p) < n.valuethen
18 foreach n € graph do n L LisChiId=faIse
19 | foreach m e graph with m#n do
20 if m.area< n.areathen 22 if (isChild) then
21 if isIncluded(m,n)A isLeq(n.value,m.valudhen /1 regionToNode[r] is a direct
22 |_n.addChild(m) child of regi onToNode[ p]
L 23 regionToNode[p].addChild(regionToNode[r])
23 graph=computeTransitiveReduction(graph) 24 updateAttribute(regionToNode[p])
/1 For the ® component-graph only 25 fifo.push(r)

24 graph=keepMaximalElements(graph) L —

26 foreach p € regionToNodedo

, : if regionToNode[p]!=0A regionToNode[p].isCanonical==t
1) Data structures: Each node of the graph is stored in ' | 20" °° elp}i=0n regionToNode[p}isCanonical==true

a structurenode. As « denotes a father-child relationship, 25 | | graph.insert(regionToNodelp])
each node has to store its direct fathers and direct children
respectively, in two arraykat her s andchi | dr en. A node
also contains its original valueal ue, its current value in the
filtered imagecur Val ue, a Booleanact i ve indicating if

it is Currently preserved or discarded, and a set of atedbut some nodes were split). Therefore we propose in the sequel
(area, contrast, etc). An array graph gathers all the 3 new and improved algorithm with the same complexity (see
nodes of the component-graph. Alg. 2). By contrast with the computation ¢f and ®, all the

2) Construction of$ and & The two component-graplts nodes of® contain at least one pixel of the image. Therefore,
and® can be built using an exhaustive algorithm (see Alg. 1 the main strategy consists of computing for each pixel thdeno

For each value € V, the connected components of the corre-it Pelongs to.

sponding threshold set are obtained from a propagatiomsehe  fjrst 5 region-adjacency graph (RAG) is computed from
based on a first-in first-out li$ti f o (line 6). Given two values | (jine 1), Each node then models a flat-zone and is stored in
x.y €V, the functionisLeq(xy) returnst rue iff x<y. This ' he arrayr ag. The edges of the RAG represent neighbourhood
can be done in constant time by precomputing a comparisogy|ationships between flat-zones. Each node containsshef i
array of sizeV|?. These components are then inserted into thes neighbouring regions. The constructioniafs then reduced

array gr aph (line 9). The parenthood relationships betweeniq the computation of the component-graph on the RAG.
components are computed based on set inclusion (line 21).

This step can be optimised by comparing only couples of nodes The nodes are computed in a bottom-up fashioe,
(n,m) with marea < n.area (line 20). Finally, the transitive starting from the leaves of the graph. The RAG vertices are
reduction of the graph is carried out (line 23). A suppleragnt then inserted into a priority queysg with a priority function
step (line 24) is necessary for, by keeping, for each set of prio satisfyingVvi,v2 € V,vi < vo = prio(vi) < prio(vz)
nodes having the same support, only those of maximal value§line 2). Thus all the children of a new node have already
been processed. This allows us to compute the definitive link
between the nodes and their direct children.

9 root=addRoot(graph)

N

3) Construction of$: A first algorithm for the construction
of the component-grapty was proposed in [20]. However it
did not produce a correct result in certain configurations of The arrayr egi onToNode contains the mapping between
adjacent pixels having non-comparable values (more pigcis a region indexi(e. a vertex of the RAG) and the index of the



node in which it lies. (The initial 0 value means that the oegi

does not belong to any node (line 2).) Algorithm 3: Image reconstruction frorh

Input: nodes (array of nodes froif
Regions are then extracted by decreasing priority from the OEtput: imReguIt ()fliltered imagé) :
priority queue. If the region does not belong to any node // Initialize inResult
(line 7), then a new node is created and put infthé o queue ~ * ImResultfillw)
(line 10). A propagation starts from this region, in ordefijo ~ ° fo[%zcguq(ﬁ ?;?&idsalue))
find other regions with same value, thus belonging to the same - " "' '
node (line 15), andii| find all the descendants of the node. Wh'rl]iédpgfﬂgtyo)do
Each descendant node is a candidate to be a direct child of the | it n.active==truethen
current node. To this aim, all the fathers of the candidatéeno 7 | | n.curvalue=n.value

are examined (line 18). If a candidate node does not have any; | foreach p e n.pixelsdo

father with value greater than the current node (val(m), o | | imResult(p)=n.curValue
then it is a direct child of the current node. This way, the 1, | foreach child ¢ of ndo
non-existence of transitive links is ensured by constoucti 1 if c.active==falsethen
) . . . 12 | c.curValue=n.curValue
Once all the nodes and links are defined, a final step inserts

these nodes in thgr aph array (line 26). Finally a virtual root
is added in order to facilitate graph traversal, sificenay have

several root nodes,e., minimal elements o® (line 29). L ) )
to reconstruct — deterministically — a filtered colour image

To optimise memory and avoid redundancy, a node of theqowever, the simplicity of this reconstruction scheme has
graph with valuev contains only the set of flat-zones (vertices counterparts. First, some new colours may appear in thee'mag
of the RAG) of valuev belonging to this node. Therefore to even in the case d$, that is generally supposed to preserve the
retrieve all the regions belonging to a node it is necessary tintial values. In addition, some valued connected compte
traverse all its descendants. of the filtered image may not satisfy the criteripn

Alternative reconstruction strategies can be considéhed,
intend to “approximate” the ideal reconstruction. Somenef

The attributes stored in each node can be computed duringconstruct either a lowest well-defined imabe> | or a
the component-graph construction (line 24), after theetrsad  greatest well-defined imagke < | [20]. Other strategies, of
of all regions belonging to the node. By contrast with thelower computational cost, consist of assigning an arlitrar
component-tree, incremental schemes to compute attsilBmée  value among the set of candidate values, at each “conflict
no longer valid here. For instance, the area of a componenpixel”.
tree node can be computed by summing the area of its children
and adding the number of points belonging to the nade, (
having the same value as the node). This is not the case in
component-graph since a node may have several fathers.

B. Attribute computation and graph reduction

In the context of attribute filtering on colour images, it
ig, often desirable to remove completely the components that
0 not meet the criterion while preserving the others. This
motivates in particular the use of the reconstruction metho
Note that in our experiments, we use attributes based on thdescribed in Alg. 3.
area {.e, number of pixels) of the component, and a measure

of contrast (difference between the minimal and maximalOf \Ijlr(s“tr,]ethf) r?l_ﬂg; Ig|1|a%§ dI:SfIgI‘e(;j t\r,:\t/grg:e% mm;mb%tt\c/)?#ﬁ
values of pixels contained in the component: see Sec. V). : P

fashion, from minimal to maximal values &f by putting
Filtering the component-graph consists of removing.( them in a priority queugq using the same priority function
marking as inactive) the nodes that do not satisfy a Booleansed in the$ component-graph construction, but using inverse
criterion p deriving from the computed attributes. As for order (line 3). Each node assigns the vatug Val ue to its
component-trees, whep is not increasing several pruning pixels in the resulting image (line 9). If the node is marked
strategies can be considered (see [20] for more details).  as active, thercur Val ue corresponds to its original value
val ue, therefore ensuring that the node is preserved. Finally,
C. Filtered image reconstruction the current value of the nodeur Val ue is propagated to all
. inactive children (line 12).
The reconstruction of a filtered imadgefrom the reduced
component-grapky, raises specific issues. Indeed, the classicab. Complexity analysis and optimisation

reconstruction formuld = \/S _Cx where® ¢ © is the : : .
er@ K - The computational cost of the construction®fand ® is

subs_et of remaining nodes i, is not V\_/ell-defined for most O(IQ).IVP) (actuallyO(|Q.|V|>372%) if an optimal algorithm for
multivalued spaces. In general, there is no guarantee dhat ftransitive reduction is used [21]). The computational cafst
any x € Q, the set{Cx(x) | K € ®) € V admits a maximum the construction ofs is O(Q[?), and is then independent from
(or even a supremum) fog. the colour value space.

In the specific case of colour images, the value spaces are The filtered image is computed by scanning once all the
generally organised as complete lattices. Under this ingsié, nodes and, for each node, all its children. The number of
{Ck(X) | K € ®} does not necessarily admits a maximum, children per node is generally bounded by a (low) value. Prac
but it admits a supremum. As a consequence, it is possiblgcally, this leads to a complexit@(|®]), linear with respect to



the number of nodes. This allows interactive handling of the
filtering parameters once the component-graph is computed.

Standard colour images obtained from a digital camera
have their values coded in 24 bits in the RGB space. Con-
structing component-graphs for such images has a high cost.
To make component-graph useful in this context, it is esslent
to improve the time efficiency of the filtering process. First
component-graphs can be computed offline and stored in a
persistent manner. The filtering stage can be done, a pasteri
in linear time. Second, in attribute-based paradigms, we ca *
divide the image into subregions (“patches”) and compute
the filtering result in each, independently. Overlap pebci
are then used in order to avoid transition effects betweer
adjacent patches.g, by considering weighted mean values.
This approach is compliant with multiple core architecjre
by processing each patch in a separate thread.

Multithreaded attribute filtering can process equally eachj-
image patch, via an adaptive method. This can be done b
computing, for each patch, the distribution of attributessus
the number of corresponding nodes and by preserving the
nodes falling into thex.100th percentile (& « < 1).

(c) Original (d) Filtered (13 patchesy = 0.3)

Fig. 2.  Adaptive area filtering in the RGB space. All images pest
of the Berkeley Segmentation Image Dataset (https://www.betkeley.edu/
Research/Projects/CS/vision/bsds).

The proposed methods have been integrated into a graphi-
cal interface based on enabling an interactive processing of
the filtering parameters. In order to ensure the reprodiitgibi
of these results, the source code and images used in trb%
experiments, are available onlfeAll the presented results
are based on th& component-graph. We have experimented
filtering based on a fixed thresholt for area and contrast
attributes, as well as an adaptive filtering with same atteib
(based o parameter).

IV. EXPERIMENTS AND RESULTS

filtering based on an adaptive threshold with similar betwarvi

in the textural part of the bird (d). Both filterings have been
rformed in 13 overlapping patches. It can be observed that
in Fig. 3(b), the tilling effect due to the decompositionant
patches is visible while it is not in Fig. 3(d).

Standard colour images are defined in the RGB space witl%
V = [0,255F. A partial ordering can be defined ovi as g
follows: Yv = (r,g,b),v = (r',g,b) e VvV ©r <r'Ag<
g Ab < b'. The priority function used in the component-
graph computation can then be defined pyin(v) = r +g+b.
The leaves of a component-graph built on this lattice ofeslu
correspond to bright objects on dark background. Therefare
attribute filtering based on an increasing criterion firshoges
bright details of the image.

First, we have assessed qualitatively the robustness of t
patch-based method by performing an attribute filteringrin a
image decomposed into 118 patches (Fig. 2(a,b)). The figeri
enables to remove bright textural parts of the image while
leaving most of the other parts unchanged. Moreover, imag
decomposition can reduce drastically computation timenef t ) adaptive area filterings( = 0.5) (d) Adapt. contrast filteringa( = 0.5)
graph as illustrated by Fig. 5. Fig. 2(c,d) provides another

illustration of adaptlve area f"termg' Fig. 3. Area and contrast filtering in the RGB space. Filgrvas performed

Second, we have compared attribute filtering based on & 13 overlapping patches.
fixed threshold with the adaptive paradigm, in the context of .
patch-based decomposition. The contrast attribute of @nod 1 he HSV (Hue/Saturation/Value) colour space has a more
has been defined as maxx [Il(p) - 1(q)ll. where X denotes perceptual meaning than RGB, since its purpose is to decor-
the support (full connected component) of the node|ard|; relate hue (which can be considered as a set without ?bVIOUS
is the L, distance. Fig. 3 illustrates a comparison betweerPrdering) from saturation (which characterizes colountiyt)

contrast filtering based on a fixed threshold (b) and adaptiv@"d value (which gives the degree of “brightness” of the
colour). Therefore a straightforward use of this colourcgpa

Lhitp://qt.digia.com consists of computing the component-graph using only the S
2http://code.google.com/cgraph and V components while restoring the original H in the filtere
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image. Based on this method, Fig. 4 illustrates an adaptee a [12]
filtering on the SV space for decreasing valuesrof

The processing times for component-tree (using grayscalgs]
version of the images), component-graph and multithreaded
component-graph computation (using a decomposition ibto 2
patches) have been compared for increasing image sizes (
Fig. 5) on a Quad Core Intel Xeon CPU W3550BGHz with
4 GB of RAM. In these experiments the actual complexity[ls]
for the ® computation was)(|Q/*®) (that is practically less
than the theoretical complexit®(|Q?). These experiments [16]
confirm that patch decomposition enables to obtain acckptab
processing times. [17]

Future works will address the algorithmic and memory
complexity of ® and & computation by considering paral- [18]
lel/distributed computing [22]. Multivalued image segmen
tation will also be explored, by considering for example[19]
segmentation based on optimal cuts [23], [24].
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