Multivalued component-tree filtering - Université de Reims Champagne-Ardenne
Conference Papers Year : 2014

Multivalued component-tree filtering

Abstract

We introduce the new notion of multivalued component-tree, that extends the classical component-tree initially devoted to grey-level images, in the mathematical morphology framework. We prove that multivalued component-trees can model images whose values are hierarchically organized. We also show that they can be efficiently built from standard component-tree construction algorithms, and involved in antiextensive filtering procedures. The relevance and usefulness of multivalued component-trees is illustrated by an applicative example on hierarchically classified remote sensing images.
Fichier principal
Vignette du fichier
Kurtz_ICPR_2014.pdf (1.53 Mo) Télécharger le fichier
Kurtz ICPR 2014 Poster.pdf (1.63 Mo) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-01695070 , version 1 (15-02-2018)

Identifiers

Cite

Camille Kurtz, Benoît Naegel, Nicolas Passat. Multivalued component-tree filtering. International Conference on Pattern Recognition (ICPR), 2014, Stockholm, Sweden. pp.1008-1013, ⟨10.1109/ICPR.2014.183⟩. ⟨hal-01695070⟩
91 View
178 Download

Altmetric

Share

More