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Context and related works Segmentation

Image processing / analysis

Segmentati

@ Crucial task for image analysis
@ 2 definitions:
@ Extraction of objects of interest from image background
Examples: Deformable models, Graph-cuts
@ Whole partition of the image support

Examples: Connected operators [Salembier and Wilkinson, 2009] (Watersheds, . ..),
Split-and-merge

@ Principal invariant: “one algorithm applied on one image”
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Segmentation

@ Crucial task for image analysis
@ 2 definitions:
@ Extraction of objects of interest from image background
Examples: Deformable models, Graph-cuts
@ Whole partition of the image support

Examples: Connected operators [Salembier and Wilkinson, 2009] (Watersheds, . ..),
Split-and-merge

@ Principal invariant: “one algorithm applied on one image”

lll-posed problem

| N

Results from one image may not be completely satisfactory
= Relevance of relaxing the “one image, one algorithm” paradigm

A\
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Segmentation fusion

Extension of the “one image, one algorithm” paradigm

@ “nimages, one algorithm” = enrich / improve the input information
Examples: Pansharpened satellite image segmentation, Multi-source image
segmentation

@ “one image, n algorithms” = enrich / improve the output information
Examples: Consensus approach between various methods, Mono-algorithmic
stochastic approach

Main interest

@ Obtaining a more accurate segmentation from several segmentation maps

Tianatahina Jimmy Francky Randrianasoa ISMM 2015 - 5/22



Context and related works

Segmentation fusion

Extension of the “one image, one algorithm” paradigm

@ “nimages, one algorithm” = enrich / improve the input information

Examples: Pansharpened satellite image segmentation, Multi-source image
segmentation

@ “one image, n algorithms” = enrich / improve the output information

Examples: Consensus approach between various methods, Mono-algorithmic
stochastic approach

Main interest

@ Obtaining a more accurate segmentation from several segmentation maps

Related works

@ Geometrical problem of interpolation [Rohifing and Maurer Jr., 2007, Vidal et al., 2007]
Stochastic watersheds/minimum spanning forest (anguio and Jeulin, 2007, Bernard et al., 2012]
Segmentation fusion based on random walkers (wattuya et al., 2008]

Models of consensus and weak partitions (ropchy et al., 2005]

Image segmentation fusion using general ensemble clustering methods [Franek et al., 2010]
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Context and related works
e usion
Morphological hierarchies, multi-image and remote sensing

Morphological hierarchies

Hierarchical segmentation

@ Classical trees by fusion of flat zones

@ Component-trees [Salembier et al., 1998]
@ Trees of shapes [Monasse and Guichard, 2000]

1 Min-Tree
1 Max-Tree }
1 imagel 1 Inclusion TreeAr

Drawbacks of classical morphological trees

@ High dependency with the spectral information of the image
@ One image = one tree
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Context and related works
e usion
Morphological hierarchies, multi-image and remote sensing

Morphological hierarchies

Hierarchical segmentation

@ Binary Partition Tree (BPT) (satembier and Garrido, 2000]

~Valuation function >

1image I

Specificity of the Binary Partition Tree (BPT) [salembier and Garrido, 2000]

@ Intelligence based on a prior knowledge of the user

@ One image = various potential BPTs according to the metric used
o Often used on remote sensing images segmentations [vilaplana et al., 2008, Benediktsson et al., 2011]
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Morphological hierarchies

Hierarchical segmentation

@ Binary Partition Tree (BPT) (satembier and Garrido, 2000]

Specificity of the Binary Partition Tree (BPT) [salembier and Garrido, 2000]

@ Intelligence based on a prior knowledge of the user

o One image = various potential BPTs according to the metric used
e Often used on remote sensing images segmentations [Vilaplana et al., 2008, Benediktsson et al., 2011]

BPT tuning for n satellite images: related works

@ Multi-resolution satellite images kurz etal., 2012]

@ Multiple morphological hierarchy (akcay and Aksoy, 2008]

@ Time series processing with BPT {aionso-Gonzélez et al., 2014]
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Context and related works 1entation
gmentation fusion
Morphological hierarchies, multi-image and remote sensing

Multi-image

Interest of using multi-image

@ Complementarity of available data (multi-resolution, multi-spectral, multi-temporal .. .)
@ Improvement of hierarchical segmentation

N

Contributions

New approach for creating a unified hierarchical segmentation space
@ “nimages, one algorithm” paradigm
@ Extension of existing hierarchical model (BPT)

@ Possibility to tune the creation process
@ Often used in remote sensing

© Use of consensus strategies (derived from the machine learning field)

k images I 1 BPT
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Multi-image Binary Partition Tree

Mono-image Binary Partition Tree

General structure

A hierarchical representation of the regions contained in an image

@ Leaves: elementary regions
@ Nodes: fusion of two neighbouring regions
@ Root: node representing the image support

Creation based on a bottom-up algorithm

1 BPT

Valuation function W

1image I

Tianatahina Jimmy Francky Randrianasoa ISMM 2015 - 10/22



Classical Binary Partition Tree

Multi-image Binary Partition Tree

Mono-image BPT creation

T

One graph 6, = (£,Ap)

Nodes

Ly

L initial partition of the image /
Each node L ¢ £ is connected
with respect to A,

One valuation function W ﬂ
Computation of distances s

between neighbouring nodes

Bottom-up algorithm

Tianatahina Jimmy Francky Randrianasoa ISMM 2015 - 11/22



Classical Binary Partition Tree

Multi-image Binary Partition Tree

Mono-image BPT: one iteration in the creation

Partitions Graph 6 Sorted list W Nodes fusion
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Classical Binary Partition Tree
es

Multi-image Binary Partition Tree

Multi-images BPT creation

Valuation function W;
Computation of distances
between neighbouring nodes

’COHSGI’\SUS strategy d

| |

Centre de Cal
RON

SIMUL_ATION

de Champagne-Ardenne
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Multi-image Binary Partition Tree

Multi-images BPT creation

ition Tree

) i « L] >
One graph 6, = (L, Ay)
k images I M h ;ZX‘ h ;ql Ik
ool [ Function W, ][ Function W@&mction Wi
@ : of criteria
f Color Shape Semantic
1 image I l H I ‘ l ‘
e [ Function W, ][ Function W,| [ Function W, ]
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between neighbouring nodes
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Multi-image Binary Partition Tree

Multi-images BPT creation

ition Tree

One graph 6, = (L, Ay)
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Classical Binary Partition Tree

Multi-image Binary Partition Tree

Multi-images BPT creation

One graph 6, = (L, Ay)

Valuation function W;
Computation of distances
between neighbouring nodes

’ Consensus strategy
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Multi-image Binary Partition Tree

Multi-images BPT creation
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Multi-image Binary Partition Tree

Multi-images BPT creation

One graph 6, = (L, Ay)
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Multi-image Binary Partition Tree

Multi-images BPT creation
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Classlcal Binary Parl ion Tree

Multi-image Binary Partition Tree

Multi-images BPT creation
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Multi-image Binary Partition Tree

Multi-images BPT: one iteration in the creation
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Multi-image Binary Partition Tree Consensus strategies

Consensus strategies

Absolute information consensus

The decision is made by considering the absolute information carried by the first edges of
each list.

@ min of mean
@ min of min

v

Sorted adjacency?st(s) W,

Consensus
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Multi-image Binary Partition Tree

Consensus strategies

Relative local information consensus

For a restricted set of elements of each list, the decision is made by considering the relative
position of the edges in the sorted lists.

@ majority vote
@ most frequent (potentially weighted)

v

Sorted adjacency list(s) W,

Consensus
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Classical Binary Partition Tree

Multi-image Binary Partition Tree Consensus strategies

Consensus strategies

Relative global information consensus

The decision is made by considering the relative position of the edges in the whole content
of all sorted lists.

@ best average
@ best median ranking

v

Sorted adjacency list(s) W,

e global information

Consensus
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Experimental illustration

Experimental illustration

Analysis of remote sensing satellite images

Applications
@ One-time, one-sensor, several (noisy) images
= information retrieval despite image degradation

@ Multi-time, one-sensor, one image per date
= redundant information

@ Basic choice of the BPT construction and segmentation approaches
= focus on the actual structural effects of multi-image BPT versus standard BPT
@ Experiments considered as only toy-examples

o No quantitative validation done (yet)
@ No fine parameter tuning carried out

Purpose

Giving the intuition of potential uses of the approach in the field of remote sensing
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One-time, one-sensor, several (noisy) images

: . Multi-tir one
Experimental illustration I net

Urban noisy images

(c) Original (d) Noised example

o Data: 7 noisy images generated with Gaussian (o = 10%) and speckle noise (5%)
@ Method:
e BPT creation from an initial partition £ (one pixel per region)
o Valuation function W, used: increase of the ranges of the intensity values (for
each radiometric band)
o Consensus strategy: most-frequent (weighted) applied for the first 10% of the
lists W.
o Segmentation by a cut on the BPT (leading to 200 regions)

Figure: Experiment on zoomed samples (200 x 200 pixels) of noised PLéiabEs images (Gaussian noise
(0o = 10%) and speckle noise (5%)) of Strasbourg in 2012.
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One-time, one-sensor, several (noisy) images

. . Multi-time one i r date
Experimental illustration i net e

Urban noisy images

o

(c) Segmentation of (a) (d) Segmentation of (b + 6 noisy images)

@ Result: slight degradation of the segmentation obtained from the 7 noisy images, but
of comparable quality = ability of the multi-image BPT-based segmentation to
generate accurate results

Figure: Experiment on zoomed samples (200 x 200 pixels) of noised PLEiabEs images (Gaussian noise
(0o = 10%) and speckle noise (5%)) of Strasbourg in 2012.
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Or

. . Multi-time, one-sensor, one image per date
Experimental illustration

Agricultural Image Time Series

(c) August

@ Data: 3 agricultural images images of a time series
@ Method:
o BPT creation from an initial partition £ (one pixel per region)
e Valuation function W, used: increase of the ranges of the intensity values (for
each radiometric band)
o Consensus strategy: most-frequent (weighted) applied for the first 10% of the
lists ‘W,
e Segmentation by a cut on the BPT (leading to 105 regions)

Figure: Experiment on zoomed samples (200 x 200 pixels) of Formosar-2 agricultural image time series of
Toulouse in 2007.
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. . Multi-time, one-sensor, one image per date
Experimental illustration

Agricultural Image Time Series

(c) August

s

o
| -
Wi

(d) Mono-image seg.  (e) Multi-image seg. (f) Ground truth

@ Result: Correction of some segmentation effects deriving from semantic noise in
mono-image segmentation = potential useful tool for such data

Figure: Experiment on zoomed samples (200 x 200 pixels) of Formosar-2 agricultural image time series of
Toulouse in 2007.
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Conclusion

Contributions

@ Presentation of an approach for building a unique BPT from several images

o Proposition of a data-structure / algorithmic framework
@ Study of various consensus strategies

@ Development of a prototype
@ Experiments on multi-image satellite datasets
o Quality of the morphological hierarchies = improving segmentation

@ Integration of a higher-level consensus = improve the quality of the hierarchies

@ Proposition of a consensual way of creating a BPT from several valuation functions

@ Handling the multi-temporal aspect by using hyper-trees
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Thanks for you attention!

Any questions?

jimmy.randrianasoa@univ-reims. fr
http://crestic.univ-reims. fr/membre/1818-tianatahina-jimmy-francky-randrianasoa

Paper reference: http://dx.doi.org/10.1007/978-3-319-18720-4_22
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