
HAL Id: hal-01695069
https://hal.univ-reims.fr/hal-01695069v1

Submitted on 15 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Colour image filtering with component-graphs
Benoît Naegel, Nicolas Passat

To cite this version:
Benoît Naegel, Nicolas Passat. Colour image filtering with component-graphs. Interna-
tional Conference on Pattern Recognition (ICPR), 2014, Stockholm, Sweden. pp.1621-1626,
�10.1109/ICPR.2014.287�. �hal-01695069�

https://hal.univ-reims.fr/hal-01695069v1
https://hal.archives-ouvertes.fr


Colour image filtering with component-graphs

Benoît Naegel
Université de Strasbourg

CNRS, ICube
Strasbourg, France

Nicolas Passat
Université de Reims Champagne-Ardenne

CReSTIC
Reims, France

Abstract—Mathematical morphology, initially devoted to bi-
nary and grey-level image processing, also offers opportunities to
develop efficient tools for multivalued – and in particular, colour
– images. In this context, connected operators are increasingly
considered as a relevant way to obtain such tools, mainly for
image filtering and segmentation purposes. In this article, we
focus on connected operators based on component-trees and
their extension to multivalued images, namely component-graphs.
Beyond the classical colour-handling strategies, we show how
component-graphs can be algorithmically used to efficiently
handle the whole structural information gathered by colour
spaces, in order to finally design original image filtering tools.

I. I NTRODUCTION

Mathematical morphology [1] was first defined on binary
images, and then on grey-level ones [2]. Its extension to
multivalued (e.g., colour, multispectral, label) images is an
important task, motivated by potential applications in multiple
areas. Several contributions have been devoted to this specific
purpose (see [3] for a recent survey).

In the theoretical framework of mathematical morphology,
the notion of connected operators [4], [5] gathers powerful
image processing tools that mainly rely on hierarchical image
representations,i.e., tree structures, which are indeed partition
hierarchies: component-trees [6], level-line trees [7], binary
partition trees [8],etc.The extension of the induced tree-based
connected operators to multivalued images is an increasingly
considered research field.

The difficulties raised by these extensions depend on the
impact of the “colour” space on the induced data structures.
A first family of strategies consists of preserving the tree
structure, as proposed in [9] for binary partition trees, in
[10] for level-line trees, or in [11] for component-trees. A
second consists of dealing with more complex data structures
that are no longer trees, but directed acyclic graphs (DAGs),
as proposed for component-tree extensions. Such DAG-based
approaches – studied in multivalued imaging, but also in
non-standard connectivity approaches [12], [13] – are more
challenging. However, they allow us to use the full structural
information gathered by the colour spaces, and thus to develop
accurate image processing tools.

We focus on the case of the component-tree and its exten-
sions. In order to handle – partially ordered – colour spaces, the
component-tree – that requires a total order on the value spaces

The research leading to these results has received funding from the French
Agence Nationale de la Recherche(Grant Agreement ANR-10-BLAN-0205).

– generally relies on two strategies, namely marginal and vec-
torial processing [14]. The first consists of splitting the value
set into several totally ordered ones, while the second defines
ad hoc total order relations on them. However, both strategies
alter the structural information gathered by the colour spaces.
To tackle this issue, a multivalued extension of the component-
tree, namely the component-graph, was introduced in [15],
and declined under several variants of DAGs, of varying space
complexity and richness [16].

In this article, we first recall the basics of component-
graphs (Sec. II). Then, we propose algorithmic solutions to
build the different variants of component-graphs, and to recon-
struct the associated filtered images, with a focus on colour
spaces, that are organised as lattices (Sec. III). We finally
propose experimental results of filtering on colour images,in
the standard RGB and HSV spaces (Sec. IV).

II. COMPONENT-GRAPH

Let Ω be a nonempty finite set. Given an adjacency
relation onΩ, we define for anyX ⊆ Ω, the (equivalence)
connectedness relation as the reflexive-transitive closure of this
adjacency onX. The set of all the connected components (i.e.,
equivalence classes) ofX, is notedC[X].

Let V be a nonempty finite set equipped with an order
relation 6. We note< and ≺ the strict and cover relations
associated to6, respectively. We assume that (V,6) admits a
minimum, noted⊥.

Let us consider an imageI : Ω → V. Each binary level
set λv(I ) = {x ∈ Ω | v 6 I (x)} ⊆ Ω is divided into connected
components, gathered into the partitionC[λv(I )]. The union

Φ =

⋃

v∈V

C[λv(I )] (1)

of all these partitions can be equipped with the inclusion⊆.

Let us suppose that (V,6) is totally ordered,i.e., I is a
grey-level image. We can then define the component-tree ofI .

Definition 1 ([6]): Thecomponent-treeT of I is the Hasse
diagram of the partially ordered set (Φ,⊆).

Less formally, the component-tree is a hierarchical data
structure –i.e., a rooted tree – that models a grey-level image
by considering its binary level sets obtained from successive
thresholdings. Its root isΩ, while its leaves are the flat zones
of I of locally maximal values.

The component-tree can be efficiently built [17]. Moreover,
it is well-suited for grey-level image filtering methods relying



(a) I : Ω→ V

a

db c e

f g h

ji

(b) (V,≺)

A

(c) λa(I )

B

F

(d) λb(I )

D E

C

(e) λc(I )

G

M

(f) λd(I )

H

N

(g) λe(I )

I O

X

X

(h) λ f (I )

J

K

(i) λg(I )

Q

L

(j) λh(I )

R

X

X

(k) λi (I )

P

S

(l) λ j (I )

A

G H

CB

D E F

S

Q R

I J K

M N O

L

P

(m) G

A

CB

S

R

I J K L

P

(n) Ġ

A

B

S

R

I K L

P

(o) G̈

Fig. 1. (a) An imageI : Ω→ V, with V = {a, . . . , j}. (b) The Hasse diagram
of the ordered set (V,6) (each value ofV is associated to a “false” colour).
(c–l) Thresholded imagesλv(I ) for v ∈ V. (m–o) The component-graphs ofI .
The letters (A–S) in nodes correspond to the connected components in (c–l).

on attribute-based [18] strategies. In particular, component-
trees have been involved in a classical antiextensive filtering
scheme [6], [19] which will be recalled in Sec. III.

If we relax the totality constraint on6, thenT does no
longer have a tree structure, in most cases. This has motivated
the introduction of a more general notion of component-graph.

To define this notion, we enrich the setΦ, by assigning
to each connected component the value of its level set. The
obtained set of valued connected components is then defined
as

Θ =

⋃

v∈V

C[λv(I )] × {v} (2)

We then extend the inclusion relation onΦ by considering
these values. We obtain the order relationE on Θ defined as

(X1, v1) E (X2, v2)⇔ (X1 ⊂ X2) ∨ ((X1 = X2) ∧ (v2 6 v1)) (3)

We can finally define the notion of component-graph as
follows.

Definition 2 ([15], [16]): The component-graphG of I is
the Hasse diagram (Θ,◭) of the partially ordered set (Θ,E).

The component-graph can be declined into three variants
(see Fig. 1), notedG, Ġ and G̈ – of decreasing space
complexity and richness – by also considering the following
two subsets ofΘ, namely

Θ̇ = {(X, v) ∈ Θ | ∀(X, v′) ∈ Θ, v ≮ v′} (4)

Θ̈ = {(X, v) ∈ Θ | ∃x ∈ X, v = I (x)} (5)

By contrast with the component-tree, the component-graph
does not have a tree structure, in general. Nevertheless, itis
a relevant extension of the component-tree since both notions
are compatible for grey-level images.

Proposition 3 ([16]): If (V,6) is a totally ordered set, then
two of the three variants of component-graphs, namelyĠ and
G̈, are isomorphic to the component-tree.

III. F ILTERING METHODOLOGY

Component-graphs inherit the (de)composition formula
classically associated to component-trees, namely

I =
≤∨

K∈Θ

CK (6)

where
∨

is the supremum operator,≤ is the pointwise order on
functions induced by6, and for any (X, v) ∈ Θ, C(X,v) : Ω→ V
is the cylinder function defined byC(X,v)(x) = v if x ∈ X and
⊥ otherwise.

In the framework of component-trees, this formula led to an
antiextensive filtering scheme for grey-level images [6], [19].
This scheme can then be extended to the case of component-
graphs. It consists of the following three successive steps:

(i) construction of the component-graphG of I ;
(ii ) reduction ofG into a reduced component-grapĥG;
(iii ) reconstruction of a filtered imagêI ≤ I from Ĝ.

In [20], Step (ii ) was already discussed. In the sequel of
this section, we mainly describe how to deal with Step (i), i.e.,
how to build the component-graph(s); and how to deal with
Step (iii ), with a focus on the colour (lattice) spaces.

A. Component-graph construction

By contrast with the component-tree, computing a
component-graph raises structural and algorithmic difficulties.
In particular, the classical component-tree constructionalgo-
rithms [17] cannot be directly extended to the cases where
(V,6) is not totally ordered. More precisely, two main issues
have to be faced: (i) the existence of neighbour points with
non-comparable values, that requires to potentially explore,
around each point, an extensive area to define the links between
nodes; and (ii ) the maintenance of the transitive reduction
of the graph. In this context, we present algorithms for the
computation ofG, Ġ and G̈.



Algorithm 1: Computation ofG (or Ġ)
Input : I : Ω→ V (input image)
Input : (V,6) (lattice of values)
Output : Component-graphG (or Ġ)

1 foreach v ∈ V do
2 foreach p ∈ Ω do
3 foreach q ∈ Ω do
4 inQueue[q]=false

5 if isLeq(v,I(p))then
6 fifo.push(p)
7 inQueue[p]=true

// Create new node
8 n=makeNode(v)
9 graph.insert(n)

10 while (!fifo.empty())do
11 q=fifo.front()

// Add pixel q to current node n
12 n.add(q)
13 foreach neighbour r of qdo
14 if isLeq(v,I(r)) then
15 if inQueue[r]==false then
16 fifo.push(r)
17 inQueue[r]=true

18 foreach n ∈ graph do
19 foreach m ∈ graph with m,n do
20 if m.area≤ n.area then
21 if isIncluded(m,n)∧ isLeq(n.value,m.value)then
22 n.addChild(m)

23 graph=computeTransitiveReduction(graph)
// For the Ġ component-graph only

24 graph=keepMaximalElements(graph)

1) Data structures:Each node of the graph is stored in
a structurenode. As ◭ denotes a father-child relationship,
each node has to store its direct fathers and direct children,
respectively, in two arraysfathers andchildren. A node
also contains its original valuevalue, its current value in the
filtered imagecurValue, a Booleanactive indicating if
it is currently preserved or discarded, and a set of attributes
(area, contrast, etc.). An array graph gathers all the
nodes of the component-graph.

2) Construction ofG andĠ: The two component-graphsG
andĠ can be built using an exhaustive algorithm (see Alg. 1).
For each valuev ∈ V, the connected components of the corre-
sponding threshold set are obtained from a propagation scheme
based on a first-in first-out listfifo (line 6). Given two values
x, y ∈ V, the functionisLeq(x, y) returnstrue iff x 6 y. This
can be done in constant time by precomputing a comparison
array of size|V|2. These components are then inserted into the
array graph (line 9). The parenthood relationships between
components are computed based on set inclusion (line 21).
This step can be optimised by comparing only couples of nodes
(n,m) with m.area ≤ n.area (line 20). Finally, the transitive
reduction of the graph is carried out (line 23). A supplementary
step (line 24) is necessary foṙG, by keeping, for each set of
nodes having the same support, only those of maximal values.

3) Construction ofG̈: A first algorithm for the construction
of the component-grapḧG was proposed in [20]. However it
did not produce a correct result in certain configurations of
adjacent pixels having non-comparable values (more precisely,

Algorithm 2: Computation ofG̈
Input : I : Ω→ V (input image)
Input : (V,6) (lattice of values)
Output : Component-grapḧG

1 rag=computeRAG(I)
2 foreach p ∈ rag do
3 regionToNode[p]=0
4 pq.put(p,prio(I(p)))

5 while (!pq.empty())do
6 p=pq.front()
7 if regionToNode[p]==0then

// Canonical region: create new node
8 regionToNode[p]=makeNode(I(p))
9 regionToNode[p].add(p)

10 fifo.push(p)
11 while (!fifo.empty())do
12 q=fifo.front()
13 foreach neighbour r of qdo
14 if (isLeq(I(p),I(r))) then
15 if (I(p)==I(r)) then

// p and r belong to the same node
16 regionToNode[r]=regionToNode[p]

17 else
18 isChild=true
19 foreach father n of node regionToNode[r]do
20 if I(p) < n.value then
21 isChild=false

22 if (isChild) then
// regionToNode[r] is a direct

child of regionToNode[p]
23 regionToNode[p].addChild(regionToNode[r])

24 updateAttribute(regionToNode[p])
25 fifo.push(r)

26 foreach p ∈ regionToNodedo
27 if regionToNode[p]!=0∧ regionToNode[p].isCanonical==true

then
28 graph.insert(regionToNode[p])

29 root=addRoot(graph)

some nodes were split). Therefore we propose in the sequel
a new and improved algorithm with the same complexity (see
Alg. 2). By contrast with the computation ofG andĠ, all the
nodes ofG̈ contain at least one pixel of the image. Therefore,
the main strategy consists of computing for each pixel the node
it belongs to.

First, a region-adjacency graph (RAG) is computed from
I (line 1). Each node then models a flat-zone and is stored in
the arrayrag. The edges of the RAG represent neighbourhood
relationships between flat-zones. Each node contains the list of
its neighbouring regions. The construction ofG̈ is then reduced
to the computation of the component-graph on the RAG.

The nodes are computed in a bottom-up fashion,i.e.,
starting from the leaves of the graph. The RAG vertices are
then inserted into a priority queuepq with a priority function
prio satisfying ∀v1, v2 ∈ V, v1 < v2 ⇒ prio(v1) < prio(v2)
(line 2). Thus all the children of a new node have already
been processed. This allows us to compute the definitive links
between the nodes and their direct children.

The arrayregionToNode contains the mapping between
a region index (i.e., a vertex of the RAG) and the index of the



node in which it lies. (The initial 0 value means that the region
does not belong to any node (line 2).)

Regions are then extracted by decreasing priority from the
priority queue. If the region does not belong to any node
(line 7), then a new node is created and put in thefifo queue
(line 10). A propagation starts from this region, in order to(i)
find other regions with same value, thus belonging to the same
node (line 15), and (ii ) find all the descendants of the node.
Each descendant node is a candidate to be a direct child of the
current node. To this aim, all the fathers of the candidate node
are examined (line 18). If a candidate node does not have any
father with value greater than the current node (valueI (p)),
then it is a direct child of the current node. This way, the
non-existence of transitive links is ensured by construction.

Once all the nodes and links are defined, a final step inserts
these nodes in thegraph array (line 26). Finally a virtual root
is added in order to facilitate graph traversal, sinceG̈ may have
several root nodes,i.e., minimal elements of̈Θ (line 29).

To optimise memory and avoid redundancy, a node of the
graph with valuev contains only the set of flat-zones (vertices
of the RAG) of valuev belonging to this node. Therefore to
retrieve all the regions belonging to a node it is necessary to
traverse all its descendants.

B. Attribute computation and graph reduction

The attributes stored in each node can be computed during
the component-graph construction (line 24), after the traversal
of all regions belonging to the node. By contrast with the
component-tree, incremental schemes to compute attributes are
no longer valid here. For instance, the area of a component-
tree node can be computed by summing the area of its children
and adding the number of points belonging to the node (i.e.,
having the same value as the node). This is not the case in a
component-graph since a node may have several fathers.

Note that in our experiments, we use attributes based on the
area (i.e., number of pixels) of the component, and a measure
of contrast (difference between the minimal and maximal
values of pixels contained in the component: see Sec. IV).

Filtering the component-graph consists of removing (i.e.,
marking as inactive) the nodes that do not satisfy a Boolean
criterion ρ deriving from the computed attributes. As for
component-trees, whenρ is not increasing several pruning
strategies can be considered (see [20] for more details).

C. Filtered image reconstruction

The reconstruction of a filtered imagêI , from the reduced
component-grapĥG, raises specific issues. Indeed, the classical
reconstruction formulâI =

∨≤
K∈Θ̂

CK where Θ̂ ⊆ Θ is the

subset of remaining nodes in̂G, is not well-defined for most
multivalued spaces. In general, there is no guarantee that for
any x ∈ Ω, the set{CK(x) | K ∈ Θ̂} ⊆ V admits a maximum
(or even a supremum) for6.

In the specific case of colour images, the value spaces are
generally organised as complete lattices. Under this hypothesis,
{CK(x) | K ∈ Θ̂} does not necessarily admits a maximum,
but it admits a supremum. As a consequence, it is possible

Algorithm 3: Image reconstruction from̂G

Input : nodes (array of nodes from̂G)
Output : imResult (filtered imagêI )
// Initialize imResult

1 imResult.fill(⊥)
2 foreach n ∈ nodesdo
3 pq.put(n,-prio(n.value))

4 while (!pq.empty())do
5 n=pq.front()
6 if n.active==true then
7 n.curValue=n.value

8 foreach p ∈ n.pixelsdo
9 imResult(p)=n.curValue

10 foreach child c of ndo
11 if c.active==falsethen
12 c.curValue=n.curValue

to reconstruct – deterministically – a filtered colour image.
However, the simplicity of this reconstruction scheme has
counterparts. First, some new colours may appear in the image,
even in the case of̈G, that is generally supposed to preserve the
initial values. In addition, some valued connected components
of the filtered image may not satisfy the criterionρ.

Alternative reconstruction strategies can be considered,that
intend to “approximate” the ideal reconstruction. Some of them
reconstruct either a lowest well-defined imageĨ ≥ Î or a
greatest well-defined imagẽI ≤ Î [20]. Other strategies, of
lower computational cost, consist of assigning an arbitrary
value among the set of candidate values, at each “conflict
pixel”.

In the context of attribute filtering on colour images, it
is often desirable to remove completely the components that
do not meet the criterion while preserving the others. This
motivates in particular the use of the reconstruction method
described in Alg. 3.

First, the result image is filled with the minimal value
of V (line 1). Then all nodes are traversed in a bottom-up
fashion, from minimal to maximal values ofV by putting
them in a priority queuepq using the same priority function
used in theG̈ component-graph construction, but using inverse
order (line 3). Each node assigns the valuecurValue to its
pixels in the resulting image (line 9). If the node is marked
as active, thencurValue corresponds to its original value
value, therefore ensuring that the node is preserved. Finally,
the current value of the nodecurValue is propagated to all
inactive children (line 12).

D. Complexity analysis and optimisation

The computational cost of the construction ofG and Ġ is
O(|Ω|.|V|3) (actuallyO(|Ω|.|V|2.3727) if an optimal algorithm for
transitive reduction is used [21]). The computational costof
the construction of̈G is O(|Ω|2), and is then independent from
the colour value space.

The filtered image is computed by scanning once all the
nodes and, for each node, all its children. The number of
children per node is generally bounded by a (low) value. Prac-
tically, this leads to a complexityO(|Θ|), linear with respect to



the number of nodes. This allows interactive handling of the
filtering parameters once the component-graph is computed.

Standard colour images obtained from a digital camera
have their values coded in 24 bits in the RGB space. Con-
structing component-graphs for such images has a high cost.
To make component-graph useful in this context, it is essential
to improve the time efficiency of the filtering process. First,
component-graphs can be computed offline and stored in a
persistent manner. The filtering stage can be done, a posteriori,
in linear time. Second, in attribute-based paradigms, we can
divide the image into subregions (“patches”) and compute
the filtering result in each, independently. Overlap policies
are then used in order to avoid transition effects between
adjacent patches,e.g., by considering weighted mean values.
This approach is compliant with multiple core architectures,
by processing each patch in a separate thread.

Multithreaded attribute filtering can process equally each
image patch, via an adaptive method. This can be done by
computing, for each patch, the distribution of attributes versus
the number of corresponding nodes and by preserving the
nodes falling into theα.100th percentile (0≤ α ≤ 1).

IV. EXPERIMENTS AND RESULTS

The proposed methods have been integrated into a graphi-
cal interface based on Qt1 enabling an interactive processing of
the filtering parameters. In order to ensure the reproducibility
of these results, the source code and images used in the
experiments, are available online2. All the presented results
are based on thëG component-graph. We have experimented
filtering based on a fixed thresholdλ for area and contrast
attributes, as well as an adaptive filtering with same attributes
(based onα parameter).

Standard colour images are defined in the RGB space with
V = [0,255]3. A partial ordering can be defined onV as
follows: ∀v = (r,g,b), v′ = (r ′,g′,b′) ∈ V, v 6 v′ ⇔ r ≤ r ′∧g ≤
g′ ∧ b ≤ b′. The priority function used in the component-
graph computation can then be defined by:prio(v) = r +g+b.
The leaves of a component-graph built on this lattice of values
correspond to bright objects on dark background. Thereforean
attribute filtering based on an increasing criterion first removes
bright details of the image.

First, we have assessed qualitatively the robustness of the
patch-based method by performing an attribute filtering in an
image decomposed into 118 patches (Fig. 2(a,b)). The filtering
enables to remove bright textural parts of the image while
leaving most of the other parts unchanged. Moreover, image
decomposition can reduce drastically computation time of the
graph as illustrated by Fig. 5. Fig. 2(c,d) provides another
illustration of adaptive area filtering.

Second, we have compared attribute filtering based on a
fixed threshold with the adaptive paradigm, in the context of
patch-based decomposition. The contrast attribute of a node
has been defined as maxp,q∈X ‖I (p) − I (q)‖1 where X denotes
the support (full connected component) of the node and‖.− .‖1
is the L1 distance. Fig. 3 illustrates a comparison between
contrast filtering based on a fixed threshold (b) and adaptive

1http://qt.digia.com
2http://code.google.com/cgraph

(a) Original (b) Filtered (118 patches,α = 0.5)

(c) Original (d) Filtered (13 patches,α = 0.3)

Fig. 2. Adaptive area filtering in the RGB space. All images arepart
of the Berkeley Segmentation Image Dataset (https://www.eecs.berkeley.edu/
Research/Projects/CS/vision/bsds).

filtering based on an adaptive threshold with similar behaviour
in the textural part of the bird (d). Both filterings have been
performed in 13 overlapping patches. It can be observed that
in Fig. 3(b), the tilling effect due to the decomposition into
patches is visible while it is not in Fig. 3(d).

(a) Original (b) Contrast filtering (λ = 166)

(c) Adaptive area filtering (α = 0.5) (d) Adapt. contrast filtering (α = 0.5)

Fig. 3. Area and contrast filtering in the RGB space. Filtering was performed
in 13 overlapping patches.

The HSV (Hue/Saturation/Value) colour space has a more
perceptual meaning than RGB, since its purpose is to decor-
relate hue (which can be considered as a set without obvious
ordering) from saturation (which characterizes colour “purity”)
and value (which gives the degree of “brightness” of the
colour). Therefore a straightforward use of this colour space
consists of computing the component-graph using only the S
and V components while restoring the original H in the filtered



(a) Original (b) α = 0.3 (c) α = 0.2 (d) α = 0.1 (e) α = 0.05

Fig. 4. Adaptive area filtering in the Saturation Value spacefor decreasing values ofα.

Fig. 5. Comparison of time between component-tree (in blue), component-
graph (in purple) and multithreaded component-graph (in orange) computation.
The multithreaded version uses a decomposition in 25 patches with one thread
per patch.

image. Based on this method, Fig. 4 illustrates an adaptive area
filtering on the SV space for decreasing values ofα.

The processing times for component-tree (using grayscale
version of the images), component-graph and multithreaded
component-graph computation (using a decomposition into 25
patches) have been compared for increasing image sizes (see
Fig. 5) on a Quad Core Intel Xeon CPU W3550 3.07 GHz with
4 GB of RAM. In these experiments the actual complexity
for the G̈ computation wasO(|Ω|1.5) (that is practically less
than the theoretical complexityO(|Ω|2). These experiments
confirm that patch decomposition enables to obtain acceptable
processing times.

Future works will address the algorithmic and memory
complexity of G and Ġ computation by considering paral-
lel/distributed computing [22]. Multivalued image segmen-
tation will also be explored, by considering for example
segmentation based on optimal cuts [23], [24].

REFERENCES

[1] L. Najman and H. Talbot, Eds.,Mathematical Morphology: From
Theory to Applications. ISTE/J. Wiley & Sons, 2010.

[2] H. J. A. M. Heijmans, “Theoretical aspects of gray-level morphology,”
IEEE T Pattern Anal, vol. 13, pp. 568–582, 1991.

[3] E. Aptoula and S. Lefèvre, “A comparative study on multivariate
mathematical morphology,”Pattern Recogn, vol. 40, pp. 2914–2929,
2007.

[4] P. Salembier and J. Serra, “Flat zones filtering, connected operators, and
filters by reconstruction,”IEEE T Image Process, vol. 4, pp. 1153–1160,
1995.

[5] P. Salembier and M. H. F. Wilkinson, “Connected operators: A review of
region-based morphological image processing techniques,”IEEE Signal
Proc Mag, vol. 26, pp. 136–157, 2009.

[6] P. Salembier, A. Oliveras, and L. Garrido, “Anti-extensive connected
operators for image and sequence processing,”IEEE T Image Process,
vol. 7, pp. 555–570, 1998.

[7] P. Monasse and F. Guichard, “Scale-space from a level lines tree,”J
Vis Commun Image R, vol. 11, pp. 224–236, 2000.

[8] P. Salembier and L. Garrido, “Binary partition tree as an efficient
representation for image processing, segmentation and information
retrieval,” IEEE T Image Process, vol. 9, pp. 561–576, 2000.

[9] P. Soille, “Constrained connectivity for hierarchicalimage partitioning
and simplification,”IEEE T Pattern Anal, vol. 30, pp. 1132–1145, 2008.

[10] L. Najman and T. Géraud, “Discrete set-valued continuity and inter-
polation,” in ISMM, ser. Lect Notes Comput Sc, vol. 7883, 2013, pp.
37–48.

[11] C. Kurtz, B. Naegel, and N. Passat, “Multivalued component-tree
filtering,” in ICPR, 2014.

[12] N. Passat and B. Naegel, “Component-hypertrees for imagesegmen-
tation,” in ISMM, ser. Lect Notes Comput Sc, vol. 6671, 2011, pp.
284–295.

[13] O. Tankyevych, H. Talbot, and N. Passat, “Semi-connections and
hierarchies,” inISMM, ser. Lect Notes Comput Sc, vol. 7883, 2013,
pp. 157–168.

[14] B. Naegel and N. Passat, “Component-trees and multivalued images: A
comparative study,” inISMM, ser. Lect Notes Comput Sc, vol. 5720,
2009, pp. 261–171.

[15] N. Passat and B. Naegel, “An extension of component-trees to partial
orders,” in ICIP, 2009, pp. 3981–3984.

[16] ——, “Component-trees and multivalued images: Structuralproperties,”
J Math Imaging Vis, vol. 49, no. 1, pp. 37–50, 2014.

[17] E. Carlinet and T. Géraud, “A comparison of many max-tree computa-
tion algorithms,” inISMM, ser. Lect Notes Comput Sc, vol. 7883, 2013,
pp. 73–84.

[18] E. J. Breen and R. Jones, “Attribute openings, thinnings, and granu-
lometries,”Comput Vis Image Und, vol. 64, pp. 377–389, 1996.

[19] R. Jones, “Connected filtering and segmentation using component
trees,”Comput Vis Image Und, vol. 75, pp. 215–228, 1999.

[20] B. Naegel and N. Passat, “Toward connected filtering based on
component-graphs,” inISMM, ser. Lect Notes Comput Sc, vol. 7883,
2013, pp. 350–361.

[21] A. V. Aho, M. R. Garey, and J. D. Ullman, “The transitive reduction
of a directed graph,”SIAM J Comput, vol. 1, pp. 131–137, 1972.

[22] M. H. F. Wilkinson, H. Gao, W. H. Hesselink, J.-E. Jonker, and
A. Meijster, “Concurrent computation of attribute filters onshared
memory parallel machines,”IEEE T Pattern Anal, vol. 30, pp. 1800–
1813, 2008.

[23] L. Guigues, J.-P. Cocquerez, and H. Le Men, “Scale-setsimage analy-
sis,” Int J Comput Vision, vol. 68, pp. 289–317, 2006.

[24] J. Serra, “Tutorial on connective morphology,”IEEE J Sel Top Signal,
vol. 6, pp. 739–752, 2012.


