Benoît Naegel¹ - Nicolas Passat²

¹Université de Strasbourg, ICube, UMR 7357, Strasbourg, France ²Université de Reims Champagne-Ardenne, CReSTIC, Reims, France

ICPR 24-28 August 2014 Stockholm, Sweden

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Motivation

Input image

Result

<ロ> <四> <四> <三> <三> <三> <三> <三> <三> <三> <三

Problematic

How to filter a colour image without altering its contours?

Outline

1 Connected filters

2 Component-tree

3 Component-graph: a new structure

4 Colour image filtering with component-graphs

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

5 Conclusion and perspectives

Connected filters

Outline

1 Connected filters

2 Component-tree

3 Component-graph: a new structure

4 Colour image filtering with component-graphs

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

5 Conclusion and perspectives

Connected filters

Definition

- A filter is said *connected* if it acts by merging image flat-zones.
- A connected filter preserves the image contours: a contour is either entirely preserved or entirely removed.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Designed in the field of mathematical morphology.

Applications

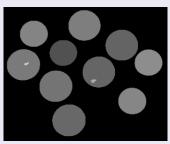
- Attribute filtering
- Object detection
- Segmentation

Connected filters

Image simplification

Input image

Area filtering


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Connected filters

Shape detection

Input image

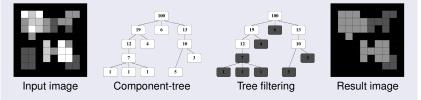
Compacity filtering

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Connected filters

Segmentation

Input image



Segmentation

Connected filtering

Threshold decomposition

- A class of connected filters is based on image threshold decomposition.
- Efficient filters based on a tree-based image representation: the component-tree (or max-tree/min-tree).
- Limitation: applicable only on monovalued (grey-level) images.
- Purpose of this work: how to extend this scheme to colour images ?

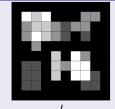
Component-tree

Outline

1 Connected filters

2 Component-tree

3 Component-graph: a new structure

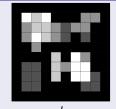

4 Colour image filtering with component-graphs

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

5 Conclusion and perspectives

Component-tree (or max-tree) [Salembier98, Najman06]

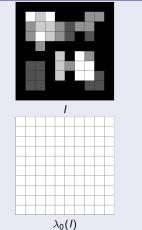
Definition

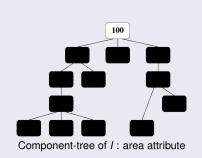

Threshold sets

- Image $I : \Omega \rightarrow V$.
- Threshold sets of $I : \lambda_v(I) = \{x \in \Omega \mid v \leq I(x)\}$
- Connected components of threshold sets: $C[\lambda_V(I)]$
- Union of all components: $\Phi = \bigcup_{\nu \in V} C[\lambda_{\nu}(I)]$

Component-tree (or max-tree) [Salembier98, Najman06]

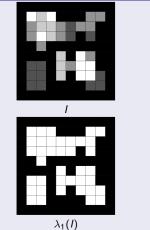
Definition

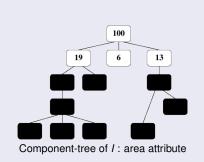

Component-tree \mathfrak{T} of I


- $\blacksquare \ Connected \ component \rightarrow node$
- Inclusion relation between two (different) connected components of successive threshold sets → edge
- Equivalent to the Hasse diagram of the partially ordered set (Φ, ⊆).

Component-tree (or max-tree) [Salembier98, Najman06]

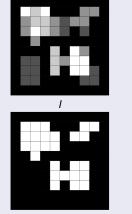
Construction

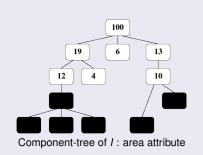




・ロト・西ト・山下・山下・山下・

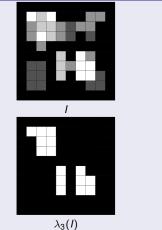
Component-tree (or max-tree) [Salembier98, Najman06]

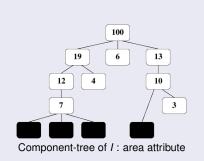

Construction



Component-tree (or max-tree) [Salembier98, Najman06]

Construction

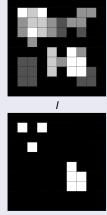

 $\lambda_2(I)$

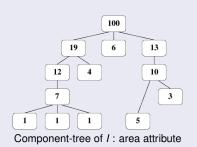


・ロト・雪・・雪・・雪・・ 白・ 今々ぐ

Component-tree (or max-tree) [Salembier98, Najman06]

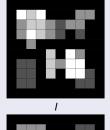
Construction

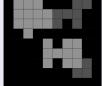



・ロ・・聞・・ヨ・・ヨ・ シック・

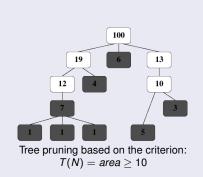
Component-tree (or max-tree) [Salembier98, Najman06]

Construction


 $\lambda_4(I)$



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ


Component-tree (or max-tree) [Salembier98, Najman06]

Pruning

Filtered image (area filtering)

ロ > < 個 > < 目 > < 目 > < 目 > < 回 > < < の へ ()

Component-graph: a new structure

Outline

1 Connected filters

2 Component-tree

3 Component-graph: a new structure

4 Colour image filtering with component-graphs

5 Conclusion and perspectives

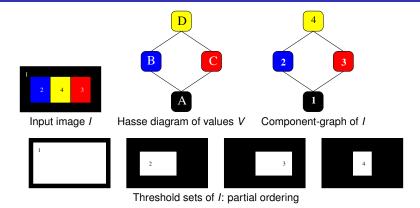
▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

Component-graph

Problematic

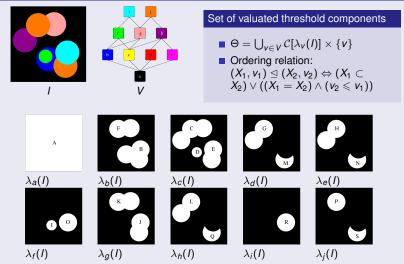
How to extend threshold based approaches to multivalued images ?

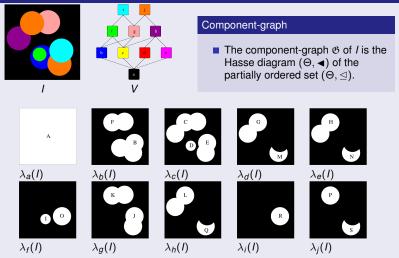
Grey-level image


Threshold sets

Colour image

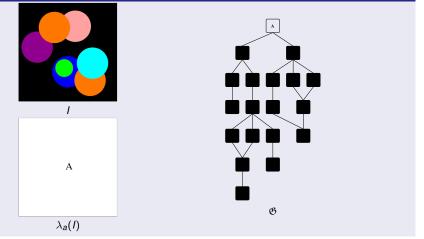
?


Component-graph

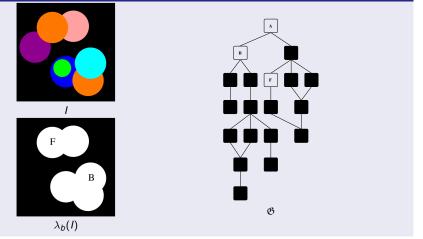

Component-graph

 \rightarrow New structure introduced in [Passat2009, Naegel2013, Passat 2014]: the component-graph

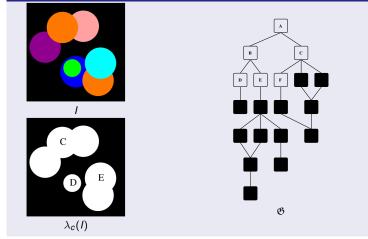
Component-graph



Component-graph

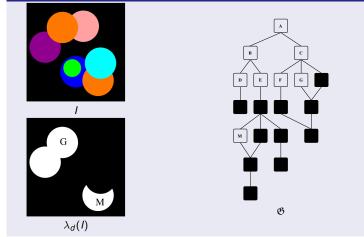

Component-graph

Definition

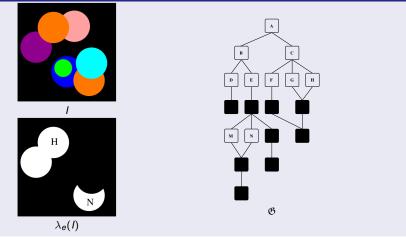


◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

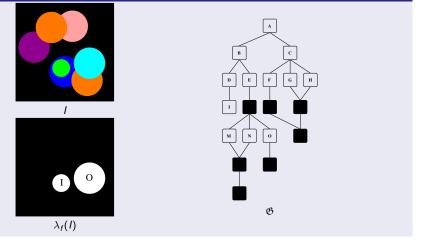
Component-graph



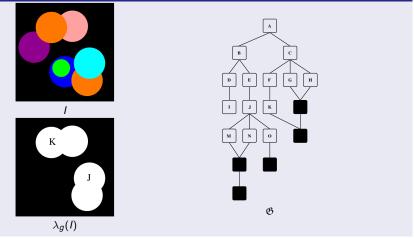
Component-graph

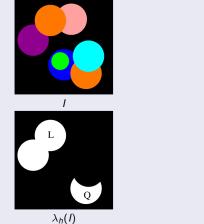

Component-graph

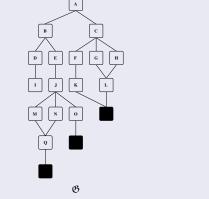
Definition



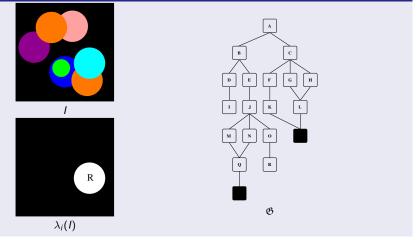
◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○


Component-graph

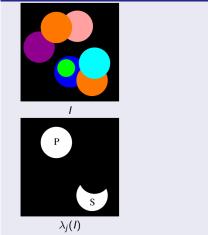

Component-graph

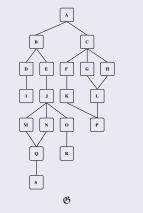


Component-graph



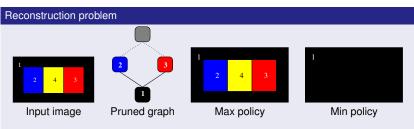
Component-graph




Component-graph

Component-graph

Definition



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Component-graph: a new structure

Component-graph pruning

How to reconstruct an image from the pruned graph (since blue and red are not comparable)?

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Colour image filtering with component-graphs

Outline

1 Connected filters

2 Component-tree

3 Component-graph: a new structure

4 Colour image filtering with component-graphs

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

5 Conclusion and perspectives

Colour image filtering with component-graphs

Colour images

Space of values ?

HSV space

...

Ordering ?

Marginal ordering:
$$V = [0, 255]^3$$
:
 $\forall v = (r, g, b), v' = (r', g', b') \in V, v \leq v' \Leftrightarrow r \leq r' \land g \leq g' \land b \leq b'$

Reconstruction policy

Attribute filtering: remove all components that do not satisfy the criterion

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

 \rightarrow Min policy

Main strategy

Problems

- Algorithmic complexity $\mathcal{O}(N^2)$
- Space complexity (RGB space=16 millions of values)

Patch decomposition

- Attribute filtering: area, contrast (the "height" of component)
- Multithreading: decomposition of image in covering patches
- Each patch is filtered independantly

Adaptive filtering

Pruning criterion is adapted for each patch (percentile based thresholding)

Colour image filtering with component-graphs

Colour images

Experimenting with RGB space

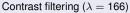
Original

Filtered (118 patches, $\alpha = 0.5$)

Original

Filtered (13 patches, $\alpha = 0.3$)

Colour image filtering with component-graphs


Colour images

Adaptive filtering

Original

Adaptive area filtering ($\alpha = 0.5$)

Adapt. contrast filtering ($\alpha = 0.5$)

Colour image filtering with component-graphs

Colour images

Experimenting with HSV space

Partial ordering on [Saturation, Value] space closer from visual perception

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Component-graph pruning from [Saturation, Value] space
- The Hue value is unchanged

Colour image filtering with component-graphs

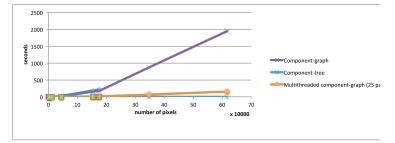
Area attribute

Colour images

Experimenting with HSV space

Original

$$\alpha = 0.2$$


Colour image filtering with component-graphs

Colour images

Implementation

C++ / Qt

code.google.com/p/cgraph.

25 patches / threads - 4 cores. In practice, $\mathcal{O}(N^{1.5})$ complexity.

・ロト・四ト・モート ヨー うへの

Conclusion and perspectives

Outline

1 Connected filters

2 Component-tree

3 Component-graph: a new structure

4 Colour image filtering with component-graphs

5 Conclusion and perspectives

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

Conclusion and perspectives

Conclusion et perspectives

Conclusion

- Component-graph : extending component-tree filtering paradigm on multivalued images.
- Practical applications on colour images based on patch decomposition and adaptive filtering

Perspectives

- Component-graph based segmentation.
- Addressing space and algorithm complexity: pruning the space of values.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Conclusion and perspectives

Bibliography

P. Salembier, A. Oliveras and L. Garrido Anti-extensive connected operators for image and sequence processing. *IEEE Transactions on Image Processing*, 7(4):555–570, 1998

L. Najman and M. Couprie

Building the component tree in quasi-linear time

IEEE Transactions on Image Processing, 15(11):3531–3539, 2006

B. Naegel and N. Passat

Component-trees and multivalue images: A comparative study. *ISMM 2009*, 2009, pp. 261-271.

N. Passat and B. Naegel

An extension of component-trees to partial orders. *ICIP 2009*, 2009, pp. 3981-3984.

B. Naegel and N. Passat

Toward connected filtering based on component-graphs.

International Symposium on Mathematical Morphology (ISMM), Lecture Notes in Computer Science, vol. 7883, pp 350-361, Springer, Uppsala, Sweden, 2013.

N. Passat and B. Naegel Component-trees and multivalued images: Structural properties. Journal of Mathematical Imaging and Vision, 2014