Multi-Image Segmentation: A Collaborative Approach Based on Binary Partition Trees

Jimmy Francky Randrianasoa¹

Camille Kurtz² Éric Desjardin¹ Nicolas Passat¹

¹ Université de Reims Champagne-Ardenne, CReSTIC, France ² Université Paris-Descartes, LIPADE, France jimmy.randrianasoa@univ-reims.fr

28 May 2015

12th International Symposium on Mathematical Morphology

Plan

- Context and related works
- Multi-image Binary Partition Tree
- Second Second
- Conclusion and perspectives

- Context and related works
 - Multi-image Binary Partition Tree
- Experimental illustration
- Conclusion and perspectives

Image processing / analysis

Segmentation

- Crucial task for image analysis
- 2 definitions:
 - Extraction of objects of interest from image background

Examples: Deformable models, Graph-cuts

Whole partition of the image support

Examples: Connected operators [Salembier and Wilkinson, 2009] (Watersheds, ...),

Split-and-merge

Principal invariant: "one algorithm applied on one image"

(a) Image

(b) Partitioning

Image processing / analysis

Segmentation

- Crucial task for image analysis
- 2 definitions:
 - Extraction of objects of interest from image background
 Examples: Deformable models. Graph-cuts
 - Whole partition of the image support

Examples: Connected operators [Salembier and Wilkinson, 2009] (Watersheds, ...), Split-and-merge

Principal invariant: "one algorithm applied on one image"

III-posed problem

Results from one image may not be completely satisfactory

⇒ Relevance of relaxing the "one image, one algorithm" paradigm

Segmentation fusion

Extension of the "one image, one algorithm" paradigm

- "n images, one algorithm" ⇒ enrich / improve the input information
 - **Examples:** Pansharpened satellite image segmentation, Multi-source image segmentation
- "one image, n algorithms" \Rightarrow enrich / improve the output information

Examples: Consensus approach between various methods, Mono-algorithmic stochastic approach

Main interest

Obtaining a more accurate segmentation from several segmentation maps

Segmentation fusion

Extension of the "one image, one algorithm" paradigm

- ullet "n images, one algorithm" \Rightarrow enrich / improve the input information
 - **Examples:** Pansharpened satellite image segmentation, Multi-source image segmentation
- "one image, n algorithms" \Rightarrow enrich / improve the output information

Examples: Consensus approach between various methods, Mono-algorithmic stochastic approach

Main interest

Obtaining a more accurate segmentation from several segmentation maps

Related works

- Geometrical problem of interpolation [Rohlfing and Maurer Jr., 2007, Vidal et al., 2007]
- Stochastic watersheds/minimum spanning forest [Angulo and Jeulin, 2007, Bernard et al., 2012]
- Segmentation fusion based on random walkers [Wattuya et al., 2008]
- Models of consensus and weak partitions [Topchy et al., 2005]
- Image segmentation fusion using general ensemble clustering methods [Franck et al., 2010]

Morphological hierarchies

Hierarchical segmentation

- Classical trees by fusion of flat zones
 - Component-trees [Salembier et al., 1998]
 - Trees of shapes [Monasse and Guichard, 2000]

Drawbacks of classical morphological trees

- High dependency with the spectral information of the image
 - One image ⇒ one tree

Morphological hierarchies

Hierarchical segmentation

Binary Partition Tree (BPT) [Salembier and Garrido, 2000]

Specificity of the Binary Partition Tree (BPT) [Salembier and Garrido, 2000]

- Intelligence based on a prior knowledge of the user
 - One image ⇒ various potential BPTs according to the metric used
 - Often used on remote sensing images segmentations [Vilaplana et al., 2008, Benediktsson et al., 2011]

Morphological hierarchies

Hierarchical segmentation

Binary Partition Tree (BPT) [Salembier and Garrido, 2000]

Specificity of the Binary Partition Tree (BPT) [Salembier and Garrido, 2000]

- Intelligence based on a prior knowledge of the user
 - One image ⇒ various potential BPTs according to the metric used
 - Often used on remote sensing images segmentations [Vilaplana et al., 2008, Benediktsson et al., 2011]

BPT tuning for *n* satellite images: related works

- Multi-resolution satellite images [Kurtz et al., 2012]
- Multiple morphological hierarchy [Akcay and Aksoy, 2008]
- Time series processing with BPT [Alonso-González et al., 2014]

Multi-image

Interest of using multi-image

- Complementarity of available data (multi-resolution, multi-spectral, multi-temporal ...)
- Improvement of hierarchical segmentation

Contributions

New approach for creating a unified hierarchical segmentation space

- "n images, one algorithm" paradigm
- 2 Extension of existing hierarchical model (BPT)
 - Possibility to tune the creation process
 - · Often used in remote sensing
- Use of consensus strategies (derived from the machine learning field)

Plan

- Context and related works
- Multi-image Binary Partition Tree
- Experimental illustration
- Conclusion and perspectives

Mono-image Binary Partition Tree

General structure

A hierarchical representation of the regions contained in an image

- Leaves: elementary regions
- Nodes: fusion of two neighbouring regions
- Root: node representing the image support

Creation based on a bottom-up algorithm

Mono-image BPT creation

between neighbouring nodes

Mono-image BPT: one iteration in the creation

Construction process of the tree

MAISON SIMI

de Champagne-Ardenne

Multi-images BPT: one iteration in the creation

Consensus strategies

Absolute information consensus

The decision is made by considering the absolute information carried by the first edges of each list.

- min of mean
- min of min

Consensus strategies

Relative local information consensus

For a restricted set of elements of each list, the decision is made by considering the relative position of the edges in the sorted lists.

- majority vote
- most frequent (potentially weighted)

Consensus strategies

Relative global information consensus

The decision is made by considering the relative position of the edges in the whole content of all sorted lists.

- best average
- best median ranking

Plan

- Context and related works
- Multi-image Binary Partition Tree
- Second Second
- Conclusion and perspectives

Experimental illustration

Context

Analysis of remote sensing satellite images

Applications

- One-time, one-sensor, several (noisy) images
 ⇒ information retrieval despite image degradation
- Multi-time, one-sensor, one image per date
 ⇒ redundant information

At this stage

- Basic choice of the BPT construction and segmentation approaches
 ⇒ focus on the actual structural effects of multi-image BPT versus standard BPT
- Experiments considered as only toy-examples
 - No quantitative validation done (yet)
 - No fine parameter tuning carried out

Purpose

Giving the intuition of potential uses of the approach in the field of remote sensing

Urban noisy images

- Data: 7 noisy images generated with Gaussian ($\sigma=$ 10%) and speckle noise (5%)
- Method:
 - BPT creation from an initial partition \mathcal{L} (one pixel per region)
 - Valuation function W_{*} used: increase of the ranges of the intensity values (for each radiometric band)
 - \bullet Consensus strategy: most-frequent (weighted) applied for the first 10% of the lists ${\bf W}_*$
 - Segmentation by a cut on the BPT (leading to 200 regions)

Figure: Experiment on zoomed samples (200 \times 200 pixels) of noised PLEIADES images (Gaussian noise ($\sigma=10\%$) and speckle noise (5%)) of Strasbourg in 2012.

Urban noisy images

Result: slight degradation of the segmentation obtained from the 7 noisy images, but
of comparable quality ⇒ ability of the multi-image BPT-based segmentation to
generate accurate results

Figure: Experiment on zoomed samples (200 \times 200 pixels) of noised PLÉADES images (Gaussian noise ($\sigma=10\%$) and speckle noise (5%)) of Strasbourg in 2012.

Agricultural Image Time Series

- Data: 3 agricultural images images of a time series
- Method:
 - ullet BPT creation from an initial partition $\mathcal L$ (one pixel per region)
 - Valuation function W_{*} used: increase of the ranges of the intensity values (for each radiometric band)
 - \bullet Consensus strategy: most-frequent (weighted) applied for the first 10% of the lists ${\bf W}_*$
 - Segmentation by a cut on the BPT (leading to 105 regions)

Figure: Experiment on zoomed samples (200×200 pixels) of Formosar-2 agricultural image time series of Toulouse in 2007.

Agricultural Image Time Series

 Result: Correction of some segmentation effects deriving from semantic noise in mono-image segmentation ⇒ potential useful tool for such data

Figure: Experiment on zoomed samples (200 × 200 pixels) of Formosat-2 agricultural image time series of Toulouse in 2007

Plan

- Context and related works
- Multi-image Binary Partition Tree
- Experimental illustration
- Conclusion and perspectives

Conclusion

Contributions

- Presentation of an approach for building a unique BPT from several images
 - Proposition of a data-structure / algorithmic framework
 - Study of various consensus strategies
- Development of a prototype
- Experiments on multi-image satellite datasets
 - Quality of the morphological hierarchies ⇒ improving segmentation

Perspectives

- Integration of a higher-level consensus ⇒ improve the quality of the hierarchies
- Proposition of a consensual way of creating a BPT from several valuation functions
- Handling the multi-temporal aspect by using hyper-trees

Thanks for you attention!

Any questions?

jimmy.randrianasoa@univ-reims.fr http://crestic.univ-reims.fr/membre/1818-tianatahina-jimmy-francky-randrianasoa

Paper reference: http://dx.doi.org/10.1007/978-3-319-18720-4_22

