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Accurate tumor volume delineation is a crucial step for disease assessment, treatment planning and monitoring of several kinds of cancers. However, this process is complex due to variations in tumors properties. Recently, some methods have been proposed for taking advantage of the spatial and spectral information carried by coupled modalities (e.g., PET-CT, MRI-PET). Simultaneously, the development of attributebased approaches has contributed to improve PET image analysis. In this work, we aim at developing a coupled multimodal / attribute-based approach for image segmentation. Our proposal is to take advantage of hierarchical image models for determining relevant and specific attribute from each modality. These attributes then allow us to define a unique, semantic vectorial image. Sequentially, this image can be processed by a standard segmentation method, in our case a randomwalker approach, for segmenting tumors based on their intrinsic attribute-based properties. Experimental results emphasize the relevance of computing region-based attributes from both modalities.

INTRODUCTION

Medical imaging has revolutionized the management of many diseases and allows nowadays the analysis in vivo of human body from anatomical structures to physiological processes. It plays a central part in cancer for diagnosis, treatment planning, following-up and / or the evaluation of treatment response. Despite its complexity, tumor evaluation can be characterized by four main factors: cellular activity, anatomical position, volume and extension (metastasis). In particular, these parameters can be computed from PET/CT data. However, these imaging modalities present intrinsic restrictions. A low tumor-to-background contrast may be encountered in CT, meanwhile PET has a low spatial resolution that leads to partial volume effects. Nevertheless, the use of both anatomical and functional information allows to partially overcoming these drawbacks. In clinical routine, the delineation of tumors is performed in a mostly manual way to guide the outcome. This modus operandi is slow and prone to intra / inter operator errors / variability. To improve robustness and ergonomy, some methods have been introduced [START_REF] Foster | A review on segmentation of positron emission tomography images[END_REF]. They can be classified with respect to their methodology: thresholding [START_REF] Daisne | Tri-dimensional automatic segmentation of PET volumes based on measured source-tobackground ratios: influence of reconstruction algorithms[END_REF][START_REF] Nestle | Target volume definition for 18F-FDG PET-positive lymph nodes in radiotherapy of patients with non-small cell lung cancer[END_REF], learning-based [START_REF] Bi | Multi-stage thresholded region classification for whole-body PET-CT lymphoma studies[END_REF], boundary-based (level set [START_REF] Cheng-Liao | Segmentation of mouse dynamic PET images using a multiphase level set method[END_REF], gradient-based [START_REF] Wanet | Gradientbased delineation of the primary GTV on FDG-PET in non-small cell lung cancer: A comparison with thresholdbased approaches, CT and surgical specimens[END_REF]), statistical scopes (FLAB [START_REF] Hatt | Accurate automatic delineation of heterogeneous functional volumes in positron emission tomography for oncology applications[END_REF], fuzzyc-means [START_REF] Belhassen | A novel fuzzy C-means algorithm for unsupervised heterogeneous tumor quantification in PET[END_REF], Random Walker [START_REF] Bagci | Joint segmentation of anatomical and functional images: Applications in quantification of lesions from PET, PET-CT, MRI-PET, and MRI-PET-CT images[END_REF]), mathematical morphology (watershed [START_REF] Tylski | F-FDG PET images segmentation using morphological watershed: A phantom study[END_REF], component-tree [START_REF] Grossiord | Hierarchies and shape-space for PET image segmentation[END_REF]) and hybridization [START_REF] Dewalle-Vignion | A new method for volume segmentation of PET images, based on possibility theory[END_REF][START_REF] Grossiord | Automated 3D lymphoma lesion segmentation from PET/CT characteristics[END_REF]. Most of these methods have been designed for processing PET images because of its high sensitivity and specificity to tumor biomarker metabolism. However, two inclusive notions are gaining share to enrich image information concept: multimodality and region-based features. Multimodality [START_REF] Ju | Random walk and graph cut for co-segmentation of lung tumor on PET-CT images[END_REF] refers to the use of semantically different images as data sources. On the other hand, region-based features can be computed [START_REF] Lartizien | Computer aided staging of lymphoma patients with FDG PET/CT imaging based on textural information[END_REF] for image characterization. Different strategies have shown their performance to define relevant image regions for feature extraction such as using sliding windows [START_REF] Ahmadvand | Tumor lesion segmentation from 3D PET using a machine learning driven active surface[END_REF], supervoxels [START_REF] Machairas | Hierarchical multi-scale supervoxel matching using random forest for automatic semi-dense abdominal image registration[END_REF][START_REF] Conze | Scale-adaptive supervoxelbased random forests for liver tumor segmentation in dynamic contrast-enhanced CT scans[END_REF] or hierarchical image models (HS). Among these models, the component-tree [START_REF] Salembier | Anti-extensive connected operators for image and sequence processing[END_REF] allows one to spectrally and spatially represent an image by a tree structure derived from the inclusion relation on the binary level-sets of the image. Alternatively, the tree of shapes [START_REF] Monasse | Fast computation of a contrast invariant image representation[END_REF] provides another HS whose regions represent the isocontours. Both hierarchical data-structures are convenient to represent objects of interest that are connected and spectrally homogeneous. The characterization of these regions can be derived also from specific criteria. Indeed, region-based attributes can be computed for comparison / characterization purposes (area, shape, contrast, for instance). The fact of merging regional-based attributes and multimodality scopes can improve target definition. In this work, we propose a way to exploit hierarchical multimodal structures for this purpose. Relevant attributes are computed from a HS of each image modality. They are analyzed by the Maximally Stable Extremal Regions algorithm [START_REF] Matas | Robust wide baseline stereo from maximally stable extremal regions[END_REF] in order to build a vectorial image profile. This framework is used for random walk segmentation arguing a better performance than with scalar images.

FRAMEWORK

Our methodology is divided in four main steps: hierarchical structure computing, attribute computing, vectorial image restitution and vectorial segmentation (see Fig. 1). 

Attribute computing

The nodes Θ of Ψ can be characterized by features (conventionally called attributes h) to increase regional comparison points [START_REF] Alvarez | Multicriteria 3D PET image segmentation[END_REF] (see Sec. 2.2).

Vectorial image restitution

The attributes of the extremal nodes of the trees Ψ are evaluated by the MSER algorithm (see Sec. 2.3) to find their stability area within the branches. A pixel / voxel x ∈ X can belong to various nodes within Ψ. MSER is a crucial step to select in a branch, the node which better defines x for each attribute h. Each stable attribute value is then embedded into the initial image support for building a vectorial image. In particular, a new attribute image 

- → i is built on X. At each point, it is composed of a vectorial value - → A = [h 1 , h 2 , .

.., h n ] obtaining a vectorial image

Vectorial segmentation The proposed vectorial image -→

I can be processed by any segmentation method that can handle vectorial values. We opted for the Random Walker (RW) for its robustness to noise, as well as its ability to detect weak contours and simultaneously identify multiple objects. 

Hierarchical image structures

A hierarchical structure, or tree, is a data-structure that models -generally in a lossless fashion-the spatial and spectral information of an image, in a multiscale way. This partition leads to the definition of image regions or nodes. A node k ∈ Θ of such a tree is defined as a maximally connected set of points which present a homogeneous distribution of values in a threshold set of the image. These nodes are hierarchically organized via an order relation, e.g., the inclusion relation, or the nested relation of their frontiers.

Two classical hierarchical models are considered in this work: the component-tree (C-T) τ and the tree of shapes Φ. Fig. 3: An example of two HS built from Fig. 2 (a).

Component-tree For a C-T τ , an image I is partitioned by a thresholding protocol (considering the ≥ order for a maxtree, ≤ for a min-tree) at each intensity level, defining the binary levels λ * (I) (see Fig. 2). In other words, a componenttree can be seen as the collection of all thresholding segmented regions which are related by the spatial inclusion. This tree can be computed in quasi-linear time [START_REF] Carlinet | Comparative review of component-tree computation algorithms[END_REF].

Tree of shapes The ToS of an image I is defined as a self-dual version of component-trees; basically, it consists of merging the max-and min-trees. More precisely, the ToS Φ (see Fig. 3) aims at structuring the connected regions associated to the nodes by considering the inclusion relation on these regions where the "holes" have been filled.

Attributes

An attribute h is considered as a feature (generally expressed by a scalar value) which is representative of an image region. It can rely on different notions, e.g., spectral attributes: contrast (spectral distance between the minimum and the maximum intensity), average intensity; spatial attributes: area (number of pixels/voxels), barycenter coordinates; geometrical attributes: compactness and elongation; hybrid attributes: volume (area×intensity value), volumetric contrast (volume×contrast). A low difference between attributes of adjacent nodes can generally signify that the associated regions are strongly correlated. For instance, if the object of interest (OOI) has a high contrast, spectral attributes are appropriate; if the OOI is considered circular 2D (spherical 3D), barycenter coordinates, compactness and elongation parameters are relevant.

Maximally Stable Extremal Regions

The MSER is a stability metric algorithm that seeks the stable attribute nodes of a hierarchical structure. This analysis process begins from the extremal nodes k i * (leaves of Ψ), up to the root, trough the branches. The stability state is achieved if and only if the estimator s(k i ) = |k i+∆ (h) -k i-∆ (h)| has a local minimum at k i where ∆ ∈ N denotes the evaluation range. If h is an incremental attribute (e.g., area, volume), s(k i ) must be divided between |k i (h)| for normalization.

Vectorial Random Walker

The RW [START_REF] Grady | Random walks for image segmentation[END_REF] is a graph-based algorithm inspired from electrical circuit analogy, and adapted for the segmentation of images. An image -→ I can be modeled as a graph, where each voxel represents a node v ∈ V with a vector of attributes

- → A .
Nodes are spatially binded by edges e. This relationship between two neighbor nodes v i and v j is thus expressed by e ij and weighted by a Gaussian function:

w ij = exp(-β - → A i - - → A j 2 ), (1) 
where -→

A i is the vector of attributes h in the node v i and β is a weight parameter. This framework allows a Random Walker to evaluate the least costly way to reach a target, defined by seeds / markers defined on the graph. The output of the RW algorithm is expressed by a map of probabilities of belonging to each class; voxels are then assigned as members of the class with the highest probability value.

METHODOLOGICAL ASPECTS ON MEDICAL IMAGES

We now present the instanciation of the above framework for tumor segmentation from PET-CT data.

HS type selection

In functional images (FI), such as PET, tumor areas (according to metabolism of biomarkers) have a high intensity. In order to take advantage of this feature, we opt for the maxtree as HS. The root of τ is then the node k at the level line λ 0 (the support Ω of I) and the leaves of τ represent the locally maximal values.

In anatomical imaging (AI), such as CT or MRI, tumoral tissues are not necessarily local maxima (or local minima) because of their contrast absorption by vascularization is considered irregular. Therefore, the ToS is a potential HS to handle this constraint. Tumors are thus evaluated by isocontours, ignoring their irregular content, placing their regions in the terminal branches of the tree.

Attributes selection

This point is crucial given that input attributes have a great impact on segmentation result. Their selection can be different between imaging modalities according to their specifications. Spectral attributes are more relevant for FI than for AI, while geometrical and spatial attributes are of greater interest on AI than on FI. However, the fact of using similar attributes does not mean redundancy because each image and HS have its own properties. Therefore, we considered the following attributes, for AI: contrast, area, barycenter coordinates, compactness, elongation, and for FI: contrast, area, intensity.

MSER evaluation range

The scalar free parameter ∆ defines the inferior and superior limits, through the branches, to determine stability. The ±∆ range must be inside the tumor interval (lower band b l and upper band b u ) at HS to avoid ambiguity. Thus, ∆ limits can be measured according to image spectral resolution: ∆ < (b u -b l )/2. For PET, tumors have been defined between 40-50% of maximal intensity (I max ) depending on the kind of cancer [START_REF] Foster | A review on segmentation of positron emission tomography images[END_REF], thus, b l = [0.4, 0.5] × I max and b u = I max . For CT, we set b l and b u in Hounsfield units depending of tumor type and according to contrast absorption rate.

RW parameters definition

There are two parameters to set before running the RW algorithm: class markers and weighting norm. 

d m (v i , v j ) = - → A i - - → A j T Σ -1 - → A i - - → A j , (2) 
where Σ -1 corresponds to the inverse covariance matrix. The free parameter β is set at 1.

EXPERIMENTATION

Data collection Our data set consists of 7 Patients were asked to fast for at least 6 hours and received an intravenous dose of FDG (3 MBq/kg). Portal phase CT was performed first, 70 seconds after an intravenous dose of iodinated contrast agent (Optiject 350). CT was acquired in auto mA mode with adaptative statistical iterative reconstruction (ASIR), native collimation of 16×1.25 mm, resolution matrix of 512×512×343 with a voxel size of 0.97×0.97×2.5 mm 3 . PET acquisition was then performed 60 minutes after FDG injection. 3D time of flight mode, 6 to 7 bed-steps of 2 minutes, covering the area from the base of the skull through the proximal femur. PET was reconstructed using an iterative algorithm (OSEM 24 subsets, 2 iterations) and post-filtered with a Butterworth filter (cut-off frequency: 6.4 mm), obtaining a 256 × 256 × 263 matrix with a voxel size of 2.73 × 2.73 × 3.27 mm 3 . Protocol PET and CE-CT images were processed according to their acquisition parameters such as image position and voxel size. Images were considered registered by coacquisition. Thereby, we obtained 7 couples of images that were spatially corresponding. A C-T τ was built from PET and a ToS Φ from CE-CT in order to compose the forest Υ = [τ P ET , Φ CE-CT ]. The attributes mentioned in Sec. 3.2 were computed. For Random Walker markers (see Sec. 3.4), t f was set at 0.25 and t b at 0.75 for all the experiments. Results and discussion Results were compared with the Random Walker method applied both on mono-modal images: PET and CE-CT; and multimodal images: PET/CE-CT. The Dice similarity coefficient (DSC) was selected to measure the spatial overlap (false positives and false negatives) between a ground-truth (provided by a radiotherapist) and the computed results (see Fig. 4 for an illustrative example). The DSC scores are summarized as mean and standard deviation values, in the next Table. Results tend to show that multimodality has a better performance than imaging modalities individually processed, which corroborates results previously obtained in the literature. Indeed, their functional / morphological complementarity allows for a better delineation of tumors. We also observe that the use of region-based attributes representing stable image regions, seems to allow us to obtain slightly improved results. Indeed, the notion of attribute value stability within hierarchical structures allows us to better discriminate relevant properties from semantic noise. In addition, attributes characterize regions which, only by intensity, are considered similar. Finally, the versatility of relevant attributes and imaging modalities selection, allows to adapt the algorithm according to inherent target properties.

This will constitute our next work for consolidating the proposed framework. Some experiments will be proposed for a larger data-set of multimodal data. In addition, a groundtruth will be provided by several medical experts to consider inter-operator variability. Finally, a more detailed evaluation of the relevance of attributes (number, type) would be required in order to assess their respective implication in target discrimination process.
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 1 Fig. 1: Algorithm pipeline.

  vectorial images obtained from the different trees are then merged for creating a global vectorial image -→ I .

Fig. 2 :

 2 Fig. 2: (a) A gray-level image I. (b) 1D representation of I along the line l(x) (in red, in (a)). (c-f) The four λ * (I). Each connected component is labeled by a letter (A, B, ...). See Fig. 3 for various tree computations of this image.

  Class markers. Two classes are defined: tumor zone f and background b. Their voxel markers m are define on FI (projected to AI) by a threshold protocol: m b = I(x) < t b × max(I) and m f > t f × max(I), where t b < t f , t represents a percentage and max(I) the maximum intensity value of I. Weighting norm. In the norm β propose to use the Mahalanobis distance to normalize the data scale, since -→ A is composed of heterogeneous scalar values:

Fig. 4 :

 4 Fig. 4: (a) CE-CT slice with boundary results: ground-truth in red, PET in blue, CE-CT in green, PET/CT in magenta, HFA in cyan. Multimodal image crops: (b) PET, (c) CE-CT and (d) PET/CE-CT fusion.

Table 1 :

 1 Different results of Random Walker applied on mono/multimodal intensity values; and our vectorial image from hierarchical forest attributes (HFA).

	Monomodal DSC (µ ± σ) Multimodal	DSC (µ ± σ)
	PET	0.716 ± 0.065 PET/CT	0.802 ± 0.038
	CT	0.789 ± 0.053 HFA PET/CT 0.856 ± 0.036