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Abstract—We introduce the new notion of multivalued
component-tree, that extends the classical component-tree initially
devoted to grey-level images, in the mathematical morphology
framework. We prove that multivalued component-trees can
model images whose values are hierarchically organized. We also
show that they can be efficiently built from standard component-
tree construction algorithms, and involved in antiextensive fil-
tering procedures. The relevance and usefulness of multivalued
component-trees is illustrated by an applicative example on
hierarchically classified remote sensing images.

I. INTRODUCTION

Connected operators [1], [2] gather image processing tools
defined in the framework of mathematical morphology and
involved in a wide spectrum of applications [3, Ch. 7]. In
this context, the notion of component-tree [4] has received a
specific attention. The component-tree is a hierarchical data
structure that models a grey-level image by considering its
binary level sets obtained from successive thresholdings. It
is well-suited for grey-level image filtering and segmentation
methods [5], [6], based on hypotheses related to the connected-
ness and extremal intensity of structures of interest, and relying
on attribute-based [7], [8] or optimal cut strategies [9].

The success of the component-tree in the field of grey-
level image processing, together with the increasing need for
applications involving multivalued images [10], has motivated
its extension to the case of such images, which can take their
values in any – totally or partially – ordered sets [11]. To deal
with this issue, a new notion of component-graph was recently
introduced [12], [13]. By contrast with the component-tree,
the component-graph is not a tree, in general. This structural
property induces several algorithmic open issues.

We introduce intermediate data structures, called the mul-
tivalued component-trees. They constitute a subfamily of
component-graphs, that still present a tree structure, and then
extend the component-trees. They gather, in particular, the
structural / algorithmic advantages of hierarchical data struc-
tures, but can be used beyond the domain of grey-level images.

This article is organised in three – theoretical, algorithmic
and applicative – parts. We first characterise the value spaces
that allow us to define multivalued component-trees (Sec. II).
Then, we show how to efficiently build such trees, and involve
them in an antiextensive filtering scheme similar to the one
proposed in [4], [8] for grey-level images (Sec. III). We finally
present an application of multivalued component-tree filtering
on hierarchically classified remote sensing images (Sec. IV).

The research leading to these results has received funding from the French
Agence Nationale de la Recherche (Grant Agreement ANR-12-MONU-0001).

II. MULTIVALUED COMPONENT-TREES

Let Ω be a nonempty finite set. To define a notion of
connectivity [14] on Ω, we consider the classical and versatile
graph-based paradigm, generally used in discrete topology and
digital image processing. More precisely, given an adjacency
relation on Ω, we define for any X ⊆ Ω, the (equivalence)
connectedness relation as the reflexive-transitive closure of this
adjacency on X. The set of all the connected components (i.e.,
equivalence classes) of X, is noted C[X].

Let V be a nonempty finite set equipped with an order
relation 6. We note < and ≺ the strict and cover relations
associated to 6, respectively. We assume that (V,6) admits a
minimum, noted ⊥.

Let us consider an image I : Ω → V . Each binary level
set λv(I) = {x ∈ Ω | v 6 I(x)} ⊆ Ω is divided into connected
components, gathered into the partition C[λv(I)]. The union

Φ =

⋃

v∈V

C[λv(I)] (1)

of all these partitions can be equipped with the inclusion ⊆.

Let us now suppose that (V,6) is totally ordered, i.e., I is
a grey-level image. We can define the component-tree of I.

Definition 1 ([4]): The component-tree T of I is the Hasse
diagram of the partially ordered set (Φ,⊆).

Then, T has a (rooted) tree structure, whose “root” is Ω,
and “leaves” are the flat zones of I of locally maximal values.
The cover associated to ⊆ then provides a parent / children
relation between the “nodes” of the tree. Before going on, let
us clarify the actual meaning of “tree structure”.

Definition 2: Let (A,⊑) be an ordered set. For any a ∈ A,
we note a↑ = {b ∈ A | a ⊑ b} and a↓ = {b ∈ A | b ⊑ a}. We say
that (A,⊑) is an upper (resp. lower) piecewise totally ordered
set (UPTOS) (resp. (LPTOS)) if for any a ∈ A, (a↑,⊑) (resp.
(a↓,⊑)) is totally ordered. We say that the Hasse diagram of
(A,⊑) has a tree structure if (A,⊑) is a UPTOS or a LPTOS.

If we relax the totality constraint on 6, then T does no
longer have a tree structure, in most cases. This has motivated
the introduction of a more general notion of component-graph.

To define this notion, we enrich the set Φ, by assigning
to each connected component the value of its level set. The
obtained set of valued connected components is then defined
as

Θ =

⋃

v∈V

C[λv(I)] × {v} (2)



We then extend the inclusion relation on Φ by considering
these values. We obtain the order relation E on Θ defined as

(X1, v1) E (X2, v2)⇔ (X1 ⊂ X2) ∨ ((X1 = X2) ∧ (v2 6 v1)) (3)

We can finally define the notion of component-graph as
follows.

Definition 3 ([13]): The component-graph G of I is the
Hasse diagram (Θ,◭) of the partially ordered set (Θ,E).

The component-graph can be declined into three variants,
noted G, Ġ and G̈ – of decreasing space complexity and
richness – by also considering the following two subsets of
Θ, namely

Θ̇ = {(X, v) ∈ Θ | ∀(X, v′) ∈ Θ, v ≮ v′} (4)

Θ̈ = {(X, v) ∈ Θ | ∃x ∈ X, v = I(x)} (5)

By contrast with the component-tree, the component-graph
does not have a tree structure, in general. In this article,
we focus on an intermediate notion, namely a subfamily of
component-graphs:

(i) more general than the component-trees, i.e., defined
for images that are not necessarily grey-level ones;
but

(ii) that present however a tree structure, and thus still
have good properties for filtering purpose.

We call them multivalued component-trees.

The first question that arises is then: When can we licitly
define a multivalued component-tree on an image I : Ω→ V?
The answer is provided by the following proposition.

Proposition 4: The component-graph G of any image I :
Ω→ V has a tree structure if and only if (V,6) is a LPTOS.

Proof Let us first assume that (V,6) is a LPTOS. Let I :
Ω → V be an image and G its component-graph. Let x ∈
Ω. Let K = (X, v) ∈ Θ such that x ∈ X and I(x) = v. Let
K1 = (X1, v1),K2 = (X2, v2) ∈ K↑. From Eq. (3), it comes
v1, v2 6 v. As (V,6) is a LPTOS, we can assume v1 6 v2. Then,
Eq. (2) implies X2 ⊆ X1, and thus K2 E K1. Finally, (K↑,E) is
totally ordered, and (Θ,E) is a UPTOS. Now, let us assume
that for any I : Ω → V , the component-graph G of I has a
tree structure. As (Θ,E) admits a maximum, namely (Ω,⊥), it
is a UPTOS. Let v ∈ V be a maximal element of (V,6). Let
I : Ω → V be the constant image defined by I(x) = v for all
x ∈ X. Then (Ω × v↓,E) is totally ordered. From Eq. (2), it is
isomorphic to (v↓,6), that is then also totally ordered. Thus,
(V,6) is a LPTOS. �

Multivalued component-trees can then be defined whenever
the Hasse diagram of (V,6) has a tree structure. In particular,
this is true when (V,6) is totally ordered. The multivalued
component-tree is then a relevant extension of the component-
tree, as stated by the following result.

Proposition 5 (From [13]): If (V,6) is a totally ordered
set, then two of the three variants of multivalued component-
trees, namely Ġ and G̈, are isomorphic to the component-tree.

From now on, we will assume that (V,6) is a LPTOS.

III. ANTIEXTENSIVE FILTERING SCHEME

Based on this compatibility, multivalued component-trees
inherit the (de)composition formula classically associated to
component-trees, namely

I =

≤∨

K∈Θ

CK (6)

where
∨

is the supremum / maximum operator, ≤ is the
pointwise order on functions induced by 6, and for any
(X, v) ∈ Θ, C(X,v) : Ω → V is the cylinder function defined
by C(X,v)(x) = v if x ∈ X and ⊥ otherwise.

In the framework of component-trees, this formula led to
an antiextensive filtering scheme for grey-level images [4],
[8]. This scheme, that we propose to extend to multivalued
component-trees, consists of the following three successive
steps (see also Diag. (7)):

(i) construction of the multivalued component-tree G
associated to I;

(ii) reduction of G, leading to a reduced multivalued

component-tree Ĝ; and

(iii) reconstruction of a filtered image Î ≤ I induced by

Ĝ.

I −−−−−−→ Î ≤ I

(i)

y
x(iii)

G
(ii)

−−−−−−→ Ĝ

(7)

One may notice that Step (iii) is indeed straightforward, by

simply substituting the set of valued connected components Θ̂

of Ĝ to the set Θ in Eq. (6). We now explain how to efficiently
handle the first two steps.

A. Multivalued component-tree construction

Many efforts have been successfully devoted to efficiently
build component-trees [4], [15], [16], [17], [18], [19]. The
induced algorithms are consequently designed to handle grey-
level images, but they cannot process images for which (V,6)
is a LPTOS but not a totally ordered set.

The second question that arises is then: How can we
efficiently build a multivalued component-tree? To answer this
question, let us first consider the case of the multivalued
component-tree Ġ = (Θ̇, ◭̇) associated to Θ̇ (see Alg. 1).

We first define an extended set ΩΓ ⊇ Ω, by adding a new
point ε{x,y} for any adjacent points x, y ∈ Ω whose values are
not comparable (lines 1–4). In the same time, we define an
adjacency relation on ΩΓ that is equal to the adjacency on Ω
for any adjacent points x, y ∈ Ω whose values are comparable,
and that replaces their adjacency by two adjacencies between
x, ε{x,y} and ε{x,y}, y, otherwise (lines 1–3,5).

We then extend I as a new image IΓ : ΩΓ → V such
that IΓ = I on Ω, while IΓ(ε{x,y}) =

∧
6{I(x), I(y)}, namely the

minimum of I(x) and I(y), for any ε{x,y} ∈ ΩΓ \Ω.

From a topological point of view, the images I and IΓ are
deeply related. Indeed, we can define a bijection Γ : Θ → ΘΓ
such that Γ((X, v)) = (XΓ, v) ∈ ΘΓ with X ⊆ XΓ. Its inverse
function is, in particular, defined by Γ−1((XΓ, v)) = (XΓ ∩Ω, v).



Algorithm 1: Construction of Ġ

Input: I : Ω→ V (multivalued image)
Input: a ⊆ Ω ×Ω (adjacency inducing the connectedness on Ω)
Output: Ġ = (Θ̇, ◭̇) (Hasse diagram of (Θ̇,E))

1 (ΩΓ ,aΓ)← (Ω,a)
2 foreach x a y do

3 if I(x) 66 I(y) and I(y) 66 I(x) then
4 ΩΓ ← ΩΓ ∪ {ε{x,y}}

5 aΓ ← aΓ \ {(x, y)} ∪ {(x, ε{x,y}), (ε{x,y} , y)}

6 foreach x ∈ Ω do

7 IΨ(x)← ψ(I(x))

8 foreach ε{x,y} ∈ ΩΓ \Ω do

9 IΨ(ε{x,y})← ψ(
∧
6{I(x), I(y)})

10 compute ĠΨ = (Θ̇Ψ, ◭̇Ψ) for IΨ : ΩΓ → N (see [19])

11 (Θ̇, ◭̇)← (∅, ∅)

12 foreach KΨ ∈ Θ̇Γ do

13 Θ̇← Θ̇ ∪ {Γ−1(Ψ−1(KΨ))}

14 foreach KΨ ◭̇Ψ K′
Ψ

do

15 ◭̇← ◭̇ ∪ {(Γ−1(Ψ−1(KΨ)), Γ−1(Ψ−1(K′
Ψ

)))}

Algorithm 2: Construction of G from Ġ

Input: Ġ = (Θ̇, ◭̇) (Hasse diagram of (Θ̇,E))
Output: G = (Θ,◭) (Hasse diagram of (Θ,E))

1 (Θ,◭)← (Θ̇, ∅)
2 foreach (X, v) ◭̇ (X′, v′) do

3 if v′ ≺ v then

4 ◭ ← ◭ ∪ {((X, v), (X′, v′))}

5 else

6 foreach v′ < w′ < v do
7 Θ← Θ ∪ {(X,w′)}

8 for v′ ≺ w < v do

9 ◭ ← ◭ ∪ {((X,w), (X′, v′))}
10 foreach w 6 w′ ≺ w′′ 6 v do
11 ◭ ← ◭ ∪ {((X,w′′), (X,w′))}

Algorithm 3: Construction of G̈ from Ġ

Input: I : Ω→ V (multivalued image)
Input: Ġ = (Θ̇, ◭̇) (Hasse diagram of (Θ̇,E))
Output: G̈ = (Θ̈, ◭̈) (Hasse diagram of (Θ̈,E))

1 (Θ̈, ◭̈)← (Θ̇, ◭̇)

2 foreach K = (X, v) ∈ Θ̈ do

3 if ∀x ∈ X, I(x) , v then

4 Θ̈← Θ̈ \ {K}

5 for K′ ◮̈ K do

6 ◭̈ ← ◭̈ \ {(K,K′)}
7 foreach K′′ ◭̈ K do

8 ◭̈ ← ◭̈ \ {(K′′,K)} ∪ {(K′′, K′)}

Property 6: The bijection Γ induces an isomorphism be-
tween (Θ̇,E) and (Θ̇Γ,EΓ). In particular, Ġ is isomorphic to
ĠΓ.

Let ψ : V → N be the function defined by ψ(v) = |v↓|,
namely the number of elements of v↓. It induces a homomor-
phism from (V,6) to the totally ordered set (N,6N). If (V,6)
is not totally ordered, then ψ is not injective. However, this
is not a problem when considering IΓ : ΩΓ → V , since any
adjacent points have now comparable values.

Then, let us consider the grey-level image IΨ : ΩΓ → N,
defined as IΨ = ψ ◦ IΓ (lines 6–9). We can define the bijection
Ψ : Θ̇Γ → Θ̇Ψ such that Ψ((XΓ, v)) = (XΓ, ψ(v)). Its inverse
function is defined by Ψ−1((XΓ, vΨ)) = (XΓ,

∧
6{I(x) | x ∈ XΓ}).

Property 7: The bijection Ψ induces an isomorphism be-
tween (Θ̇Γ,EΓ) and (Θ̇Ψ,EΨ). In particular, ĠΓ is isomorphic
to ĠΨ.

As IΨ : ΩΓ → N is actually a grey-level image, ĠΨ is
(isomorphic to) a component-tree (Prop. 5). Thus, it can be
built from any standard component-tree construction algorithm
(line 10). The multivalued component-tree Ġ can then be
straightforwardly retrieved from ĠΨ thanks to Ψ−1 and Γ−1

(lines 11–15).

The pre- and post-processings (lines 1–9 and 11–15) both
present a computational cost of O(|Ω| + |a|). It is proved in
[16] that a component-tree can be built in quasi-linear time
with respect to the size of the image. Thus, the computational
cost for building Ġ is quasi-linear with respect to |Ω| + |a|.
One may notice that we generally have |a| = O(|Ω|); in that
frequent case, the cost is quasi-linear with respect to |Ω|.

In order to build the multivalued component-trees G and
G̈, some specific algorithms can then be applied on Ġ.

Let us first consider the case of G. For any link
(X, v) ◭̇ (X′, v′) such that there exists a value w′ ∈ V verifying
v′ < w′ < v, we remove this link and we update Ġ as follows:
(i) we add to Θ̇ all the valued connected components (X,w′)
such that v′ < w′ < v; and (ii) we create the respective
links between all these new successive valued connected
components, with respect to ≺, plus the two links with (X, v)
and (X′, v′). (See [13, Prop. 12] for a formal justification of
these modifications.) This process is formalised in Alg. 2.

Let us now consider the case of G̈. For any K = (X, v) ∈ Θ̇
such that for all x ∈ X, I(x) , v, we remove K from Θ̇ and we
update Ġ as follows: (i) we remove the unique edge (K,K′) ∈
◭̇; and (ii) we replace any edge (K′′,K) ∈ ◭̇ by (K′′,K′). This
process is formalised in Alg. 3.

B. Multivalued component-tree reduction

The second step of the scheme consists of reducingG. This

implies to choose a subset of nodes Θ̂ ⊆ Θ. Similarly to the
case of component-tree filtering [4], [8], this choice relies on:

• a selection criterion, i.e., a Boolean predicate ρ :
Θ → B that indicates if the nodes satisfy a required
property; and

• a reduction policy which is combined with ρ to
determine which parts of the component-graph should
be preserved or discarded.

If ρ models an increasing criterion, i.e., if K E K′ ⇒(
ρ(K) ⇒ ρ(K′)

)
, then the way to reduce G is straightforward

(in particular, the following reduction policies are equivalent).

However, if ρ models a non-increasing criterion, then
various reduction policies can be considered. For component-
trees, several classical policies have been defined, including in
particular the min, direct, and max ones [4]. These policies
remain consistent in the case of multivalued component-trees.



Definition 8 (From [4]): Let (V,6) be a LPTOS. Let Θ̂ ⊆
Θ. Let ρ : Θ → B be a selection criterion. The three
reduction policies min, direct and max are characterized by
the following axiomatic (recursive) definitions of the subsets

Θ̂min, Θ̂direct, Θ̂max ⊆ Θ̂.

(Ω,⊥) ∈ Θ̂min, Θ̂direct, Θ̂max (8)

ρ(K) ∧
(
K′ ◮ K ∧ K′ ∈ Θ̂min

)
=⇒ K ∈ Θ̂min (9)

ρ(K) =⇒ K ∈ Θ̂direct (10)

ρ(K) ∨
(
K′ ◭ K ∧ K′ ∈ Θ̂max

)
=⇒ K ∈ Θ̂max (11)

Property 9: We have the following inclusion relations be-
tween the nine reduced sets of nodes of Θ.

Θ̂max(G̈)
⊆

−−−−−−→ Θ̂max(Ġ)
⊆

−−−−−−→ Θ̂max(G)

⊆

x ⊆

x ⊆

x
Θ̂direct(G̈)

⊆
−−−−−−→ Θ̂direct(Ġ)

⊆
−−−−−−→ Θ̂direct(G)

⊆

x ⊆

x ⊆

x
Θ̂min(G̈) Θ̂min(Ġ) Θ̂min(G)

(12)

When considering component-trees, the algorithmic pro-
cess of node selection is intrinsically linked to the structure of
the tree, and not to the nature of the order 6. Consequently, in
the case where (V,6) is a LPTOS, the same algorithmic process
can be applied for selecting nodes in multivalued component-
trees. In particular it is carried out by scanning G only once
in a bottom-up (direct, max) or in a top-down fashion (min,
direct). Its computational cost is then O(|Θ|).

IV. EXPERIMENTS AND RESULTS

A. Synthetic data

Before considering a real application, let us illustrate the
effects of the choice of the multivalued component-tree and
the reduction policy, when filtering a multivalued image.

To this end, we consider the synthetic example of Fig. 1,
that provides a multivalued image I : Ω → V (Fig. 1(a))
taking its values in a LPTOS (V,6) (Fig. 1(b)). This image
is associated to three distinct multivalued component-trees
G = (Θ,◭), Ġ = (Θ̇, ◭̇), G̈ = (Θ̈, ◭̈) (Fig. 1(m–o)), with
Θ = {A, B, . . . , M} (Fig. 1(c–l)).

Let us now suppose that for a given selection criterion
ρ : Θ→ B, we have ρ−1({true}) = {A, B, C, D, H, I, J, L}. By
reducing the three multivalued component-trees, with the three
policies max, direct, min, we obtain nine reduced multivalued
component-trees from which we can reconstruct nine filtered
images, illustrated in (Fig. 1(p–x)). Their respective properties
(recovery of initially non-selected nodes; removal of initially
selected nodes; appearance of new values) provide a wide
range of possibilities, that may fit various kinds of use cases.

B. Hierarchically classified image filtering

A classical application field that involves images taking
their values in ordered sets (V,6) that are LPTOS, is the
processing of hierarchical classification maps [20]. Such hi-
erarchical maps – that can be obtained from supervised or un-
supervised classification – are widely considered in the context

(a) I : Ω→ V

c db

a

e

i

f

j

g

h

(b) (V,≺)

A

(c) λa(I)

B

(d) λb(I) (e) λc(I)

D
C

(f) λd(I)

B E

F

(g) λe(I)

G

I

(h) λ f (I)

H

(i) λg(I) (j) λh(I)

J K

(k) λi(I)

M

L

(l) λ j(I)

FE G

K M

A

B C D

J L

H I

(m) G

E F

K M

A

B C D

H

LJ

(n) Ġ

E F

K M

A

B C

H

LJ

(o) G̈

(p) G,max (q) G, direct (r) G,min

(s) Ġ,max (t) Ġ, direct (u) Ġ,min

(v) G̈,max (w) G̈, direct (x) G̈,min

Fig. 1. (a) An image I : Ω → V with V = {a, . . . , j}. (b) Hasse diagram of
(V,6). (c–l) Thresholded images λv(I). (m–o) Multivalued component-trees of
I. (p–x) Filtered images for ρ(⋆) = true for ⋆ ∈ {A, B, C, D, H, I, J, L} (see
green nodes in (m–o)), depending on the chosen tree and reduction policy.



background

urban

specific mineral housing-area

sparse dense

water-area

water lake gravel-pit

agricultural-area

meadow-area

fallow-land meadow-mix

wild-land temp-meadow meadow

non-irrigated

corn pea sunflower

irrigated

soybean sorghum

sorghum-I sorghum-I I

corn-area

corn silage

winter

wheat rape barley

forest

conifer leaved-tree

eucalyptus poplar-tree broad-leaved

Fig. 2. Hasse diagram of a LPTOS (V,6) where V is composed of 40 semantic labels, and 6 provides the generalisation / specialisation links between them.

(a) Satellite image S : Ω→ R4 (b) Classification map I : Ω→ V

Fig. 3. (a) Satellite image (FORMOSAT-2), defined on a set Ω of 1000 × 1000 pixels. Spatial resolution: 8 m × 8 m. Spectral resolution: 4 bands (near infrared,
red, green, blue). (b) Classification map I : Ω→ V obtained from (a) (courtesy J. Inglada, D. Ducrot, C. Marais-Sicre, O. Hagolle and M. Huc, CESBIO).

(a) τmin = 10 000 m2 (b) τmin = 50 000 m2 (c) τmin = 100 000 m2 (d) τmin = 500 000 m2

(e) [τmin , τmax] = [0, 10 000] m2 (f) [τmin, τmax] = [10 000, 50 000] m2 (g) [τmin, τmax] = [50 000, 100 000] m2 (h) [τmin, τmax] = [100 000, 200000] m2

Fig. 4. Antiextensive filtering of I (Fig. 3(b)), based on an area attribute A. While I takes its values within the 26 leaves of (V,≺) (Fig. 2), the filtered images can
also contain other values, then modeling areas with less specific semantics. The processing of I (construction and reduction of the multivalued component-tree)
requires 1.04 s CPU on an Intel R© CoreTM2 Quad running at 2.4 GHz with 8 GB of RAM. (a–d) Results for τmin < A. (e–h) Results for A ∈ [τmin , τmax].



of remote sensing, for instance when analysing multiresolution
[21] or multitemporal satellite images [22].

In such cases, (V,6) is a hierarchy of concepts. In other
words, the set V is composed of semantic labels, while the
relation 6 provides some generalisation / specialisation links
between them. We then obtain a tree structure (V,≺), in which
the “leaves” (i.e., the minimal elements) are the most precise
labels – that correspond to the smallest details of related
images – while the “root” (i.e., the maximum) is the most
general label – that is valid within the whole images.

In our application, we define a set V of labels related to the
semantic elements of agricultural areas, illustrated in Fig. 2.
They are organised from the root (background) to 26 leaves
that are gathered into wide families (urban, water, agricultural,
forest), progressively refined into 3 to 5 layers.

We then consider the satellite image illustrated in Fig. 3(a),
that represents a complex agricultural zone. This image, de-
fined on a set Ω of 1000 × 1000 pixels with a spatial
resolution of 64 m2 per pixel, has then been classified into
26 classes, corresponding to the leaves of V , thus leading
to the classification map I : Ω → V depicted in Fig. 3(b).
This classification task is indeed challenging since the latest
generation of remote sensing images presents high spectral
and spatial resolution properties leading to huge volumes of
data. This motivates in particular denoising procedures on such
kinds of semantic images.

Based on the multivalued component-tree Ġ of I : Ω→ V ,
two series of antiextensive filterings have been computed.
The first has been performed by considering an increasing
criterion, related to the minimal values of an area attribute A.
In other words, we removed the valued connected components
corresponding to regions with a size below a given threshold
value. The second has been performed by considering a non-
increasing criterion, related to intervals of values for the same
attribute A, with a direct reconstruction policy. In other words,
we preserved the valued connected components corresponding
to regions with a size lying between two extremal values.

Some results of these two antiextensive filterings are de-
picted in Fig. 4. As stated above, the large size of satellite
images, and their high resolution results in classification maps
that can be impaired by semantic noise. In this context, the
simultaneous use of (i) an area criterion, and (ii) a set of
hierarchically structured labels, allows us to carry out a mixed
spatial / semantic denoising of the classification maps. In other
words, it becomes possible to handle the trade-off between
spatial and semantic filtering, e.g., by obtaining regions of ho-
mogeneous size and / or levels of semantic accuracy. Fig. 4(d)
depicts an example of this trade-off where only the largest
semantic structures (i.e., urban and agricultural areas, forest)
are preserved. At the opposite, Fig. 4(e) illustrates a filtering
result where only small semantic structures (in this application
the dense housing areas) are preserved.

These results illustrate the usefulness of multivalued
component-trees for filtering. Beyond the previous example,
devoted to semantic images, other applications can also be
considered for natural images. Indeed, it is possible to define
a tree structure, e.g., on a RGB or HSV space V , by defining a
cover (V,≺) as a spanning tree of the Hasse diagram induced by
the canonical order 6 of V . The multivalued component-trees

can then allow us to develop original extensions of the vectorial
processing of colour images. In this context, segmentation by
optimal cut [9] also constitutes a short term perspective.
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