B. Foster, U. Bagci, A. Mansoor, Z. Xu, and D. Mollura, A review on segmentation of positron emission tomography images, Computers in Biology and Medicine, vol.50, pp.76-96, 2014.
DOI : 10.1016/j.compbiomed.2014.04.014

J. F. Daisne, M. Sibomana, A. Bol, T. Doumont, M. Lonneux et al., Tri-dimensional automatic segmentation of PET volumes based on measured source-to-background ratios: influence of reconstruction algorithms, Radiotherapy and Oncology, vol.69, issue.3, pp.247-250, 2003.
DOI : 10.1016/S0167-8140(03)00270-6

U. Nestle, A. Schaefer-schuler, S. Kremp, A. Groeschel, D. Hellwig et al., Target volume definition for 18F-FDG PET-positive lymph nodes in radiotherapy of patients with non-small cell lung cancer, European Journal of Nuclear Medicine and Molecular Imaging, vol.62, issue.Suppl, pp.453-462, 2007.
DOI : 10.1148/radiology.213.2.r99nv46530

L. Bi, J. Kim, D. Feng, and M. Fulham, Multi-stage Thresholded Region Classification for Whole-Body PET-CT Lymphoma Studies, pp.569-576, 2014.
DOI : 10.1007/978-3-319-10404-1_71

J. Cheng-liao and J. Qi, Segmentation of mouse dynamic PET images using a multiphase level set method, Physics in Medicine and Biology, vol.55, issue.21, pp.6549-6569, 2010.
DOI : 10.1088/0031-9155/55/21/014

M. Wanet, A. Lee, B. Weynand, M. De-bast, A. Pncelet et al., Gradient-based delineation of the primary GTV on FDG-PET in non-small cell lung cancer: A comparison with threshold-based approaches, CT and surgical specimens, Radiotherapy and Oncology, vol.98, issue.1, pp.117-125, 2011.
DOI : 10.1016/j.radonc.2010.10.006

M. Hatt, C. Cheze-le-rest, P. Descourt, A. Dekker, D. De-ruysscher et al., Accurate Automatic Delineation of Heterogeneous Functional Volumes in Positron Emission Tomography for Oncology Applications, International Journal of Radiation Oncology*Biology*Physics, vol.77, issue.1, pp.301-308, 2010.
DOI : 10.1016/j.ijrobp.2009.08.018

URL : https://hal.archives-ouvertes.fr/inserm-00537776

S. Belhassen and H. Zaidi, A novel fuzzy C-means algorithm for unsupervised heterogeneous tumor quantification in PET, Medical Physics, vol.69, issue.3, pp.1309-1324, 2010.
DOI : 10.1016/j.ijrobp.2007.04.065

U. Bagci, J. Udupa, N. Mendhiratta, B. Foster, Z. Xu et al., Joint segmentation of anatomical and functional images: Applications in quantification of lesions from PET, PET-CT, MRI-PET, and MRI-PET-CT images, Medical Image Analysis, vol.17, issue.8, pp.929-945, 2013.
DOI : 10.1016/j.media.2013.05.004

P. Tylski, G. Bonniaud, E. Decencì-ere, J. Stawiaski, J. Coulot et al., /sup 18/F-FDG PET images segmentation using morphological watershed: a phantom study, 2006 IEEE Nuclear Science Symposium Conference Record, pp.2063-2067, 2006.
DOI : 10.1109/NSSMIC.2006.354319

. Grossiordégrossiord´grossiordé, H. Talbot, N. Passat, M. Meignan, P. Tervé et al., Hierarchies and shape-space for PET image segmentation. ISBI A new method for volume segmentation of PET images, based on possibility theory, IEEE T Med Imaging, vol.12, issue.30, pp.1118-1121409, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01169944

E. Grossiord, H. Talbot, N. Passat, M. Meignan, and L. Najman, Automated 3D lymphoma lesion segmentation from PET/CT characteristics. ISBI, pp.174-178
DOI : 10.1109/isbi.2017.7950495

URL : https://hal.archives-ouvertes.fr/hal-01616459

W. Ju, D. Xiang, B. Zhang, L. Wang, I. Kopriva et al., Random Walk and Graph Cut for Co-Segmentation of Lung Tumor on PET-CT Images, IEEE Transactions on Image Processing, vol.24, issue.12, pp.5854-5867, 2015.
DOI : 10.1109/TIP.2015.2488902

C. Lartizien, M. Rogez, A. Susser, F. Giammarile, E. Niaf et al., Computer aided staging of lymphoma patients with FDG PET/CT imaging based on textural information . ISBI, pp.118-121, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01050890

P. Ahmadvand, N. Duggan, F. Bénard, and G. Hamarneh, Tumor Lesion Segmentation from 3D PET Using a Machine Learning Driven Active Surface, pp.271-278, 2016.
DOI : 10.1016/j.compbiomed.2013.07.027

V. Machairas, T. Baldeweck, and T. Walter, Hierarchical multi-scale supervoxel matching using random forest for automatic semi-dense abdominal image registration. ISBI, pp.1409-1413, 2017.

P. Conze, V. Noblet, F. Rousseau, F. Heitz, V. Blasi et al., Scale-adaptive supervoxelbased random forests for liver tumor segmentation in dynamic contrast-enhanced CT scans, Int J Comput Ass Rad, vol.12, pp.223-233, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01573601

P. Salembier, A. Oliveras, and L. Garrido, Antiextensive connected operators for image and sequence processing, IEEE Transactions on Image Processing, vol.7, issue.4, pp.555-570, 1998.
DOI : 10.1109/83.663500

P. Monasse and F. Guichard, Fast computation of a contrast-invariant image representation, IEEE Transactions on Image Processing, vol.9, issue.5, pp.860-872, 2000.
DOI : 10.1109/83.841532

J. Matas, O. Chum, M. Urban, and T. Pajdla, Robust wide baseline stereo from maximally stable extremal regions, BMVC, pp.384-396, 2002.
DOI : 10.5244/c.16.36

URL : http://www.bmva.org/bmvc/2002/papers/113/full_113.pdf

E. Carlinet and T. Géraud, A Comparative Review of Component Tree Computation Algorithms, IEEE Transactions on Image Processing, vol.23, issue.9, pp.3885-3895, 2014.
DOI : 10.1109/TIP.2014.2336551

URL : https://hal.archives-ouvertes.fr/hal-01474830

L. Grady, Random Walks for Image Segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.28, issue.11, pp.1768-1783, 2006.
DOI : 10.1109/TPAMI.2006.233