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Abstract. Image segmentation is generally performed in a “one image, one al-
gorithm” paradigm. However, it is sometimes required to consider several images
of a same scene, or to carry out several (or several occurrences of a same) algo-
rithm(s) to fully capture relevant information. To solve the induced segmentation
fusion issues, various strategies have been already investigated for allowing a
consensus between several segmentation outputs. This article proposes a contri-
bution to segmentation fusion, with a specific focus on the “n images” part of
the paradigm. Its main originality is to act on the segmentation research space,
i.e., to work at an earlier stage than standard segmentation fusion approaches. To
this end, an algorithmic framework is developed to build a binary partition tree
in a collaborative fashion, from several images, thus allowing to obtain a unified
hierarchical segmentation space. This framework is, in particular, designed to em-
bed consensus policies inherited from the machine learning domain. Application
examples proposed in remote sensing emphasise the potential usefulness of our
approach for satellite image processing.

Keywords: segmentation fusion, morphological hierarchies, multi-image, col-
laborative strategies, binary partition tree, remote sensing.

1 Introduction

In image processing / analysis, segmentation is a crucial task. The concept of segmen-
tation is also quite generic, in terms of semantics (from low-level definition of homo-
geneous areas to high-level extraction of specific objects), in terms of definition (object
versus background, or total partition of the image support), and in terms of algorithmics.

The principal invariant of segmentation is the “one image, one algorithm” paradigm.
Indeed, for a given application, a specific algorithm is generally chosen (or designed)
with respect to its adequacy with the considered image processing / analysis problem;
parametrized with respect to the physical / semantic properties of the targeted images;
and then applied (once) on a given image, or on each image of a given dataset.

Since segmentation is an ill-posed problem, it is plain that the result of a segmen-
tation algorithm applied on an image cannot be completely satisfactory. Based on this
assertion, it is sometimes relevant to relax the “one image, one algorithm” paradigm,
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either by operating one algorithm on several images of a same scene – in order to en-
rich / improve the information provided as input – or by applying several algorithms,
or the same algorithm with several parameter sets – in order to enrich / improve the
information provided as output.

In the literature, these “n images, one algorithm” and “one image, n algorithms”
paradigms are dealt with under the common terminology of segmentation fusion. Most
of the time, the strategy consists of computing n segmentation maps, and to develop a
consensus strategy to gather and unify these n results into a single, assuming that an
accurate global result will emerge from a plurality of less accurate ones.

This fusion strategy has also been proposed – and intensively studied – in the re-
search field of machine learning, especially in clustering [1]. Intrinsically, the problems
are the same, with the only – but important – difference that image segmentation, by
contrast with general data clustering, implies the handling of the spatial organisation of
the processed data.

In this article, we propose a new approach for segmentation fusion, that focuses on
the “n images, one algorithm” paradigm. The relevance and novelty of this approach,
that lies in the framework of morphological hierarchies and connected operators [2],
derives from the early stage where the fusion occurs. By contrast with most segmenta-
tion fusion approaches, we do not intend to fuse several segmentation maps obtained
from several images, but we directly develop a consensus when defining the research
space, i.e., during the construction of a hierarchy that models the n images.

This strategy, that acts at the research space level, induces two important side ef-
fects. First, it allows us to rely on hierarchical approaches for segmentation, and thus
to propose a rich and versatile segmentation framework, that can be easily instantiated
according to the application field. Second, by operating the fusion on the internal data-
structures involved in the algorithmic construction of the hierarchy, instead of spatial
regions of the segmentation maps, we can directly benefit from all the strategies devoted
to “non-spatial” data fusion, previously proposed by the machine learning community.

Our approach relies on Binary Partition Trees (BPTs) [3] as hierarchical model.
This choice is motivated both by the possibility to tune a BPT construction, by contrast
with other tree structures more deterministically deriving from the images (namely,
component-trees or trees of shapes). It is also justified by the frequent and successful
application of BPTs in remote sensing, where the use of multiple images of a same
scene is frequent, such as the use of fusion strategies for clustering issues.

This article is organized as follows. In Section 2, a brief overview of related works is
proposed, describing previous segmentation fusion strategies, and applications of BPTs
and hierarchies for analysing multiple remote sensing images. In Section 3, the general
data-structure / algorithmic framework for building a BPT from several images is de-
scribed, and various consensus strategies for instantiating this framework are discussed.
In Section 4, experiments are performed on remote sensing images, in order to illustrate
the relevance and usefulness of BPT segmentation from several images, by considering
two application cases, namely mono-date multi-imaging on urban areas, and multi-date
imaging on agriculture areas. In Section 5, a discussion concludes this article by em-
phasising perspectives and potential further works.
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2 Related Works

2.1 Segmentation Fusion

Segmentation fusion consists of establishing a consensus between several segmentation
maps. The taxonomy of segmentation fusion is directly mapped on that of segmentation.

On the one hand, segmentation can be viewed as a process that aims to extract
one structure (the object) versus the remainder of the image (the background). Typical
examples of such segmentation strategies are deformable models, graph-cuts, etc. In
this context, segmentation fusion can be interpreted as a geometrical problem of shape
or contour averaging / interpolation (see, e.g., [4, 5]). This subfamily of segmentation
fusion methods, mainly used in medical imaging, is out of the scope of our study.

On the other hand, segmentation can be viewed as a process that aims to define a par-
tition of the whole image, in order to extract meaningful homogeneous areas. Examples
of such segmentation strategies are watersheds, split-and-merge and, more generally,
connected operators. Clustering methods also enter in this category, with the difference
that they generally do not take into account the spatial organisation of the image data.

Following a machine learning vision, some methods handled segmentation fusion
via clustering ensemble [1]; a comparative study can be found in [6]. It was also pro-
posed to interpret the information gathered at each pixel in the various segmentation
maps as feature vectors then involved in optimization procedures. In particular, a two-
stage K-means approach was considered in [7], or probabilistic frameworks in [8, 9].

Other approaches explicitly took into account the spatial organisation of the seg-
mentation maps. In pioneering works [10], images of a same scene obtained from vari-
ous modalities were merged and optimized based on edge information. Later, statistical
analysis of the co-occurrence probability of neighbour pixels was considered to improve
the accuracy of a partition from several versions with slightly disturbed borders [11].

More recently, connected operators were also involved. Stochastic watersheds [12]
were introduced as a solution for improving the robustness of marker-based watersheds,
by fusing the results obtained from different initial seeds. This approach further inspired
a stochastic minimum spanning forest approach [13] for segmentation / classification
of hyperspectral remote sensing images. Random walkers [14] were also considered for
segmenting a graph generated from the information derived from the degree of accor-
dance between different segmentation maps.

2.2 Morphological Hierarchies, Multi-Images and Remote Sensing

Morphological hierarchies associated to connected operators [2] have been successfully
involved in image segmentation in the “one image, one algorithm” paradigm. In the
associated tree-structures, the nodes model homogeneous regions in the image whereas
the edges represent their inclusion relations.

Classical trees, as component-trees [15] or trees of shapes [16], allow us to perform
hierarchical segmentation by fusion of flat zones. These structures provide as output
partial partitions of an image with tunable levels of details. However, they strongly rely
on the image intensity, which is not compliant with the specificities of satellite images.
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A first solution to deal with this issue relies on the constrained connectivity [17].
The connectivity relation generates a partition of the image domain; fine to coarse par-
tition hierarchies are then produced by varying a threshold value associated with each
connectivity constraint. In a different manner, the BPT [3] reflects a (chosen) similarity
measure between neighbouring regions, and models the hierarchy between these re-
gions. The BPTs were used to segment various types of satellite images [18, 19]. How-
ever, objects in satellite images appear often too much heterogeneous to be correctly
segmented from a single image. It appears then relevant to consider n images of a same
scene to enrich the data space and improve the capability of segmentation hierarchies.

In this context, efforts were conducted to extend morphological hierarchies for han-
dling n images. In [20] an extension of the BPT model was proposed to deal with
multiresolution satellite images by considering one hierarchy per resolution image. In a
similar vein, an approach based on multiple morphological hierarchies was developed
in [21] to segment a multispectral image. The originality of this approach was to build
independently one hierarchy per radiometric band and combine them to select mean-
ingful segments, optimizing a mixed spectral / connectivity measure.

These recent works show the interest of considering a multi-image paradigm to
enhance the hierarchical segmentation of complex structures from remote sensing im-
ages. Multi-image fusion segmentation methods take advantage of the complementarity
of available data, and can be adapted for morphological hierarchies by interpreting the
“n images, one algorithm” as “n images, one hierarchy”. By performing collaborations
where the fusions occur relatively to the different image contents, it is then possible to
gradually build a unique consensual hierarchy, which can be used to detect complex
patterns while avoiding (spectral, semantic, . . . ) noise appearing in a single image.

Based on these considerations, we propose in the next section a hierarchical collab-
orative segmentation method, extending the BPT to deal with multi-images. By contrast
with classical segmentation fusion approaches, we do not intend to fuse several segmen-
tation maps, but we directly develop a consensus during the construction of the hierar-
chy that models the n images. To build this consensual hierarchy, we propose different
algorithmic consensus strategies (inspired from ensemble clustering strategies previ-
ously developed by the machine learning community) that seek widespread agreement
among the content of different images of a same scene.

3 Building a Binary Partition Tree From Several Images

We first recall the BPT construction algorithm. In particular, we focus on the data-
structure point of view, which is the cornerstone of our contribution. Then, we describe
our generalization of this algorithm to deal with several images. Various families of
consensus strategies for instantiating this framework are finally discussed.

3.1 The Standard BPT Construction

Summary of the algorithm [3] A BPT is a hierarchical representation of an image.
More precisely, it is a binary tree, whose each node is a connected region. Each of these
nodes is either a leaf – then corresponding to an “elementary” region – or an internal
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node, modelling the union of the regions of its two children nodes. The root is the node
corresponding to the support of the image. Practically, a BPT is built from its leaves
– provided by an initial partition of the image support – to its root, in a bottom-up
fashion, by iteratively choosing and merging two adjacent regions which minimize a
merging criterion that reflects, e.g., the spectral and / or geometrical likenesses of the
regions.

Structural description of the algorithm An image is a function I : Ω → V that
associates to each point x of the finite set Ω a value I(x) of the set V . A crucial point
for building a BPT – and more generally for performing connected filtering – is to take
into account the structure of Ω. More precisely, it is mandatory to model the fact that
two points x and y of Ω are neighbours. This is done by defining an adjacency AΩ, i.e.,
an irreflexive, symmetric, binary relation on Ω. In other words, (Ω, AΩ) is a graph that
models the structure of the image space.

Let us now consider an initial partition L of Ω. (Each node L ⊆ Ω of L is generally
assumed to be connected with respect to AΩ.) This partition L defines the set of the
leaves of the BPT we are going to build (e.g., L can be the set of the image flat zones).

For any partition P of Ω (and in particular for L) we can define an adjacency in-
herited from that of Ω. More precisely, we say that two distinct nodes N1,N2 ∈ P are
adjacent if there exist x1 ∈ N1 and x2 ∈ N2 such that (x1, x2) is an edge of AΩ, i.e., x1
and x2 are adjacent in (Ω, AΩ). This new adjacency relation AP is also irreflexive and
symmetric. In the case of L, it allows us to define a graph GL = (L, AL) that models
the structure of the partition of the image I.

The BPT is the data-structure that describes the progressive collapse of GL onto the
trivial graph (Ω, ∅). This process consists of defining a sequence (Gi = (Ni, ANi ))

n
i=0

(with n = |L| − 1) as follows. First, we set G0 = GL. Then, for each i from 1 to n, we
choose the two nodes Ni−1 and N′i−1 ofGi−1 linked by the edge (Ni−1,N′i−1) ∈ ANi−1 that
minimizes a merging criterion, and we define Gi such that Ni = Ni−1 \ {Ni−1,N′i−1} ∪

{Ni−1∪N′i−1}; in other words, we replace these two nodes by their union. The adjacency
ANi is defined accordingly from ANi−1 : we remove the edge (Ni−1,N′i−1), and we replace
each edge (Ni−1,N′′i−1) and / or (N′i−1,N′′i−1) by an edge (Ni−1 ∪ N′i−1,N′′i−1) (in
particular, two former edges may be fused into a single).

From a structural point of view, the BPT T is the Hasse diagram of the partially
ordered set (

⋃n
i=0Ni,⊆). From an algorithmic point of view, T is built in parallel to the

progressive collapse from G0 to Gn; in other words, T stores the node fusion history.
More precisely, we define a sequence (Ti)n

i=0 as follows. We set T0 = (N0, ∅) = (L, ∅).
Then, for each i from 1 to n, we build Ti from Ti−1 by adding the new node Ni−1∪N′i−1,
and the two edges (Ni−1 ∪ N′i−1,Ni−1) and (Ni−1 ∪ N′i−1,N′i−1). The BPT T is finally
defined as Tn.

Remark The classical – image and application-oriented – description of the BPT con-
struction algorithm considers as input: the image I (i.e., the geometrical embedding of
Ω, and the value associated to each point of Ω); a region model, that allows us to “de-
scribe” the nodes; and a merging criterion, that allows us to quantify the homogeneous-
ness of nodes before and after a putative fusion. These information are important from
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an applicative point of view. However, from an algorithmic point of view, their only use
is to define a valuation on the edges that allows us to choose which nodes to fuse at any
given step. In the sequel, we will then consider – without loss of correctness – that a
BPT is fully defined by only two input information: (1) the graph GL = (L, AL) that
models the initial partition of the image; (2) a valuation function W : (2Ω)2 × VΩ → R
that allows us to choose, at each step of the process, the next pair of nodes to be merged.

Data-structures The above description of the BPT construction algorithm implies to
define and update, during the whole process, several data-structures, namely: the graph
G, that allows us to know what nodes remain to be merged and what are their adjacency
links; and the tree T that is progressively built. In order to efficiently compute the val-
uation W, it is also important to associate each node of G to the corresponding part of
the image I, e.g., via a mapping between G (actually, N) and Ω.

The last – but not least – required data-structure is a sorted listW that gathers the
valuations of each remaining edge of G. This list contains the information that will
authorise, at each of the n iterative steps of the process, to choose the couple of nodes
to be merged. This choice is made in constant time O(1), since W is sorted. After
the merging operation,W has to be updated: (1) to remove the edge between the two
nodes; (2) to update the edges affected by the merging operation; and (3) to re-order
these updated edges. Operation (1) is carried out in constant time O(1). Operation (2) is
carried out in O(α.TW ), where TW is the cost of the computation of W for an edge, and
α is the number of neighbours of the merged nodes (α is generally bounded by a low
constant value). Operation (3) is carried out in O(α. log2 |W|).

3.2 Generalizing the BPT Construction to Several Images

Let us now consider k > 1 images I j, instead of one. Assuming that they correspond to
a same scene, we consider – up to resampling – that all are defined on the same support.
We then have a set of images {I j : Ω→ V j}

k
j=1. The purpose is now to build a BPT from

these k images, by generalizing the algorithmic framework described in Section 3.1. A
step of this algorithmic process is illustrated in Figure 1.

Structural evolutions As stated above, we first need a graph that models the initial
partition L of the image(s). Since all the I j share the same support Ω, such a graph
can still be obtained easily, either by subdividing Ω into one-point singleton sets – the
induced graph GL is then isomorphic to (Ω, AΩ) – or by considering flat zones, e.g.,
maximal connected sets of constant value with respect to the Cartesian space Πk

j=1V j.
The k images I j share the same support, but they take their values in different sets

V j. As a consequence, following the standard BPT construction paradigm, each of them
is associated with a specific valuation function W j : (2Ω)2 × VΩ

j → R that is defined in
particular with respect to the value set V j.

From a data-structure point of view, the generalized BPT construction algorithm
will still handle one graph G, that will be progressively collapsed; and one tree T that
will be built to finally provide the BPT. A unique mapping between N and Ω will still
allow to have access to the values of a node for the k images. The main difference now
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Fig. 1. One step of the building of a BPT from k images. Left: the partition of Ω before and after
the fusion of two nodes. Center: the associated graph G, before and after the fusion of N3 and N4,
forming the new node N8. The red edge is removed. The blue and orange edges are updated, e.g.,
(N1,N3) becomes (N1,N8); the orange are merged by pairs, e.g., (N7,N3) and (N7,N4) become
(N7,N8). The green edges are not affected. Right: the k listsW j each corresponding to an image.
The red cells are removed, as the edge (N3,N4) is suppressed; this edge had been chosen according
to a given consensus policy, due to its “high” position in the k lists. The scores of blue and orange
cells are updated with respect to N8; the orange cells are merged by pairs. The positions of the
blue and orange cells are updated with respect to their new scores. The scores of the green cells
are not affected.

lies into the fact that each function W j induces – in first approximation – a specific
sorted listW j to gather the valuation of the remaining edges of G, with respect to W j.

Algorithmic consequences From an algorithmic point of view, each iteration of the
construction process preserves the same structure. An edge is chosen and the two in-
cident nodes of the graph are merged. This operation leads to update the nodes and
edges of G, and adds a new node plus two edges in T. The main differences are that:
(i) several sorted lists then have to be updated instead of one; and (ii) the choice of the
optimal edge has to be made with respect to the information carried by these k sorted
lists instead of only one, for a standard BPT.

From a computational point of view, choosing the edge to remove is no longer a
constant time operation, but will depend on the way information are used and compared.
Afterwards, operations (1–3) described in the standard BPT construction algorithm, for
the sorted list maintenance, have to be duplicated for each list. These operations are
then carried out in O(k), O(k.α.TW?

) and O(k.α. log2 |W?|), respectively.
However, this initial generalization of the BPT construction algorithm can be refined

by studying more precisely the policies that are considered to choose an edge, with
respect to the information carried by the W j valuation functions and / or theW j sorted
lists.
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3.3 Consensus Strategies

At each iteration, the choice of the optimal edge to remove, leading to the fusion of its
two incident nodes, depends on a consensus between the information of the k images.
For each image I j, useful information are carried, on the one hand, by the valuation
function W j : (2Ω)2 × VΩ → R that gives an absolute value to each edge and, on the
other hand, by the sorted listW j, that gives a relative information on edges, induced by
their ordering with respect to W j. These information are of distinct natures; we study
their relevance according to the kinds of considered consensus policies.

Absolute information consensus Let us consider that the consensus policy consists of
choosing the edge of lowest mean valuation among the k images, or the edge of minimal
valuation among all images. The first consensus (namely min of mean) is defined by a
linear formulation: arg(N,N′)∈N min

∑k
j=1 W j((N,N′)), while the second (namely min of

min) is defined by a non-linear formulation: arg(N,N′)∈N min mink
j=1 W j((N,N′)). How-

ever, in both cases the decision is made by considering the absolute information carried
by the edges. In other words, it is sufficient to know the k values of each point of Ω with
respect to the images I j. Then, the k sorted listsW j are useless, and a single sorted list
W that contains the information of these – linear or non-linear – formulations is indeed
sufficient. The construction of a BPT from k images is then equivalent to that from one
image defined as I : Ω→ Πk

j=1V j.

Relative local information consensus Let us now consider that the consensus policy
consists of choosing the edge that is the most often in first position in the k sorted lists
W j, or the most frequently present in the r � |W?| first positions in the k sorted lists
W j. These consensus (namely, majority vote and most frequent, potentially weighted)
policies do not act on the absolute valuations of the edges, but on their relative positions
in the lists. In such case, it is then mandatory to maintain k sorted lists. However, the
decision process does not require to explicitly access the whole lists, but it can be re-
stricted to the first (or the first r) element(s) of each, leading to a local decision process.

Relative global information consensus Let us finally consider that the consensus pol-
icy consists of choosing the edge that has the best global ranking among the k sorted
listsW j. Such consensus (e.g., best average, or best median ranking) policy, also acts
on the relative positions of the edges in the lists. By contrast with the above case, the
decision process requires to explicitly access to the whole content of all these lists, lead-
ing to a global decision process of high computation cost. (Such cost may be reduced
by maintaining, in favourable cases, a (k + 1)-th list that summarises the global infor-
mation, and / or by adopting heuristic strategies that update the lists only after a given
number of steps).

Algorithmic and structural consequences The choice of a consensus strategy is
strongly application-dependent. As a consequence, it is important to consider a trade-
off between the structural and computational cost of the approach versus the benefits in
terms of results accuracy. In particular, these costs are summarized in Table 1.
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Table 1. Space and time cost of the BPT construction for various families of consensus policies.
For the sake of readability, r, α and TW? , which are practically bounded by low constant values
have been omitted here.

Consensus policies #W? Edge choice Edge removal Edges update Edges sorting
Absolute information 1 Θ(1) Θ(1) Θ(1) Θ(log2 |W?|)
Relative local inf. k Ω(k) Θ(k) Θ(k) Θ(k. log2 |W?|)
Relative global inf. k Ω(k.|W?|) Θ(k) Θ(k) Θ(k. log2 |W?|)

4 Experiments

To experiment our framework, two applications have been considered in the context of
remote sensing: one-time, one-sensor, several (noisy) images, to assess the ability to
retrieve information despite image degradation; and multi-time, one-sensor, one image
per date, to assess the ability to capture time-independent and redundant information.

The BPT construction and segmentation approaches were voluntarily chosen as very
simple, in order to avoid any bias related to these choices, thus better focusing on the
actual structural effects of multi-image BPT versus standard BPT.

At this stage, these experiments have to be considered as toy-examples, since nei-
ther quantitative validation nor fine parameter tuning were carried out. Our purpose is
mainly to give the intuition of potential uses of such BPTs in the field of remote sensing.

4.1 Urban Noisy Images

Data The dataset used here was sensed over the town of Strasbourg (France). The origi-
nal sample (Figure 2(a)) is an urban image (1024×1024 pixels) acquired by the Pléiades
satellite in 2012 (courtesy LIVE, UMR CNRS 7263). It is a pansharpened image at a
spatial resolution of 60 cm with four bands (NIR, R, G, B). From this image, a series of
7 noisy images was generated by adding Gaussian and speckle noise (Figure 2(b)).

Method and results The BPTs are built from the trivial partition L composed by all
singleton sets, i.e., one pixel per region. The valuation function W? : (2Ω)2×VΩ → R is
defined as the increase of the ranges of the intensity values (for each radiometric band),
potentially induced by the fusion of the incident regions. In the case of multi-images,
the relative local information consensus policy most-frequent, weighted according to
the position of the edges within the lists is applied for the first 10% of the listsW?.

The non-noisy image of Figure 2(a) is first segmented by extracting a user-defined
horizontal cut from its “standard” BPT (Figure 2(c)). According to a same number
of regions, a cut is then selected from the multi-images BPT leading to a comparable
segmentation result (Figure 2(d)).

From these figures, we observe that the results obtained from noisy images are
slightly degraded, but of comparable quality, with respect to Figure 2(c). This tends
to confirm the ability of the multi-image BPT-based segmentation to generate accu-
rate results, by discriminating relevant information from noise thanks to the consensus
operated between the various images, even in the case of low signal-to-noise ratio.
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(a) Original (b) Noisy (example)

(c) Segmentation of (a) (d) Segmentation of (b) + other noisy images

Fig. 2. (a) Initial image, Pléiades, 2012; and a zoomed sample, 200× 200 pixels. (b) An example
of noisy image generated from (a), Gaussian (σ = 10%) and speckle noise (5%), and a zoomed
sample, 200 × 200 pixels. (c) Segmentation from the mono-image BPT of (a). (d) Segmentation
from the multi-image BPT of (b) plus 6 other noisy images.

4.2 Agricultural Image Time Series

Data The dataset used here is a time series of agricultural images (1000× 1000 pixels)
of an area located near Toulouse (France). Images were acquired by the Formosat-2
satellite over the 2007 cultural year, see Figure 3 (a–c). They were ortho-rectified and
have a spatial resolution of 8 m, with four spectral bands (NIR, R, G, B).

Method and results The BPTs are built from the same partition L and valuation func-
tion W? : (2Ω)2 × VΩ → R as in Section 4.1. They are also segmented in the same
way.

The segmented results, depicted in Figure 3(e), provide regions that are not the same
as those obtained from a standard mono-image BPT, computed from one of the images
of the series (Figure 3(d)). On the one hand, some segmentation effects deriving from
semantic noise in mono-image segmentation are sometimes corrected by the redundant
information obtained from multi-images. On the other hand, the multi-image BPT fo-
cuses on time-specific details that are only accessible via a temporal analysis, providing
a potentially useful tool for such data.

5 Conclusion

This article has presented a data-structure / algorithmic framework and different fusion
consensus strategies for building a unique BPT from several images. This contribution
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(a) May (b) July (c) August (d) Seg. mono-im. (e) Seg. multi-im.

Fig. 3. (a–c) 3 samples (200 × 200 pixels) of the image time series, Formosat-2, 2007. (d) Seg-
mentation obtained from the mono-image BPT from (a). (e) Segmentation obtained from the
multi-image BPT from (a–c).

is, to the best of our knowledge, the first attempt to handle segmentation fusion in the
framework of (morphological) hierarchies, in the “n images, one algorithm” paradigm.

The experiments carried out on satellite multi-image datasets have shown that the
quality of the induced morphological hierarchies are sufficient to further perform im-
proved segmentation, e.g., from noisy or multi-temporal images of a same scene. The
consensus strategies considered in this study remain, however, mostly basic (most-
frequent, majority vote, etc.). Integrating higher-level consensus may then allow us to
improve the quality of the hierarchies and the induced segmentation.

In the case of mono-date images, the fusion decisions underlying to the consensus
strategies could also be guided by semantic information. Recent advances concerning
the hierarchical modelling of such semantic information, in the context of classified
remote sensing data [22], may facilitate such approaches.

In the case of multi-date images, we may handle the land-cover evolutions of the ob-
served territories by considering an adequate region model and merging criterion [23].
Such spatio-temporal information could be used to follow local consensus between im-
ages leading to hyper-trees where the branches model local temporal fusion decisions.

In a next issue, the results obtained with this method will be fully assessed by quan-
titative comparisons (using datasets provided by different sensors) and compared to the
results produced by other hierarchical and fusion-based segmentation methods.
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