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Abstract Rigid motions (i.e. transformations based

on translations and rotations) are simple, yet impor-

tant, transformations in image processing. In Rn, they

are both topology and geometry preserving. Unfortu-

nately, these properties are generally lost in Zn. In par-

ticular, when applying a rigid motion on a digital ob-

ject, one generally alters its structure but also the global

shape of its boundary. These alterations are mainly

caused by digitization during the transformation pro-

cess. In this specific context, some solutions for the han-

dling of topological issues were proposed in Z2. In this

article, we also focus on geometric issues in Z2. Indeed,

we propose a rigid motion scheme that preserves geom-

etry and topology properties of the transformed dig-

ital object: a connected object will remain connected,

and some geometric properties (e.g. convexity, area and
perimeter) will be preserved. To reach that goal, our

main contributions are twofold. First, from an algorith-

mic point of view, our scheme relies on (1) a polygo-

nization of the digital object, (2) the transformation

of the intermediate piecewise affine object of R2, and

(3) a digitization step for recovering a result within Z2.

The intermediate modeling of a digital object of Z2 as a
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piecewise affine object of R2 allows us to avoid the geo-

metric alterations generally induced by standard point-

wise rigid motions. However, the final digitization of the

polygon back to Z2 has to be carried out cautiously. In

particular, our second, theoretical contribution is a no-

tion of quasi-regularity that provides sufficient condi-

tions to be fulfilled by a continuous object for guaran-

teeing both topology and geometry preservation during

its digitization.

Keywords Rigid motions · Geometry and topology

preservation · Polygonization · Digitization · Quasi-r-

regularity

1 Introduction

Image processing and computer vision applications of-

ten require manipulation of discrete models of images.

Among the various existing discrete models (e.g. meshes,

point clouds), digital images, defined as finite sets of

points on Zn, are of wide importance. Indeed, digital

images naturally fit with most image acquisition de-

vices based on a Cartesian sampling of the observed

scene (e.g. medical imaging scanners, remote sensing

optical imagers). Being able to manipulate digital ob-

jects defined as finite subsets of Zn is then of paramount

importance.

Such manipulations can involve rigid or non-rigid

transformations. Non-rigid transformations are gener-

ally considered for matching different scenes (e.g. for

registration [1]) or to fit a given model onto a struc-

ture of interest (e.g. for segmentation [2]). In this con-

text, topological preservation is crucial while geometry

may evolve. Rigid transformations are much simpler op-

erations. They are basically involved in the handling
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of digital objects, or preprocessing tasks. In this con-

text, both topology and geometry preservation are cru-

cial. Indeed, the structure of the digital objects has to

be preserved, but their shape should also remain un-

changed.

In this article, we are interested in rigid transfor-

mations on digital objects. More precisely, we focus on

rigid motions. Rigid motions are defined as composi-

tions of translations and rotations, namely the two most

fundamental operations for “moving” objects in a scene.

Intuitively, such rigid motions have to preserve the ob-

ject; this is indeed the case in the Euclidean model cur-

rently used for our physical world. In Rn, rigid motions

are bijective, isometric operations; the structure of the

handled objects is preserved such as their geometrical

properties, and in particular their shape.

In general, this is no longer true in discrete spaces.

This is mainly due to the sparse structure of Zn, that

implies a non-continuous behaviour of rigid motions [3].

In other words, when applying a rigid motion operator

T on a digital point p ∈ Zn, the resulting value T(p)

generally lies out of Zn. It is then necessary to find a

way for carrying T(p) back to Zn. The induced approx-

imation may lead to altering the topological structure

of the object X containing p. It may also modify the

global shape of X by slightly moving its different points

in a heterogeneous way [4].

In the case of Z2, some strategies were recently in-

vestigated for providing topological guarantees when

applying a rigid motion on digital objects [5,6]. How-

ever, such approaches do not provide geometric guaran-

tees. This weakness is mainly due to the fact that rigid

motions are carried out in a pointwise way: each point
p of X is transformed independently from the others,

thus altering the shape of the object.

Our proposed solution for tackling the issue of geom-

etry preservation is to consider an intermediate, contin-

uous, representation P (X) of the object X of Z2. More

precisely, we propose to define P (X) as a polygon mod-

eling the general shape of the digital boundary of X.

Such a polygon, as a piecewise affine object of R2, can

be processed in a topology and geometry preserving way

by the transformation T. The main issue remaining to

be tackled is then related to the digitization of the poly-

gon T(P (X)) back to Z2. Such digitization problem is

related to pioneering works [7] developed by Pavlidis in

the 1980s. However, while Pavlidis was interested in the

digitization of “smooth” objects, i.e. objects of R2 with

boundaries having differentiable properties, we have to

consider here some polygons, with non-differentiable

boundary points.

This article is an extended and improved version of

the conference paper [8]. A first contribution, in Sec-

tion 3, is a sufficient condition for guaranteeing the

preservation of connectedness during the process of dig-

itization of an object of R2. This condition, defined un-

der the name of quasi-r-regularity, can be seen as an

analogue of the r-regularity proposed by Pavlidis for

smooth objects [7]. This condition is then involved in

the next two sections, for preserving satisfactory geom-

etry and topology properties during the rigid motion of

a digital object. In Section 4, we describe our rigid mo-

tion process in the case where the input digital object is

well-composed and convex. (In such case, the induced

polygon is also convex.) The transformed object re-

mains convex; in particular, its topology is unchanged.

In Section 5, we consider, more generally, the case of

well-composed objects, not necessarily convex. We also

show that under the conditions of quasi-r-regularity,

the transformed object remains well-composed and pre-

serves the global geometry of its shape. Section 6 pro-

vides some experimental results of the proposed frame-

work for rigid motions on convex and non-convex digi-

tal objects. A concluding discussion is proposed in Sec-

tion 7. In order to make this work self-contained, we

recall, in Section 2, some basic definitions and nota-

tions related to rigid motions, and the various notions

of regularity on digital images.

2 Rigid motions and digitization

2.1 Rigid motions on R2

A rigid motion T in the Euclidean space R2 is defined,

for any point x = (x1, x2)T as

T(x) =

(
cos θ − sin θ

sin θ cos θ

)(
x1
x2

)
+

(
t1
t2

)
(1)

where θ ∈ [0, 2π) is a rotation angle, and (t1, t2)T ∈ R2

is a translation vector.

Let X be a continuous object in the Euclidean space

R2. (In the sequel, we will implicitly consider that X is

bounded and connected.) The transformation T is bi-

jective, isometric and orientation-preserving. Then, the

transformed object T(X ) has the same shape, i.e. the

same geometry and topology, as X . In the next sub-

sections, we will observe that these properties are gen-

erally lost during the digitization process required to

define rigid motions on Z2 from rigid motions on R2.

2.2 Digitization and topology preservation

A digital object X ⊂ Z2 is generally the result of a

digitization process applied on a continuous object X ⊂
R2. (In the sequel, we will implicitly consider that X is
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(a) (b) (c)

Fig. 1 (a) A continuous object X in R2. (b) A Gauss digiti-
zation of X , leading to the definition of X which is composed
by the black points of Z2 within X . (c) The digital object
X represented as a set of pixels. The objects X and X are
not topologically equivalent: the digitization process led to a
disconnection, due to the resolution of the discrete grid, not
fine enough for catching the shape of X .

a finite subset of Z2, which can be given as an image

segmentation result in practice.) We consider the Gauss

digitization [9], which is simply the intersection of a

continuous object X with Z2

X = X ∩ Z2 (2)

The object X is a subset of Z2; but from an imaging

point of view, it can also be seen as a subset of pix-

els, i.e. unit squares defined as the Voronoi cells of the

points of X within R2. Based on these different models,

the structure of X can be defined in various topological

frameworks which are mainly equivalent [10] to that of

digital topology [11]. However, this digital topology of

X is often non-coherent with the continuous topology of

X . This fact is illustrated in Fig. 1, where a connected

continuous object X leads, after Gauss digitization, to

a disconnected digital object X.

In the literature, various studies proposed condi-

tions for guaranteeing the preservation of topology of

digitized objects [12–14]. In particular, in [7] Pavlidis

introduced the notion of r-regularity.

Definition 1 (r-regularity) An object X ⊂ R2 is r-

regular if for each boundary point of X , there exist two

tangent open disks of radius r, lying entirely in X and

its complement X , respectively1.

The notion of r-regularity is based on classical con-

cepts of differential geometry. In particular, r-regularity

is strongly related to bounded values of curvature, pa-

rameterized by the resolution of the digitization sam-

pling. Pavlidis proved the topological equivalence of an

r-regular continuous, smooth, object X and its digital

counterpart X, for a dense sampling.

1 This definition of r-regularity can be equivalently ex-
pressed as the invariance of X with respect to both opening
and closing by a structuring element defined as a close ball
of radius r. This mathematical morphology analogy will be
given in Section 3.

Proposition 1 ([7]) An r-regular object X ⊂ R2 has

the same topological structure as its digitized version

X = X ∩ Z2 if r ≥
√
2
2 .

Remark 1 In [7], “the same topological structure” be-

tween two objects means that there exists an homeo-

morphism between both. In the sequel, we will consider

the same paradigm. However, it is worth mentioning

that in the 2D case and for digital objects whose contin-

uous analogues have a manifold boundary (this will be

our case with well-composed objects, see below), most

topological invariants are indeed equivalent, namely ho-

motopy type, adjacency tree and homeomorphism [15–

17].

It was shown that the digitization process of an r-

regular object yields a well-composed object [13], whose

definition relies on standard concepts of digital topol-

ogy, recalled hereafter, for the sake of completeness.

Two distinct points p, q ∈ Z2, are k-adjacent if

‖p− q‖` ≤ 1 (3)

with k = 4 (resp. 8) when ` = 1 (resp. ∞). From the

reflexive–transitive closure of the k-adjacency relation

on a finite subset X ⊂ Z2, we derive the k-connectivity

relation on X. It is an equivalence relation, whose equiv-

alence classes are called the k-connected components

of X. Due to paradoxes related to the discrete version

of the Jordan theorem [18], dual adjacencies are used

for X and its complement X, namely (4, 8)- or (8, 4)-

adjacencies [19].

The notion of well-composedness [20] has been intro-

duced to characterize the digital objects whose struc-

ture intrinsically avoids the topological issues of the

Jordan theorem.

Definition 2 (Well-composed sets) A digital ob-

ject X ⊂ Z2 is well-composed if each 8-connected com-

ponent of X and of its complement X is also 4-connected.

This definition implies that the boundary2 of X is

a set of 1-manifolds whenever X is well-composed (see

Fig. 2). In particular, there exists a strong link between

r-regularity and well-composedness.

Proposition 2 ([13]) If an object X ⊂ R2 is r-regular,

with r ≥
√
2
2 , then X = X ∩Z2 is a well-composed digital

object.

2 The boundary of X is defined here as the boundary of the
continuous object obtained as the union of the closed Voronoi
cells associated to the points of X, in R2.
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(a) (b) (c)

Fig. 2 (a) X ⊂ Z2 (in grey) is neither connected, nor well-
composed. (b) X is 8-connected, but neither 4-connected nor
well-composed. (c) X is 4-connected and well-composed.

2.3 Digitized rigid motions

If we straightforwardly apply a rigid motion T, such as

defined in Eq. (1), to a digital object X ⊂ Z2, we gen-

erally obtain a transformed object T(X) 6⊂ Z2. In order

to obtain a result in Z2, we further need a digitization

operator

D : R2 → Z2 (4)

which can be, for instance, the standard rounding func-

tion. Then, a digital analogue of T can be defined as the

composition of T, (restricted to Z2) with such digitiza-

tion operator, i.e. D ◦ T|Z2 .

As stated above, rigid motions on R2 are bijective.

By contrast, rigid motions followed by a digitization

operator are, in general, neither injective nor surjective.

This may lead to unwanted results, such as conflicted

or empty pixels, as illustrated in Fig. 3. To overcome

such issues, we generally consider the inverse of the rigid

motion to define the discrete analogue of T on Z2 by

setting

T −1Point = D ◦ T−1|Z2 (5)

In other words, we use a backward model for the compu-

tation of the rigid motion of a digital object X. Indeed,

we consider that the object TPoint(X) ⊂ Z2 induced by

the digitized version of the rigid motion T is defined

such that

p ∈ TPoint(X)⇔ T −1Point(p) ∈ X (6)

2.4 Topology and geometry alterations caused by

digitized rigid motions

This backward model can also be interpreted, in a for-

ward way, as the digitization of a transformed contin-

uous object. Indeed, let us denote by V (X) ⊂ R2 the

continuous object obtained as the union of the closed

Voronoi cells associated to the points of X; in other

words, let us consider the digital object as its set of

(a)

(b)

Fig. 3 Examples of non-injectivity and non-surjectivity of
rigid motions followed by a digitization. (a) The square grid
of Z2 and the associated Voronoi cell boundaries. (b) Rigid
motion followed by a digitization applied on the square grid
of (a); the red and blue pixels correspond to non-surjectivity
and non-injectivity cases, respectively.

pixels. Then, the transformed digital object TPoint(X)

is obtained as the Gauss digitization of the transformed

object resulting from the rigid motion of V (X) by T.

More formally, we have

TPoint(X) = T(V (X)) ∩ Z2 (7)

Note that this is equivalent to Eqs. (5) and (6).

In other words, the problem of digital rigid motion

can be expressed as a problem of digitization of a con-

tinuous object. However, this continuous object V (X)

has a boundary consisting of pixel edges. In particular,

such boundary is locally non-differentiable, and the ap-

proach proposed by Pavlidis for smooth-boundary ob-

ject is then non-valid.

The issue of topology preservation in such non-diffe-

rentiable case was investigated in [6], where it led to the

definition of a notion of digital regularity (simply called

regularity in [6]). Digital regularity provides a sufficient

condition for guaranteeing that a well-composed digital
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object X will not be topologically modified by any ar-

bitrary rigid motion. However, despite this topological

property, the notion of digital regularity does not tackle

the issue of geometry alteration. Indeed, the rigid mo-

tion model, such as defined in Eqs. (5–7), acts on the

object in a pointwise way. It is then unable to preserve

the global coherence of the object boundary, thus lead-

ing to a “noisy” result. This is illustrated in Fig. 4.

2.5 Purpose and contributions

Our purpose is to perform rigid motions on digital ob-

jects while preserving their geometry. In particular, we

are interested in preserving the global shape of the ob-

jects. To tackle this issue, our main idea is to apply the

rigid transformation on an object as a whole, and no

longer in a point-wise fashion.

To this end, we propose to represent a digital object

of Z2 as a digitization of a continuous object, namely

a polygon of R2. This strategy has several advantages.

First, it allows us to apply the rigid motion in R2, with

the geometric and topological guarantees within this

space. Second, since a polygon has a discrete repre-

sentation, it can be processed without numerical error,

by considering transformations based on integers (or,

equivalently, rationals).

In this context, our assumption is that the polygon

has to relevantly capture the geometry of the digital

object. In particular, this means that the Gauss digiti-

zation of the polygon has to get us back to the initial

digital object. In other words, the global shape of the

digital object, namely the succession of the convex and

concave parts of its boundary, has to be captured by the

polygonization process. In particular, this means that a

digitally convex object of Z2 will lead to a convex poly-

gon. In that case, we will choose as relevant polygon

model its convex hull. In the other cases, the polygon

will depend on the user’s polygonization policy.

Based on these hypotheses, we propose, as a first

contribution, an algorithmic framework for rigid motion

of digital objects of Z2. It relies on three successive

steps: (1) the polygonization of the digital object; (2)

the transformation of the intermediate piecewise affine

object (polygon) of R2; and (3) the digitization of the

transformed polygon for recovering a result within Z2.

In the case of an initial object being digitally convex,

our framework is proved to provide a final digital object

which is also digitally convex. In the other cases, it is

experimentally observed that the shape of objects are

correctly preserved. More precisely, such a observation

can be done qualitatively and quantitatively in which

geometric properties, for example area and perimeter,

are measured.

(a)

(b)

Fig. 4 Geometry and topology alterations induced by digi-
tized rigid motions. (a) A well-composed object, in grey. The
object is not digitally regular at the corners of the rectan-
gle, and at the junction between the disk and the rectangle.
(b) Digital rigid motion TPoint of (a). The boundary is more
noisy than that of the initial object. In addition, we observe
that the 4-connectivity has been lost at the junction between
the disk and the circle (red frames), and at the opposite cor-
ner of the rectangle (blue frames); this is a side effect of non-
digital regularity in these areas.

Generally, preserving the geometry also implies to

preserve the topology. This implication is mostly of-

fered in R2, while it is hardly obtained in Z2. This is

the motivation for our second contribution. Indeed, we

propose a new notion of quasi-r-regularity, defined on
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continuous objects, and in particular polygons. It pro-

vides sufficient conditions to be fulfilled by a continuous

object for guaranteeing topology preservation during its

digitization.

In Sections 4–5, we deal with simply connected ob-

jects, i.e. digital objects that are connected and with-

out holes. The case of non-connected objects with holes

may be handled without much difficulty from this case.

3 Quasi-r-regularity

In order to make this article self-contained, let us first

recall some notations and a few mathematical morphol-

ogy notions [12,21,22]. We denote by ⊕ and 	 the clas-

sical operators of dilation and erosion, corresponding to

the Minkowski addition, and its associated subtraction

X ⊕ Y =
⋃
y∈Y

Xy =
⋃
x∈X

Yx (8)

X 	 Y =
⋂
y∈Y

X−y (9)

where Xy = {x + y | x ∈ X} and, in our case, X,Y ⊂
R2. We also denote by ◦ the composition of erosion and

dilation, that is

X ◦ Y = (X 	 Y )⊕ Y (10)

We denote by Br a closed disk of R2 of radius r > 0

and centered on (0, 0) ∈ R2.

We are now ready to introduce the notion of quasi-

r-regularity. Intuitively, a quasi-r-regular object X of

R2 presents sufficient conditions for guaranteeing that

its connectedness will not be affected by a Gauss digi-

tization process.

Definition 3 (Quasi-r-regularity) Let r > 0. Let

X ⊂ R2 be a bounded, simply connected (i.e. connected

and with no holes) object. We say that X is quasi-r-

regular if it satisfies the following four properties:

– X 	Br is non-empty and connected;

– X 	Br is connected;

– X ⊆ (X 	Br)⊕Br√2; and

– X ⊆ (X 	Br)⊕Br√2;

Remark 2 This definition does not require specific as-

sumption on the boundary of X. In particular, it does

not need to be differentiable.

Remark 3 In order to compare the two notions of quasi-

r-regularity and of Pavlidis’ r-regularity, we rewrite here-

after the definition of r-regularity of a bounded, simply

connected object X ⊂ R2: X is r-regular if:

– X 	Br is non-empty and connected;

– X 	Br is connected;

– X = (X 	Br)⊕Br; and

– X = (X 	Br)⊕Br.
In particular we observe that the principal difference

between both notions is the fact that the matching be-

tween X (resp. X) and its opening need to be perfect

in the case of r-regularity, while a “margin” is autho-

rized in the case of quasi-r-regularity, thus allowing for

non-smooth (for instance, non-differentiable, noisy. . . )

boundary. Examples of quasi-1-regular and non-quasi-

1-regular objects are given in Fig. 5. Perspectives re-

lated to this remark will be evoked in Section 7.

Proposition 3 If X is quasi-1-regular, then X = X ∩
Z2 and X = X ∩Z2 are both 4-connected. In particular,

X is then well-composed.

Proof We prove the 4-connectedness of X; the same rea-

soning holds for X. Let us first prove that (X ◦B1)∩Z2

is 4-connected. Let p and q be two distinct points of

(X ◦B1)∩Z2. Let Bp
1 and Bq

1 be two disks of radius 1,

included in X ◦ B1 and such that p ∈ Bp
1 and q ∈ Bq

1 .

(Such disks exist, from the definition of opening.) Let

bp and bq be the centers of Bp
1 and Bq

1 , respectively. We

have bp, bq ∈ X 	 B1, from the definition of erosion.

Since X 	B1 is connected in R2; there exists a contin-

uous path Π from bp to bq in X	B1. Note that for any

a disk B1, we always have B1 ∩ Z2 non-empty and 4-

connected; in particular it contains at least two points

of Z2. For a value ε > 0 small enough, two disks B1 and

B′1 with centres distant of ε are such that B1∩B′1∩Z2 6=
∅. As a consequence, the union

⋃
b∈Π B1(b) ∩ Z2 (with

B1(b) the disk of center b) is a 4-connected set of Z2.

In addition, we have p, q ∈
⋃
b∈Π B1(b) ∩ Z2. Then, p

and q are 4-connected in (X ◦ B1) ∩ Z2, and it follows

that (X ◦ B1) ∩ Z2 is a 4-connected set. Let us now

prove that any point r ∈ X \ (X ◦B1) is 4-adjacent to a

point of (X ◦B1)∩Z2. Let us consider such point r. We

have r ∈ X ⊆ X 	B1⊕B√2. Then, from the definition

of dilation, there exists b ∈ X 	 B1 such that b is the

centre of a disk B√2(b) of radius
√

2, and r is a point

in that disk. In particular, the distance between b and

r lies in (1,
√

2]. As b is a point of X 	B1, it is also the

centre of a disk B1(b) of radius 1 included in X ◦ B1.

Let us consider the circle C1(r) of radius 1 and centre r.
This circle C1(r) intersects B1(b), and this intersection

is a circular segment of radius 1 and angle α ∈ [π2 ,
2π
3 ),

included in X ◦ B1; in particular, we have α ≥ π
2 (see

Fig. 6).

Then, this segment necessarily contains a point t ∈
Z2, that lies in (X ◦ B1) ∩ Z2. The points r and t are

4-adjacent. It follows that X ∩ Z2 is 4-connected. �

This notion of quasi-r-regularity will be used in the

next two sections for guaranteeing the preservation of
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(a) Quasi-1-regular (b) Non-quasi-1-regular (c) Non-quasi-1-regular (d) Non-quasi-1-regular

Fig. 5 Examples of quasi-1-regular (a) and non-quasi-1-regular (b,c,d) objects X : (b) X 6⊆ (X 	 B1) ⊕ B√
2; (c) X 	 B1 is

not connected; (d) X 	 B1 is not connected. The objects X ⊂ R2 are in blue, the disks B1 are in red and the disks B√
2 are

in black, the erosions X 	B1 are in red and the openings (X 	B1)⊕B√
2 are in green.

(a) (b)

Fig. 6 Illustration for the proof of Prop. 3. (a) A part of
object X ⊂ R2 is in blue; the erosion X	B1 is in red and the
opening (X 	B1)⊕B√

2 is in green; the disk B1(b) is in red;
and the circle B1(r) is in black. (b) The intersection of the
circle B1(r) (in black) and the disk B1(b) (in red) is a circular

segment of radius 1 and angle α such that cos(α
2

) = d(r,b)

2
,

where d(r, b) is the Euclidean distance between r and b. Since
d(r, b) ∈ (1,

√
2], we have α ∈ [π

2
, 2π

3
).

topological properties of digital objects during rigid mo-

tions, via their polygonal representation.

4 Rigid motions of digitally convex objects

In this section, we first deal with a specific case of dig-

ital objects, namely the convex ones. For rigid motion

purpose, we build a continuous polygon corresponding

to the convex hull of the input digital object. Then, we

move this continuous polygon, and we finally digitize it

for retrieving the final transformed digital object. We

show that, by this process, the digital convexity is pre-

served if the convex hull is quasi-1-regular.

4.1 Digital convexity

In the Euclidean space R2, an object X is said to be

convex if, for any pair of points x, y ∈ X , the line seg-

ment joining x and y

[x, y] = {λx + (1− λ)y ∈ R2 | 0 ≤ λ ≤ 1} (11)

is included in X . However, this intuitive continuous no-

tion cannot be directly transposed to digital objects of

Z2. Indeed, given a digital object X in Z2, for p, q ∈ X
we have [p, q] 6⊂ Z2 if p 6= q.

In order to tackle this problem, various extensions

of the notion of convexity have been proposed for Z2.

We can cite, for instance: MP-convexity [23] which is a

straightforward extension of the continuous notion; S-

convexity [24] which uses convex objects in R2 to deter-

mine the convexity of objects in Z2; H-convexity3 [25,

26] which is a geometrical version of S-convexity, using

the convex hull of digital objects; and D-convexity [27]

which is based on the notion of digital line.

In the case of 4-adjacency modeling of digital ob-

jects, MP- and H-convexities have been proved equiva-

lent [25, Theorem 5]. Similar results under the assump-

tion of 8-adjacency can be found in [26], via the chord

property, which relate the MP-, H- and D-convexities.

Under the condition that X has no isolated point (i.e.

no point adjacent to one other point within X), it was

then proved that X is H-convex iff it is S-convex [25,

Theorem 4]. A more complete description on various

notions of digital convexity can be found in [28, Chap-

ter 9].

In this section, the notion of H-convexity was cho-

sen. This is motivated, on the one hand, by its com-

pliance with the other kinds of convexities in the case

of 4-connected (and, a fortiori, well-composed) digital

objects. On the other hand, the notion of H-convexity

relies on the explicit definition of the convex hull of the

digital object. Such polygonal object provides us with

a continuous model that can be involved in the contin-

uous part of our rigid motion algorithmic process.

3 Kim introduced in [25] the definition of cellular convexity
and proved the equivalence to the one using the convex hull
[25, Lemma 10]. In [26], Eckhardt reformulated and renamed
this notion H-convexity.
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Fig. 7 A digital object X that is H-convex, but not con-
nected. This is due, here, to the acute angle at the highest
vertex of the convex hull Conv(X) that allows the induced
polygon to “pass between” two 4-adjacent points of the back-
ground of X.

We recall hereafter the definition of the convex hull

of a digital object X ⊂ Z2, denoted by Conv(X).

Conv(X) =

{
x =

|X|∑
i=1

λipi ∈ R2

∣∣∣∣ |X|∑
i=1

λi = 1 (12)

∧ ∀i ∈ {1, . . . , |X|}, (λi ≥ 0 ∧ pi ∈ X)

}

Definition 4 (H-convexity [26]) A digital object X ⊂
Z2 is H-convex if

X = Conv(X) ∩ Z2 (13)

i.e. if X is equal to the digitization of its continuous

polygonal convex hull.

Remark 4 An H-convex object is not necessarily con-
nected. This is exemplified in Fig. 7.

It is important to notice that, similarly to continu-

ous convexity, H-convexity remains stable by intersec-

tion. In particular, we have the following property.

Property 1 Let X and Y be two digital objects in Z2. If

X and Y are H-convex, then X ∩ Y is H-convex.

Proof Let X and Y be two H-convex digital objects. We

have X = Conv(X) ∩ Z2 and Y = Conv(Y) ∩ Z2. Then,

it comes X ∩ Y = Conv(X) ∩ Conv(Y) ∩ Z2. It is plain

that Conv(X ∩ Y) ⊆ Conv(X) ∩ Conv(Y) and then we

have Conv(X∩Y)∩Z2 ⊆ Conv(X)∩Conv(Y)∩Z2. Now,

let us consider p ∈ Conv(X) ∩ Conv(Y) ∩ Z2. We have

p ∈ Conv(X)∩Z2 = X and p ∈ Conv(Y)∩Z2 = Y. Then,

we have p ∈ X ∩ Y ⊆ Conv(X ∩ Y). But since p ∈ Z2,

it comes p ∈ Conv(X ∩ Y) ∩ Z2. Consequently, we have

Conv(X ∩ Y) ∩ Z2 = Conv(X) ∩ Conv(Y) ∩ Z2. �

(a) (b)

Fig. 8 A digital H-convex object X of Z2 (black dots and
grey pixels). (a) The half-plane representation of X, depicted
by the 5 red support lines. The red points/pixels are those
required to define these closed half-spaces. (b) The convex
hull Conv(X) in R2, defined as the polygon whose vertices are
these red points.

4.2 Polygonization of H-convex digital objects

The first step of the algorithmic process for computing

the rigid motion of an H-convex digital object X consists

of computing its polygonal convex hull.

If X contains at least three non-colinear points, then

its convex hull Conv(X) is a non-trivial convex polygon

whose vertices are some points of X. As these vertices

are grid points of Z2, the polygon Conv(X) is defined as

the intersection of closed half-planes with integer coef-

ficients

Conv(X) =
⋂

H∈R(X)

H (14)

where R(X) is the smallest set of closed half-planes that

include X. This set is finite and sufficient for defining

Conv(X). Each closed half-plane H of this subset is de-
fined as

H = {(x, y) ∈ R2 | ax+ by + c ≤ 0} (15)

with a, b, c ∈ Z and gcd(a, b) = 1. Note that the integer

coefficients of H are obtained by a pair of consecutive

vertices of Conv(X), denoted by u, v ∈ Z2, which are in

the clockwise order, such that

(a, b) =
1

gcd(wx, wy)
(−wy, wx) (16)

c = (a, b) · u (17)

where (wx, wy) = v − u ∈ Z2.

Many algorithms can be used to compute the convex

hull of a digital object. In [29], a linear time algorithm

determines whether a given polyomino is convex and,

in that case, it returns its convex hull. This method

relies on the incremental digital straight line recogni-

tion algorithm [30], and uses the geometrical proper-

ties of leaning points of maximal discrete straight line
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segments on the contour. The algorithm scans the con-

tour curve and decomposes it into discrete segments

whose extremities must be leaning points. The tangen-

tial cover of the curve [31] can be used to obtain this

decomposition. Alternatively, an approach presented in

[32] uses tools of combinatorics on words to study con-

tour words: the linear Lyndon factorization algorithm

[33] and the Christoffel words. A linear time algorithm

decides convexity of polyominoes and can also compute

the convex hull of a digital object (it is presented as

a discrete version of the classical Melkman algorithm

[34]).

The half-planes can then be deduced from the con-

secutive vertices of the computed convex hull, from

Eqs. (15–17). An example of convex hull and half-plane

modeling of an H-convex digital object is illustrated in

Fig. 8.

4.3 Convexity-preserving rigid motion

In order to perform rigid motions without any numeri-

cal approximation, one can consider only rigid motions

with rational parameters. Doing so, only exact compu-

tations with integers can be involved. This does not

constitute an applicative restriction, due to the density

of rational values within the rotation and translation

parameter space.

Thus, we assume hereafter that all the parameters

of a rigid motion T are rational (see Eq. (1)). More

precisely, on the one hand, the rotation matrix R is

defined as 1
r

(
p −q
q p

)
where p, q, r ∈ Z constitute a

Pythagorean triple, i.e. p2+q2 = r2, r 6= 0. On the other

hand, the translation vector is defined as (t1, t2)T ∈ Q2.

This assumption is fair, as we can always find rational

parameter values as close as desired from any real val-

ues [35] for defining such a Pythagorean triple.

A half-plane H, as defined in Eq. (15), is trans-

formed by such (rational) rigid motion T as follows

T(H) = {(x, y) ∈ R2 | αx+ βy + γ ≤ 0} (18)

where α, β, γ ∈ Q are given by (α β)T = R(a b)T and

γ = c + αt1 + βt2. This leads to a rational half-plane,

which can be easily rewritten as an integer half-plane

in the form of Eq. (15).

Since an H-convex digital object X is represented by

a finite set of digital half-planes, we can define the rigid

motion TConv of X on Z2 via its continuous polygonal

convex hull as follows

TConv(X) = T(Conv(X))∩Z2 = T

( ⋂
H∈R(X)

H

)
∩Z2 (19)

Fig. 9 A sequence of transformations TConv on an H-convex
object X. The convex hull of TConv(X) is included in the trans-
formed convex hull of X and the cardinality of TConv(X)∩Z2

is lower than that of X.

This constitutes an alternative to the standard point-

wise rigid motion defined in Eq. (5).

But, we have

T

( ⋂
H∈R(X)

H

)
∩ Z2 =

( ⋂
H∈R(X)

T(H)

)
∩ Z2

=
⋂

H∈R(X)

(T(H) ∩ Z2) (20)

The digitization of any continuous half-space of R2 is H-

convex. Then, from Eqs. (19–20), TConv(X) is expressed

as the intersection of a finite number of H-convex digital

objects. The following proposition is then a corollary of

Property 1.

Proposition 4 Let X be a digital object of Z2. Let TConv
be the polygon-based rigid motion induced by a rigid mo-

tion T with rational parameters. If X is H-convex, then

TConv(X) is H-convex.

The polygon corresponding to the convex hull of TConv(X)

is not equal, in general, to the transformed convex hull

of X. However, we have the following inclusion relation.

Property 2 With the same hypotheses as in Prop. 4, we

have

Conv(TConv(X)) ⊆ T(Conv(X)) (21)

The proof of this property derives from the fact that

TConv(X) = T(Conv(X))∩Z2. Thus we have TConv(X) ⊆
T(Conv(X)), and this inclusion also holds for the convex

hull of TConv(X).

First, this means that the cardinality of TConv(X) is

lower (often strictly) than that of X. In other words,

TConv is a decreasing operator with respect to the car-

dinality of the input digital object. A straightforward

consequence is that TConv is not bijective, in general.

Second, this means that the polygons of the two con-

vex hulls of the input and output digital objects may

be distinct, with respect to their number and size of

edges, and angles at vertices. However, the convexity
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of the objects is preserved, which was the fundamental

property to satisfy. These facts are exemplified in Fig. 9

and experimentally observed in Section 6.

4.4 Rigid motions and topological aspects of convexity

In the previous subsections, we proposed an algorith-

mic scheme for performing rigid motions on H-convex

digital objects, while preserving their H-convexity. In

R2, the continuous definition of convexity intrinsically

implies connectedness. By contrast, in Z2 the notion

of H-convexity (such as various other notions of digital

convexity) does not always offer guarantees of connect-

edness, e.g. with respect to 4- and 8-adjacencies.

In order to illustrate that fact, let us consider the

example of Fig. 7. The digital object X, composed of 8

points/pixels, is H-convex. Indeed, its convex hull con-

tains only digital points that belong to X. However, X is

not connected (neither with 4- nor 8-adjacencies). Such

phenomenon is mainly caused by angular and/or metric

factors: whenever an angle of the convex hull polygon

is too acute, and/or when an edge is too short, such

disconnections may happen.

Then, in addition to providing geometry guarantees

of convexity —via the H-convexity of digital objects—

when performing rigid transformations of a digital ob-

ject, it is desirable to also provide topology guarantees,

and more precisely connectedness guarantees.

To reach that goal, we use the notion of quasi-r-

regularity introduced in Section 3. This additional no-

tion provides us with sufficient conditions for ensuring

that a digital H-convex object will remain not only H-

convex but also connected after any rigid motion.
In particular, the next proposition is a corollary of

Propositions 3 and 4.

Proposition 5 Let X ⊂ Z2 be an H-convex digital ob-

ject. If Conv(X) is quasi-1-regular, then TConv(X) is H-

convex, 4-connected and well-composed.

Proof Let X ⊂ Z2 be an H-convex digital object, and

let us suppose that Conv(X) is quasi-1-regular. Then,

from Prop. 4, TConv(X) is H-convex. In addition, since

Conv(X) is quasi-1-regular, then so is T(Conv(X)). Thus,

from Prop. 3 we deduce that T(Conv(X))∩Z2 = TConv(X)

is 4-connected and well-composed. �

Remark 5 If Conv(X) is quasi-1-regular, then the initial

object X is also 4-connected and well-composed.

5 Rigid motions of general digital objects

In this section, we now deal with rigid motions of digital

objects without convexity hypothesis.

5.1 Polygonization of a digital object

There exist various methods for polygonizing a digital

object. In the field of digital geometry, numerous ap-

proaches used the contour curves extracted from the

digital objects; each method computes a polygonal rep-

resentation of the digital object with particular proper-

ties. In [36,37], invertible methods enable us to compute

Euclidean polygons whose digitization is equal to the

original discrete boundary. These methods use the Vit-

tone algorithm [38] in the preimage space for straight

line recognition. In [39–42] the arithmetical recognition

algorithm [30] is used to decompose a discrete contour

and deduce a polygonal representation. These methods

rely on the tangential cover of the contour [31], com-

posed of the sequence of its maximal discrete straight

segments. It was proved in [39] that all polygonal rep-

resentations of the contour can be deduced from its

tangential cover, leading to a linear algorithm which

computes the polygon with minimal integral summed

squared error. In [40–42], the goal was different. It con-

sisted of determining a reversible polygon that faith-

fully represents the convex and concave parts of the

boundary of a digital object. The polygonization method

proposed in [43,44] also exploits the idea of maximal

straight segment primitives. It allows to identify the

characteristic points on a contour, called dominant points,

and to build a polygon representing the given contour.

Another technique presented in [45] is the curve decom-

position. It uses the analytical primitives, called digital

level layers, to decompose a given contour and to obtain

an analytical representation. Another algorithm is pro-

posed in [46] to compute the polygonal simplification of

a curve such that the Fréchet distance [47] between the

simplified polygon and the original curve is lower than

a given error.

It should be mentioned that, for a given digital ob-

ject, different results can be obtained from these various

polygonization techniques. In other words, the polyg-

onal representation of a digital object is not unique.

However, the crucial property to be satisfied is that the

polygon P (X) computed for a digital object X has to be

coherent with respect to digitization, i.e. P (X)∩Z2 = X.

A second important property, in our framework of dis-

crete geometry and exact calculus, is that the vertices

of P (X) have integer or rational coordinates.

It should be mentioned that none of the methods

mentioned above respects both of these properties. Most

of them compute simplified polygon of input contours

with criteria to minimize. Consequently, we adapt a

polygonization strategy based on [43,44] in the exper-

iment section (Section 6) in which it guarantees the
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above two properties. Some other relevant, but some-

times antagonistic, properties are discussed in Section 5.3.

5.2 Rigid motion of a polygon

As P (X) may be non-convex, we cannot use the half-

plane representation, as it was done in Section 4.2 for

convex polygons. Here, we use a standard vertex rep-

resentation, by modeling a polygon via a sequence of

successive vertices of its boundary.

Note that the vertices of P (X) are integer (or ratio-

nal) points, and those of T(P (X)) are rational points,

since the rigid motion T is given by a rational matrix

and a rational translation vector (see Section 4.3).

Then, for each vertex of the polygon P (X), we sim-

ply apply the rigid motion T (see Eq. (1)) and preserve

the order of the vertex sequence.

5.3 Discretization of polygons and geometry /

topology preservation

Once the polygon T(P (X)) has been computed, the re-

sulting object, denoted by TPoly(X) can be deduced.

Similarly to the case of H-convex digital objects (Eq. (19)),

this is done by embedding T(P (X)) in Z2 via the Gauss

digitization

TPoly(X) = T(P (X)) ∩ Z2 (22)

Various ways exist for carrying out this digitization in

an exact way. For instance, it is possible to decom-

pose T(P (X)) into a partition of triangles whose ver-

tices are (rational-coordinate) vertices of the boundary

of T(P (X)). Each of such triangles being defined as a

convex region modeled by three half-planes with ratio-

nal parameters, the points of Z2 contained herein can

be determined without numerical error.

In order to ensure the connectedness preservation of

X, we require, as for the H-convex case, that the polygon

P (X) of X, is quasi-1-regular.

Proposition 6 Let X ⊂ Z2 be a digital object. Let

P (X) ⊂ R2 be a polygon such that P (X) ∩ Z2 = X.
If P (X) is quasi-1-regular, then TPoly(X) is 4-connected

and well-composed.

Proof Let X ⊂ Z2 be a digital object, and let us suppose

that P (X) ⊂ R2 is a quasi-1-regular polygon such that

P (X)∩Z2 = X. Then, T(P (X)) is also a quasi-1-regular

polygon. From Prop. 3 we deduce that T(P (X))∩Z2 =

TPoly(X) is then 4-connected and well-composed. �

Remark 6 Beyond topological guarantees (4-connected-

ness, well-composedness), the notion of quasi-1-regulari-

ty also presents some geometry properties. Indeed, any

point of X is either part of P (X)◦B1 (i.e. the “smooth”

opening of a polygon) or part of the (noisy) boundary

in P (X)\(P (X)◦B1). But, in this second case, this point

is necessarily at a distance not greater than
√

2 − 1 <

0, 5 (i.e. the half of a pixel size) from this opening

P (X) ◦B1. In other words, quasi-1-regularity describes

objects with boundaries that may not be completely

smooth (in particular, they may be non-differentiable),

but that will be, in the worst cases, only slightly noisy,

by contrast with results of standard pointwise rigid mo-

tions TPoint. This can be illustrated in Tables 1 and 2.

As stated above, P (X) can be defined by following

various policies. Then, there exist many (actually an

infinite number of) polygons whose digitization leads to

X. In particular, it may happen that P (X) is not quasi-

1-regular while X and TPoly(X) are indeed 4-connected

and well-composed.

This statement emphasizes the importance of choos-

ing wisely a polygonization policy. In this context, var-

ious properties may be relevantly targeted.

A first property is related to the preservation of

area. Indeed, due to the digitization procedure of the

polygon, carried out by a regular sampling with respect

to Z2, it may be useful that P (X) has an area in R2 of

the same order as the cardinal |X|. This is a heuristic

strategy, since we can not guarantee that the digitized

result will have exactly the same area as the initial dig-

ital object. It is however justified by the fact that each

pixel (i.e. Voronoi cell) of a point of Z2 has an area

of 1 in R2. Consequently, for digital objects that are

sufficiently large, the analogy between the area and the

number of digital points makes sense. For smaller dig-

ital objects, where the boundary points are no longer

negligible with respect to the overall set of points, this

heuristics can be refined by considering more accurate

formulas, for instance via Pick’s theorem [48].

A second property is related to the positioning of

P (X) with respect to X. More precisely, it may be rel-

evant that the barycentre of both P (X) and X be the

same. Otherwise, the shift between both may statisti-

cally induce a translation bias in the rigid motion result.

6 Experiments and results

In this section, we present some experimental results

obtained with the proposed methods on different digital

objects, which are convex and not-convex. The compar-

ison, in terms of topology and geometry —in particular,

connectivity, convexity, area and perimeter— between



12 Phuc Ngo et al.

(a) (b) (c)

Fig. 10 (a) Tangential cover (in red) of a contour curve [31],
composed of the sequence of its maximal discrete straight
segments, and dominant points (in green) detected by using
the tangential cover [43,44]. (b) Polygon of dominant points
(in blue). (c) Polygon of the contour curve (in purple) and its
vertices (in yellow), obtained from (b), such that it encloses
all contour points and does not contain any point outside of
the contour curve.

(a) X (b) TPoint(X)

(c) TConv(X) (d) TPoly(X)

Fig. 11 Experiments on convexity preservation for rigid mo-
tions TPoint, TConv and TPoly, with rotation angle of π

10
and

translation of (tx, ty) = (0.1, 0.2). See Sec. 6.2.

three (resp. two) models of rigid motions TPoint, TConv
and TPoly (resp. TPoint and TPoly) on convex (resp. non-

convex) objects is made. The effects of rigid motions on

boundaries of digital objects are especially focused on.

It should be mentioned that the digital objects used

in these experiments have their associated polygons quasi-

1-regular.

Fig. 12 Polygon (in blue) and convex hull (in red) of the
digital object X of Fig. 11(a).

6.1 Polygonization of digital objects

For an efficient computation of TConv, we use the dis-

crete version of the Melkman algorithm [34] to compute

the convex hull of H-convex objects. This algorithm has

a linear time complexity with respect to the number of

digital points.

Concerning TPoly, for the polygonization of non-

convex objects, we apply the method of dominant point

detection proposed in [43,44] with adaptation in or-

der to obtain a result satisfying the two properties: (1)

P (X) ∩ Z2 = X and (2) the vertices of P (X) are integer

points. More precisely, we initialize the ordered vertex

set V of the polygon P as the sequence of dominant

points (supposing that the order is clockwise). For each

consecutive vertices p1 and p2 of V , let us consider the

set of the contour points between p1 and p2, denoted

by C(p1, p2). First, we verify if

(C(p1, p2) \ P ) 6= ∅, (23)

i.e., if there exits at least one point of C(p1, p2) outside

of P , then, we select a point p3 ∈ C(p1, p2) \ P such

that

p3 = arg max
q∈C(p1,p2)\P

{d(q) | (∆qp1p2 ∩ Z2) ⊂ X}

where d(q) is the distance of q to the line passing by p1
and p2 and ∆pqr is the triangle whose vertices are p, q
and r.

If Eq. (23) does not hold, then we verify whether

there exits any point q ∈ (X ∩ P ) such that q is in the

polygon constructed from the polygonal line of C(p1, p2)

and the line segment from p2 to p1. If so, we select

p3 ∈ C(p1, p2) such that

p3 = arg max
q∈C(p1,p2)\P

{d(q) |

(∀r1 ∈ C(p1, q), (∆p1r1q ∩ Z2) ⊂ X)

∨ (∀r2 ∈ C(q, p2), (∆qr2p2 ∩ Z2) ⊂ X)}.

For either case, if such p3 exists, we add it to V be-

tween p1 and p2. We repeat this process with V until no

point is added; see Fig. 10 for an illustration. Note that
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dominant points are also vertices of the obtained poly-

gon. It is shown in [30] that dominant point detection

algorithm can be achieved with a linear time complexity

with respect to the number of contour points. Further-

more, the algorithm involves exact computation with

integers and the obtained polygon has integer vertices.

6.2 Topological and convexity preservation

The first experiment of rigid motions was carried out

on an H-convex digital object (see Fig. 11(a)). Figure

11 presents the result of TPoint, TConv and TPoly on X.

It should be mentioned that, in general, the polygon

P (X) obtained by the method proposed in Section 6.1

is not equal to the convex hull Conv(X). In particu-

lar, even if X is H-convex, P (X) is often non-convex, as

illustrated in Fig. 12. Therefore, TPoly does not guaran-

tee to preserve the convexity of the transformed object

(see Fig. 11(d)). On the contrary, TConv preserves the

convexity of the transformed object as shown in Prop. 4

and Fig. 11(a). By contrast, TPoint hardly preserves the

convexity of the transformed object.

We performed the second experiments on two H-

convex digital objects, namely a disk of radius 10 and a

square of size 21× 21. We provide an assessment of the

performance of rigid motions using three transforma-

tion models: TPoint, TConv and TPoly. The experiment

was conducted under a sequence of successive rotations

around the origin (center of the objects), to evaluate the

topological alterations accumulated in the transformed

images. The experiment is as follows: a rotation is ap-

plied on the input image; then the transformed image is

used as input for the next rotation, and so on. Tables 1

and 2 provide the visual results of rotated images by

the three transformation models on the disk and the

square, respectively.

From both experiments, we observe that the rigid

motions by TPoint alter the boundary of the objects

and modify their topology.

Indeed, the initial disk and square objects are well-

composed and H-convex; however the transformed ob-

jects are not. By contrast, the rigid motions by TConv al-

low us to preserve topology together with convexity, as

shown in Prop. 5, as far as Conv(X) is quasi-1-regular.

However, as mentioned in Section 4.3, TConv is a de-

creasing operator with respect to the cardinality of the

input object (see Remark 2). The rigid motions by TPoly
avoid this effect since TPoly is based on a polygon that

fits the size of the digital object in a better way than

the convex hull. Similarly to TConv, TPoly allows the

topological preservation when P (X) is quasi-1-regular,

as shown in Prop. 6.

6.3 Area and perimeter preservation

Now, we aim to quantify experimentally the accuracy

and stability of geometric measurements using the three

models of rigid motions on convex digital objects. More

precisely, we observe two measures: area and perimeter.

The area is computed as the number of digital points

within the transformed objects [50] and the perimeter

is calculated based on curve segmentation by maxi-

mal digital standard segment [51] of the 4-connected

curves extracted from the transformed objects. It has

been proven that these estimators have multigrid con-

vergence property [52].

Two series of experiments are performed: the first

with rotations for angles θ varying from 0 to 2π; the

second with rigid motions randomly generated.

Figs. 13 and 14 report some quantitative compar-

isons of those geometric measures between rotations by

TPoint, TConv and TPoly on the input images given in

Tables 1 and 2. We can observe that TPoint and TConv
do not preserve well the perimeter of the transformed

objects since TPoint alters the boundary of the objects

and TConv is a decreasing operator. By construction,

TPoly uses a polygon that fits the input digital object for

the transformation; thus it preserves well the perimeter.

For the same reasons, TConv does not preserve the area,

contrary to TPoly. Since TPoint is defined on a point-by-

point model, it also preserves the area measure.

Figs. 15 and 16 show results under rigid motions

generated randomly with rotation angles θ ∈ [0, 2π)

and translation values t1, t2 ∈ [0, 1). The results are

similar to those of Figs. 13 and 14. The difference is

that the peaks at the special angles of π2 k for TConv are

not seen in Figs. 15 and 16 since random rigid motions

are applied.

In our last experiments, we perform rigid motions

on non-convex objects (see Fig. 17 and Fig. 19). Again,

we evaluate the proposed transformation models TPoint
and TPoly with respect to the following measures: (i)

area and (ii) perimeter. The results are respectively

shown in Fig. 18 and Fig. 20, for rigid motions TPoly
generated randomly with rotation angles θ ∈ [0, 2π) and

translation values t1, t2 ∈ [0, 1). We can observe that

TPoint and TPoly both have a stable behaviour with re-

spect to area measure, and TPoly preserves better the

perimeter than TPoint.
Comparing three models of rigid motions TPoint,

TConv and TPoly, we can see that TPoint and TPoly pre-

serve better area. Whereas TConv is a decreasing oper-

ator, it is the only that allows the preservation of con-

vexity. TPoint alters the boundary of the objects and

does not preserve topology nor perimeter, while TPoly
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#Points=317

θ = π
10

θ = 2π
10

θ = 3π
10

θ = 4π
10

θ = π
2

TPoint(X)

#Points=317 #Points=317 #Points=317 #Points=317 #Points=317

TConv(X)

#Points=297 #Points=273 #Points=257 #Points=237 #Points=213

TPoly(X)

#Points=297 #Points=297 #Points=297 #Points=297 #Points=317

Table 1 Experiments on geometry and topology preservation on a disk of radius 10, for rotations of angle θ (the rotation
centre is the centre of the disk). See Section 6.2.

preserves better perimeter and topology, when P (X) is

quasi-1-regular.

7 Conclusion

In this article, we proposed an algorithmic process for

performing rigid motions on digital objects, i.e. finite

subsets of Z2, while preserving their global shape. This

shape preservation was expressed in terms of geometry,

but also in terms of topology, since the object should

not be erroneously disconnected due to the discrete

structure of Z2. In order to tackle these issues, our con-

tributions were twofold. From a methodological point

of view, we proposed to consider an intermediate con-

tinuous model of the digital object, namely a polygo-

nal model. Such polygon is continuous and can then be

processed by standard continuous transformations; it

also remains discrete, and can then be processed with-

out numerical error. From a theoretical point of view,

we proposed a new notion of quasi-r-regularity that

provides sufficient conditions for guaranteeing topolog-

ical preservation when digitizing a continuous object.

This notion of quasi-r-regularity was indeed required

to correctly handle the mandatory digitization step in-

duced by the use of an intermediate continuous polyg-

onal model.

This work opens the way to various perspectives.

First we will investigate how this rigid motion scheme

can be extended to the 3D case, i.e. to digital objects

defined in Z3. Such an extension cannot be straightfor-

ward as topological (and geometric) properties of Gauss

digitization for more than two dimensions are different
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#Points=441

θ = π
10

θ = 2π
10

θ = 3π
10

θ = 4π
10

θ = π
2

TPoint(X)

#Points=445 #Points=437 #Points=437 #Points=445 #Points=441

TConv(X)

#Points=397 #Points=385 #Points=373 #Points=357 #Points=349

TPoly(X)

#Points=397 #Points=409 #Points=409 #Points=397 #Points=441

Table 2 Experiments on geometry and topology preservation on a square of size 21×21, for rotations of angle θ (the rotation
centre is the barycentre of the square). See Section 6.2.

and more complex than those in two dimensions [53].

In addition, we will describe how to consider not only

simply connected objects, but more generally arbitrary-

topology objects (this is tractable in Z2, but less simple

in Z3). Second, from a practical point of view, we will

investigate the relevance of different polygonization ap-

proaches, in order to identfy those that are the best fit-

ted to the proposed transformation approach. We will

also investigate digital objects that correspond to limit

cases, just beyond the domain of validity of quasi-1-

regularity; indeed, some of these objects (often thin, or

small-sized) may preserve some topological properties,

although not being quasi-1-regular. Third, we will ex-

plore more deeply the notions of regularity. In particu-

lar, we will aim at proposing a notion that may encom-

pass both the notions of Pavlidis’ r-regularity and of

quasi-r-regularity. Such notion could allow us to better

understand —and handle— the intrinsic mechanisms

of topology-preserving digitization, in various regular

grids, adjacency models and space dimensions.

An online demonstration based on the DGtal library

[54] is available online4.
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Fig. 13 Area (left) and perimeter (right) variations induced by successive rotations for the disk of radius 10 of Table 1. See
Section 6.3.
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