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Abstract Rigid motions (i.e. transformations based

on translations and rotations) are simple, yet impor-

tant, transformations in image processing. In Euclidean

spaces, namely Rn, they are both topology and geome-

try preserving. Unfortunately, these properties are gen-

erally lost in Zn. In particular, when applying a rigid

motion on a digital object, one generally alters its struc-

ture but also the global shape of its boundary. These

alterations are mainly caused by (re)digitization during

the transformation process. In this specific context of

digitization, some solutions for the handling of topo-

logical issues were proposed in Z2 and/or Z3. In this

article, we also focus on geometric issues, in the case of

Z2. More precisely, we propose a rigid motion algorith-

mic scheme that relies on an initial polygonization and

a final digitization step. The intermediate modeling of
a digital object of Z2 as a piecewise affine object of R2

allows us to avoid the geometric alterations generally

induced by standard pointwise rigid motions. The cru-

cial step is then related to the final (re)digitization of

the polygon back to Z2. To tackle this issue, we propose

a new notion of quasi-regularity that provides sufficient
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conditions to be fulfilled by an object for guaranteeing

both topology and geometry preservation, in particu-

lar the preservation of the convex/concave parts of its

boundary.

Keywords Rigid motions · Geometry and topology

preservation · Polygonization · (Re)digitization ·
Quasi-r-regularity

1 Introduction

Image processing and computer vision applications of-

ten require to manipulate discrete models of images.

Among the various existing discrete models (e.g. meshes,

point clouds), digital images, defined as finite sets of

points on Zn, are of wide importance. Indeed, digital

images naturally fit with most image acquisition de-

vices based on a Cartesian sampling of the observed

scene (e.g. medical imaging scanners, remote sensing

optical imagers). Being able to manipulate digital ob-

jects defined as finite subsets of Zn is then of paramount

importance.

Such manipulations can involve rigid or non-rigid

transformations. Non-rigid transformations are gener-

ally devoted to emphasize the correspondence between

different scenes (e.g. for registration [1]) or to fit a given

model onto a structure of interest (e.g. for segmentation

[2]). In this context, topological preservation is crucial

while geometry is devoted to evolve. Rigid transforma-

tions are much simpler operations. They are basically

involved in the handling of digital objects, or prepro-

cessing tasks. In this context, both topology and geom-

etry preservation are crucial. Indeed, the structure of

the digital objects has to be preserved, but their shape

should also remain unchanged.
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In this article, we are interested in rigid transfor-

mations on digital objects. More precisely, we focus on

rigid motions. Rigid motions are defined as composi-

tions of translations and rotations, namely the two most

fundamental operations for “moving” objects in a scene.

Intuitively, such rigid motions have to preserve the ob-

ject; this is indeed the case in our Euclidean world. In

Rn, rigid motions are bijective, isometric operations;

the structure of the handled objects is preserved such

as their geometrical properties, and in particular their

shape.

This is no longer true in the Eulerian space. This

is mainly due to the sparse structure of Zn, that im-

plies a non-continuous behaviour of rigid motions [3].

In other words, when applying a rigid motion operator

T on a digital point p ∈ Zn, the resulting value T(p)

generally lies out of Zn. It is then necessary to find a

way for carrying T(p) back to the Cartesian grid. The

induced approximation may lead to altering the topo-

logical structure of the object X containing p. It may

also modify the global shape of X by slightly moving its

different points in a heterogeneous way [4].

In the case of Z2, some strategies were recently in-

vestigated for providing topological guarantees when

applying a rigid motion on digital objects [5,6]. How-

ever, such approaches do not provide geometric guaran-

tees. This weakness is mainly due to the fact that rigid

motions are carried out in a pointwise way: each point

p of X is transformed independently from the others,

thus forbidding a coherent handling of the global shape

of the object.

Our proposed solution for tackling the issue of geom-

etry preservation is to consider an intermediate, contin-

uous, representation P (X) of the object X of Z2. More

precisely, we propose to define P (X) as a polygon mod-

eling the general shape of the digital boundary of X.

Such a polygon, as a piecewise affine object of R2, can

be processed in a topology and geometry preserving

way by the transformation T. The main issue remain-

ing to be tackled is then related to the (re)digitization

of the polygon T(P (X)) back to Z2. Such digitization

problem is related to pioneering works [7] developed by

Pavlidis in the 80’s. However, while Pavlidis was inter-

ested in the digitization of “smooth” objects, i.e. ob-

jects of R2 with boundaries having differentiable prop-

erties, we have to consider here some polygons, with

non-differentiable boundary points.

This article is an extended and improved version of

the conference paper [8]. A first contribution, in Sec. 3,

is a sufficient condition for guaranteeing the preserva-

tion of connectedness during the process of digitization

of an object of R2. This condition, defined under the

name of quasi-r-regularity, can be seen as an analogue

of the r-regularity proposed by Pavlidis for smooth ob-

jects [7]. This condition is then involved in the next

two sections, for preserving satisfactory geometry and

topology properties during the rigid motion of a digital

object. In Sec. 4, we describe our rigid motion process in

the case where the input digital object is well-composed

and convex. (In such case, the induced polygon is also

convex.) The transformed object will have its topology

unchanged and will remain convex. In Sec. 5, we con-

sider, more generally, the case of well-composed objects,

non-necessarily convex. We also show that under the

conditions of quasi-r-regularity, the transformed object

remains well-composed and preserves the global geom-

etry of its shape. Sec. 6 provides some experimental

results of the proposed framework for rigid motions on

convex and non-convex digital objects. A concluding

discussion is proposed in Sec. 7. In order to make this

work self-contained, we recall, in Sec. 2, some basic def-

initions and notations related to rigid motions, and the

various notions of regularity on digital images.

2 Rigid motions and digitization

2.1 Rigid motions on R2

A rigid motion T in the Euclidean space R2 is defined,

for any point x = (x, y)t as

T(x) =

(
cos θ − sin θ

sin θ cos θ

)(
x

y

)
+

(
a

b

)
(1)

where θ ∈ [0, 2π) is a rotation angle, and (a, b)t ∈ R2 is

a translation vector.

Let X be a continuous object in the Euclidean space

R2. (In the sequel, we will implicitly consider that X is

finite and connected.) The transformation T is bijective,

isometric and orientation-preserving. Then, the trans-

formed object T(X) has the same shape, i.e. the same

geometry and topology, as X. In the next subsections,

we will observe that these properties are generally lost

during the digitization process required to define rigid

motions on Z2 from rigid motions on R2.

2.2 Digitization and topology preservation

A digital object X ⊂ Z2 is generally the result of a

digitization process applied on a continuous object X ⊂
R2. We consider the Gauss digitization [9], which is

simply the intersection of a continuous object X with

the Cartesian grid Z2

X = X ∩ Z2 (2)
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(a) (b) (c)

Fig. 1 (a) A continuous object X in R2. (b) A Gauss digiti-
zation of X, leading to the definition of X which is composed
by the black points of Z2 within X. (c) The digital object X
represented as a set of pixels, i.e. by associating to each point
p of X the unit square corresponding to its Voronoi cell. The
objects X and X are not topologically equivalent: the digiti-
zation process led to a disconnection, due to the resolution of
the Cartesian grid, not sufficiently fine for catching the shape
of X.

(a) (b)

Fig. 2 r-regular objects in (a) R2 and (b) R3, in grey. Exam-
ples of couples of tangent balls of radius r, fitting the bound-
ary of the objects, are provided in red.

The object X is a subset of Z2; but from an imaging

point of view, it can also be seen as a subset of pix-

els, i.e. unit squares defined as the Voronoi cells of the

points of X within Z2. Based on these different models,

the structure of X can be defined in various topological

frameworks which are mainly equivalent [10] to that of

digital topology [11]. However, this digital topology of

X is often non-coherent with the continuous topology of

X. This fact is illustrated in Fig. 1, where a connected

continuous object X leads, after Gauss digitization, to

a disconnected digital object X.

In the literature, various studies proposed condi-

tions for guaranteeing the preservation of topology of

digitized objects [12–14]. In particular, in [7] Pavlidis

introduced the notion of r-regularity.

Definition 1 (r-regularity [7]) An object X ⊂ Rn,

n = 2, 3, is r-regular if for each boundary point of X,

there exist two tangent open balls of radius r, lying

entirely in X and its complement X, respectively.

Illustrations of r-regularity for n = 2, 3 are given

in Fig. 2. The notion of r-regularity is based on clas-

sical concepts of differential geometry. In particular,

r-regularity is strongly related to bounded values of

curvatures, parametrized by the resolution of the dig-

itization sampling. Pavlidis proved the homeomorphic

equivalence of an r-regular continuous, smooth, object

X and its digital counterpart X, for a sufficiently dense

sampling.

Proposition 1 ([7]) An r-regular object X ⊂ R2 has

the same topological structure as its digitized version

X = X ∩ Z2 if r ≥
√
2
2 .

In addition, it was shown that the digitization pro-

cess of an r-regular object yields a well-composed ob-

ject [13], whose definition relies on standard concepts

of digital topology, recalled hereafter, for the sake of

completeness.

Two distinct points p, q ∈ Z2, are k-adjacent if

‖p− q‖` ≤ 1 (3)

with k = 4 (resp. 8) when ` = 1 (resp. ∞). From the

reflexive–transitive closure of the k-adjacency relation

on a finite subset X ⊂ Z2, we derive the k-connectivity

relation on X. It is an equivalence relation, whose equiv-

alence classes are called the k-connected components

of X. Due to paradoxes related to the discrete version

of the Jordan theorem [15], dual adjacencies are used

for X and its complement X, namely (4, 8)- or (8, 4)-

adjacencies [16].

The notion of well-composedness [17] has been intro-

duced to characterize the digital objects whose struc-

ture intrinsically avoids the topological issues of the

Jordan theorem.

Definition 2 (Well-composed sets [17]) A digital

object X ⊂ Z2 is well-composed if each 8-connected

component of X and of its complement X is also 4-

connected.

This definition implies that the boundary1 of X is

a set of 1-manifolds whenever X is well-composed (see

Fig. 3). In particular, there exists a strong link between

r-regularity and well-composedness.

Proposition 2 ([13]) If an object X ⊂ R2 is r-regular,

with r ≥
√
2
2 , then X = X∩Z2 is a well-composed digital

object.

2.3 Digitized rigid motions

If we straightforwardy apply a rigid motion T, such as

defined in Eq. (1), to a digital object X ⊂ Z2, we gen-

erally obtain a transformed object T(X) 6⊂ Z2. In order

1 The boundary of X is defined here as the boundary of the
continuous object obtained as the union of the closed Voronoi
cells associated to the points of X, in R2.
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(a) (b) (c)

Fig. 3 (a) X ⊂ Z2 (in grey) is neither connected, nor well-
composed. (b) X is 8-connected, but neither 4-connected nor
well-composed. (c) X is 4-connected and well-composed.

(a) (b)

Fig. 4 Examples of non-injectivity and non-surjectivity of
rigid motions followed by a digitization. (a) The square grid
of Z2 and the associated Voronoi cell boundaries. (b) Rigid
motion followed by a digitization applied on the square grid
of (a); the red and blue pixels correspond to non-surjectivity
and non-injectivity cases, respectively.

to obtain a result in Z2, we further need a digitization

operator

D : R2 → Z2 (4)

which can be, for instance, the standard rounding func-

tion. Then, a digital analogue of T can be defined as the

composition of T, (restricted to Z2) with such digitiza-

tion operator, i.e. D ◦ T|Z2 .

As stated above, rigid motions on R2 are bijective.

By contrast, rigid motions followed by a digitization

operator are, in general, neither injective nor surjective.

This may lead to unwanted results, such as conflicted

or empty pixels, as illustrated in Fig. 4. To overcome

such issues, we generally consider the inverse of the rigid

motion to define the discrete analogue of T on Z2 by

setting

T −1Point = D ◦ T−1|Z2 (5)

In other words, we use a backward model for the compu-

tation of the rigid motion of a digital object X. Indeed,

we consider that the object TPoint(X) ⊂ Z2 induced by

the digitized version of the rigid motion T is defined

such that:

p ∈ TPoint(X)⇔ T −1Point(p) ∈ X (6)

2.4 Topology and geometry alterations caused by

digitized rigid motions

This backward model can also be interpreted, in a for-

ward way, as the digitization of a transformed contin-

uous object. Indeed, let us denote by V (X) ⊂ R2 the

continuous object obtained as the union of the closed

Voronoi cells associated to the points of X; in other

words, let us consider the digital object as its set of

pixels. Then, the transformed digital object TPoint(X)

is obtained as the Gauss digitization of the transformed

object resulting from the rigid motion of V (X) by T.

More formally, we have

TPoint(X) = T(V (X)) ∩ Z2 (7)

In other words, the problem of digital rigid motion

can be expressed as a problem of digitization of a con-

tinuous object. However, this continuous object V (X)

has a boundary consisting of pixel edges. In particular,

such boundary is locally non-differentiable, and the ap-

proach proposed by Pavlidis for smooth-boundary ob-

ject is then non-valid.

The issue of topology preservation in such non-diffe-

rentiable case was investigated in [6]. This led to the

definition of a notion of digital regularity2.

Definition 3 (Digital regularity (from [6])) Let

X ⊂ Z2 be a digital object; we assume that X is well-

composed. In addition, we assume that X has no sin-

gular points, i.e. for any p ∈ X (resp. X), there exists

a point q ∈ X (resp. X) that is 4-adjacent to p. We say

that X is digitally regular if for any couple {p, q} ⊂ X
(resp. X) of 4-adjacent points, there exists a 2×2 square

of points {x, y, z, t} = {x, x + (0, 1), x + (1, 0), x + (1, 1)}
such that {p, q} ⊂ {x, y, z, t} ⊆ X (resp. X).

This notion of digital regularity provides a sufficient

condition for guaranteeing that a well-composed digi-

tal object X will not be topologically modified by any

arbitrary rigid motion.

Proposition 3 ([6]) If a well-composed object X ⊂ Z2

is digitally regular, then it is topologically invariant un-

der digitized rigid motions.

However, despite this nice topological property, the

notion of digital regularity does not tackle the issue of

geometry alteration. Indeed, the rigid motion model,

such as defined in Eqs. (5–7), acts on the object in a

pointwise way. It is then unable to preserve the global

coherence of the object boundary, thus leading to a

“noisy” result. This is illustrated in Fig. 5.

2 In [6] this notion was simply called regularity. We rename
it as “digital” to avoid any ambiguity.
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(a) (b)

Fig. 5 Geometry and topology alterations induced by digi-
tized rigid motions. (a) A well-composed object, in grey. The
object is non-digitally regular at the corners of the rectangle,
and at the junction between the disk and the rectangle. (b)
Digital rigid motion TPoint of (a). The digital boundary is
more noisy than the initial object. In addition, we observe
that the 4-connectivity has been lost at the junction between
the disk and the circle, and at the opposite corner of the rect-
angle; this is a side effect of non-digital regularity in these
areas.

2.5 Purpose and contributions

In this manuscript, our purpose is to find a way of per-

forming rigid motions on digital objects, while preserv-

ing not only their topological properties, but also their

geometric properties and more especially the general

shape of their boundaries.

As discussed above, the main cause of boundary al-

teration when performing rigid motion is the fact that

the transformation is computed pointwise; each point

is transformed and then approximated independently

from the others; see Eqs. (5–7).

In order to avoid this effect, we propose to carry

out the rigid motion on a continuous model of the dig-

ital object X. However, by contrast with a trivial pixel

model (see Sec. 2.4) that does not capture efficiently

the boundary shape, we propose to consider a polygo-

nal model of this boundary.

More precisely, our purpose is to define from X ⊂ Z2

a polygon P (X) ⊂ R2 that relevantly represents X. This

means that the Gauss digitization of this polygon must

be the initial object, i.e.

P (X) ∩ Z2 = X (8)

In addition, the boundary of P (X) should fit reasonably

the digital boundary of the digital object X.

Such polygon is a continuous object. It can then be

processed by a continuous rigid motion, as described

in Eq. (1). However, this continuous object is piecewise

affine. Thus, it can also be handled in a discrete way,

via its finite set of vertices.

Once transformed, the polygon has to be embedded

back into Z2. This digitization step is algorithmically

tractable, and can be made without approximation for

polygons whose vertices have integer or rational coor-

dinates.

The principal challenge of this process consists of

working with polygons whose properties authorize the

preservation of topology and geometry of the associated

digital object. Then, we investigate sufficient conditions

on such polygons —and more generally on continuous

objects— for guaranteeing that their Gauss digitization

will lead to coherent digital objects, fairly similar to the

input objects. In other words, we aim at defining an

analogue of the notion of Pavlidis’ r-regularity, in the

case of non-differentiable (including piecewise affine)

objects. This notion will be called quasi-r-regularity.

In particular, two cases are studied. In Sec. 4, we

consider the case of convex digital objects. In such sce-

nario, the associated polygon is the convex hull of the

object, and our purpose is then to retrieve a convex dig-

ital object as output. In Sec. 5, we consider the more

general case of non-necessarily convex digital objects.

In such scenario, various polygonization policies can be

relevantly proposed.

It is important to notice that, in Secs. 4–5, we will

only deal with simply connected objects, i.e. digital ob-

jects that are connected and without holes. The case of

non-connected objects with holes may be handled with-

out much difficulty from this simply connected case.

3 Quasi-r-regularity

We now introduce the notion of quasi-r-regularity. Intu-

itively, a quasi-r-regular object X of R2 presents suffi-

cient conditions for guaranteeing that its connectedness

will not be affected by a Gauss digitization process.

Let us first introduce some notations and few math-

ematical morphology notions. We note Br (resp. Cr) a

close disk (resp. a circle) of R2 of radius r > 0. We note

⊕, 	 and ◦ the classical operators of dilation, erosion

and opening commonly used in mathematical morphol-

ogy [12,18,19]. In particular, ⊕ is the Minkowski addi-

tion, 	 the associated subtraction, and ◦ the composi-

tion of both, that is X ◦ Y = X 	 Y ⊕ Y .

Definition 4 (Quasi-r-regularity) Let r > 0. Let

X ⊂ R2 be a finite, simply connected (i.e. connected

and with no holes) object. If

– X 	Br is non-empty and connected;

– X 	Br is connected;

– X ⊆ X 	Br ⊕ Cr√2; and

– X ⊆ X 	Br ⊕ Cr√2;

we say that X is quasi-r-regular.
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Remark 1 This definition does not require specific prop-

erties on the boundary of X. In particular, it need not

be differentiable.

Remark 2 If X is sufficiently large, and in particular if

at least one disk B
1+

√
2

2

lies in X (i.e. X 	 B
1+

√
2

2

is

a non-empty set), the assertion “X ⊆ X 	 B1 ⊕ C√2”

can be replaced by X ⊆ X 	 B1 ⊕ B√2; indeed, both

are then equivalent in that case. Since X is non-finite,

we can unconditionnally replace “X ⊆ X 	B1 ⊕C√2”

by X ⊆ X 	B1 ⊕B√2.

Remark 3 In order to compare the two notions of quasi-

r-regularity and of Pavlidis’ r-regularity, we rewrite here-

after the definition of r-regularity of a finite, simply

connected object X ⊂ R2: X is r-regular if:

– X 	Br is non-empty and connected;

– X 	Br is connected;

– X = X 	Br ⊕Br; and

– X = X 	Br ⊕Br.

In particular we observe that the principal difference

between both notions is the fact that the matching be-

tween X (resp. X) and its opening need to be perfect

in the case of r-regularity, while a “margin” is autho-

rized in the case of quasi-r-regularity, thus allowing for

non-smooth (for instance, non-differentiable, noisy. . . )

boundary. Examples of quasi-1-regular and non-quasi-

1-regular objects are given in Fig. 6. Perspectives re-

lated to this remark will be evoked in Sec. 7.

Proposition 4 If X is quasi-1-regular, then X = X ∩
Z2 and X = X ∩Z2 are both 4-connected. In particular,

X is then well-composed.

Proof We prove the 4-connectedness of X; the same rea-

sonning holds for X. Let us first prove that (X ◦B1)∩Z2

is 4-connected. Let p and q be two distinct points of

(X ◦B1)∩Z2. Let Bp
1 and Bq

1 be two disks of radius 1,

included in X ◦ B1 and such that p ∈ Bp
1 and q ∈ Bq

1 .

(Such disks exist, from the very definition of opening.)

Let bp and bq be the centers of Bp
1 and Bq

1 , respec-

tively. We have bp, bq ∈ X 	 B1, from the very defini-

tion of erosion. Since X 	B1 is connected in R2; there

exists a continuous path Π from bp to bq in X 	 B1.

Note that for any a disk B1, we always have B1 ∩ Z2

non-empty and 4-connected; in particular it contains

at least two points of Z2. For a value ε > 0 suffi-

ciently small, two disks B1 and B′1 with centres dis-

tant of ε are such that B1 ∩ B′1 ∩ Z2 6= ∅. As a con-

sequence, the union
⋃
b∈Π B1(b) ∩ Z2 (with B1(b) the

disk of center b) is a 4-connected set of Z2. In addi-

tion, we have p, q ∈
⋃
b∈Π B1(b) ∩ Z2. Then, p and q

are 4-connected in (X ◦ B1) ∩ Z2, and it follows that

(X ◦ B1) ∩ Z2 is a 4-connected set. Let us now prove

that any point r ∈ X \ (X ◦B1) is 4-adjacent to a point

of (X ◦B1)∩Z2. Let us consider such point r. We have

r ∈ X ⊆ X 	B1 ⊕C√2. Then, from the very definition

of dilation, there exists b ∈ X 	 B1 such that b is the

centre of a circle C√2(b) of radius
√

2, and r is a point

of this circle. In particular, the distance between b and

r is
√

2. As b is a point of X 	B1, it is also the centre

of a disk B1(b) of radius 1 included in X ◦ B1. Let us

consider the circle C1(r) of radius 1 and centre r. This

circle C1(r) intersects B1(b), and this intersection is a

circular segment of radius 1 and angle π/4, included in

X ◦B1. Then, this segment necessarily contains a point

t ∈ Z2, that lies in (X ◦ B1) ∩ Z2. The points r and t
are 4-adjacent. It follows that X ∩Z2 is 4-connected. �

This notion of quasi-r-regularity will be used in the

next two sections for guaranteeing the preservation of

topological properties digital objects during rigid mo-

tions, via their (continuous) polygonal representation.

4 Rigid motions of digitally convex objects

In this section, we first deal with a specific case of dig-

ital objects, namely the convex ones. For rigid motion

purpose, we build a continuous polygon corresponding

to the convex hull of the input digital object. Then, we

move this continuous polygon, and we finally redigitize

it for retrieving the final transformed digital object. We

show that, by this process, the digital convexity is pre-

served if the convex hull is quasi-1-regular.

4.1 Digital convexity

In the Euclidean space R2, an object X is said to be con-

vex if, for any pair of points x, y ∈ X, the line segment

joining x and y

[x, y] = {λx + (1− λ)y ∈ R2 | 0 ≤ λ ≤ 1} (9)

is included in X. However, this intuitive continuous no-

tion cannot be directly transposed to digital objects of

Z2. Indeed, given a digital object X in Z2, for p, q ∈ X
we generally have [p, q] 6⊂ Z2.

In order to tackle this problem, various extensions

of the notion of convexity have been proposed for Z2.

We can cite, for instance: MP-convexity [20] which is

a straightforward extension of the continuous notion;

S-convexity [21] which uses convex objects in R2 to

determine the convexity of objects in Z2; H-convexity

[22] which is a geometrical version of S-convexity, using

the convex-hull of digital objects; and D-convexity [23]

which is based on the notion of digital line.
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(a) Quasi-1-regular (b) Non-quasi-1-regular (c) Non-quasi-1-regular (d) Non-quasi-1-regular

Fig. 6 Examples of quasi-1-regular (a) and non-quasi-1-regular (b,c,d) objects X: (b) X 6⊆ X 	B1 ⊕C√
2; (c) X 	B1 is not

connected; (d) X 	B1 is not connected. The objects X ⊂ R2 are in blue, the balls B1 are in red, the circles C√
2 are in green,

the erosions X 	B1 are in red and X 	B1 ⊕ C√
2 are in green.

In the case of 4-adjacency modeling of digital ob-

jects, MP- and H-convexities have been proved equiva-

lent [22, Theorem 5]. Similar results under the assump-

tion of 8-adjacency can be found in [24], via the chord

property, which relate the MP-, H- and D-convexities.

Under the condition that X has no isolated point (i.e.

no point adjacent to one other point within X), it was

then proved that X is H-convex iff it is S-convex [22,

Theorem 4]. A more complete description on various

notions of digital convexity can be found in [25, Chap-

ter 9].

In this section, the notion of H-convexity was cho-

sen. This is motivated, on the one hand, by its com-

pliance with the other kinds of convexities in the case

of 4-connected (and, a fortiori, well-composed) digital

objects. On the other hand, the notion of H-convexity

relies on the explicit definition of the convex hull of the

digital object. Such polygonal object provides us with

a continuous model that can be involved in the contin-

uous part of our rigid motion algorithmic process.

We recall hereafter the definition of the convex hull

of a digital object X ⊂ Z2, denoted by Conv(X). Then,

we provide the formal definition of H-convexity.

Conv(X) =

{
x =

|X|∑
i=1

λipi ∈ R2

∣∣∣∣ |X|∑
i=1

λi = 1 (10)

∧ ∀i ∈ [[1, |X|]](λi ≥ 0 ∧ pi ∈ X)

}
Definition 5 (H-convexity [22]) A digital object X ⊂
Z2 is H-convex if

X = Conv(X) ∩ Z2 (11)

i.e. if X is equal to the (re)digitization of its continuous

polygonal convex hull.

It is important to notice that, similarly to continu-

ous convexity, H-convexity remains stable by intersec-

tion, as stated by the following property.

Property 1 Let X and Y be two digital objects in Z2. If

X and Y are H-convex, then X ∩ Y is H-convex.

4.2 Polygonization of H-convex digital objects

The first step of the algorithmic process for computing

the rigid motion of a H-convex digital object X consists

of computing its polygonal convex hull.

If X contains at least three non-colinear points, then

its convex hull Conv(X) is a non-trivial convex polygon

whose vertices are some points of X. As these vertices

are grid points of Z2, the polygon Conv(X) is defined as

the intersection of closed half-planes with integer coef-

ficients

Conv(X) =
⋂

H∈R(X)

H (12)

where R(X) is the set of all closed half-planes that in-

clude X. This set is infinite. However, a finite subset

of R(X) is indeed sufficient for defining Conv(X). Each

closed half-plane H of this subset is defined as

H = {(x, y) ∈ R2 | ax+ by + c ≤ 0} (13)

with a, b, c ∈ Z and gcd(a, b) = 1. Note that the inte-

ger coefficients of H are uniquely obtained by a pair of

consecutive vertices of Conv(X), denoted by u, v ∈ Z2,

which are in the clockwise order, such that

(a, b) =
1

gcd(wx, wy)
(−wy, wx) (14)

c = (a, b) · u (15)

where (wx, wy) = v − u ∈ Z2.
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(a) (b)

Fig. 7 A digital H-convex object X of Z2 (black dots and
grey pixels). (a) The half-plane representation of X, depicted
by the 5 red support lines. The red points/pixels are those
required to define these closed half-spaces. (b) The convex
hull Conv(X) in R2, defined as the polygon whose vertices are
these red points.

Many algorithms can be used to compute the convex

hull of a digital object. In [26], a linear time algorithm

determines whether a given polyomino is convex and,

in that case, it returns its convex-hull. This method

relies on the incremental digital straight line recogni-

tion algorithm [27], and uses the geometrical proper-

ties of leaning points of maximal discrete straight line

segments on the contour. The algorithm scans the con-

tour curve and decomposes it into discrete segments

whose extremities must be leaning points. The tangen-

tial cover of the curve [28] can be used to obtain this

decomposition. Alternatively, an approach presented in

[29] uses tools of combinatorics on words to study con-

tour words: the linear Lyndon factorization algorithm

[30] and the Christoffel words. A linear time algorithm

decides convexity of polyominoes and can also compute

the convex hull of a digital object (it is presented as

a discrete version of the classical Melkman algorithm

[31]).

The half-planes can then be deduced from the con-

secutive vertices of the computed convex hull, from

Eqs. (13–15). An example of convex hull and half-plane

modeling of a H-convex digital object is illustrated in

Fig. 7.

4.3 Convexity-preserving rigid motion

In order to perform rigid motions without any numer-

ical approximation, a reasonable approach consists of

considering only rigid motions with rational parame-

ters. Doing so, only exact computations with integers

can be involved. This does not constitute an applica-

tive restriction, due to the density of “relevant” rational

values within the rotation and translation parameter

space.

Thus, we assume hereafter that all the parameters

of a rigid motion T are rational (see Eq. (1)). More

precisely, on the one hand, the rotation matrix R is

defined as 1
r

(
p −q
q p

)
where p, q, r ∈ Z constitute a

Pythagorean triple, i.e. p2+q2 = r2, r 6= 0. On the other

hand, the translation vector is defined as (tx, ty)t ∈ Q2.

This assumption is fair, as we can always find rational

parameter values sufficiently close to any real values

[32] for defining such a Pythagorean triple.

A half-plane H, as defined in Eq. (13), is trans-

formed by such (rational) rigid motion T as follows

T(H) = {(x, y) ∈ R2 | αx+ βy + γ ≤ 0} (16)

where α, β, γ ∈ Q are given by (α β)t = R(a b)t and

γ = c + αtx + βty. This leads to a rational half-plane,

which can be easily rewritten as an integer half-plane

in the form of Eq. (13).

Since a H-convex digital object X is represented by

a finite set of digital half-planes, we can define the rigid

motion TConv of X on Z2 via its continuous polygonal

convex hull as follows

TConv(X) = T(Conv(X))∩Z2 = T

( ⋂
H∈R(X)

H

)
∩Z2 (17)

where R(X) is the set of all half-planes including X.

This constitutes an alternative to the standard point-

wise rigid motion defined in Eq. (5).

But, we have

T

( ⋂
H∈R(X)

H

)
∩ Z2 =

( ⋂
H∈R(X)

T(H)

)
∩ Z2

=
⋂

H∈R(X)

(T(H) ∩ Z2) (18)

The digitization of any continuous half-space of R2 is H-

convex. Then, from Eqs. (17–18), TConv(X) is expressed

as the intersection of a finite number of H-convex digital

objects. The following proposition is then a corollary of

Property 1.

Proposition 5 Let X be a digital object of Z2. Let TConv
be the polygon-based rigid motion induced by a rigid mo-

tion T with rational parameters. If X is H-convex, then

TConv(X) is H-convex.

Remark 4 The polygon corresponding to the convex

hull of TConv(X) is not equal, in general, to the trans-

formed continuous polygon corresponding to the convex

hull of X. However, we have the following inclusion re-

lation

Conv(TConv(X)) ⊆ T(Conv(X)) (19)
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Fig. 8 A digital object X that is H-convex, but not con-
nected. This is due, here, to the acute angle at the highest
vertex of the convex hull Conv(X) that allows the induced
polygon to “pass between” two 4-adjacent points of the back-
ground of X.

First, it means that the cardinality of TConv(X) is lower

(often strictly) than that of X. In other words, TConv
is a decreasing operator with respect to the cardinal-

ity of the input digital object. A straightforward conse-

quence is that TConv is not bijective, in general. Second,

it means that the polygons of the two convex hulls of the

input and output digital objects may be distinct, with

respect to their number and size of edges, and angles at

vertices. However, the convexity of the objects is pre-

served, which was the fundamental property to satisfy.

These facts are experimentally observed in Sec. 6.

4.4 Rigid motions and topological aspects of convexity

In the previous subsections, we proposed an algorith-

mic scheme for performing rigid motions on H-convex

digital objects, while preserving their H-convexity. In

R2, the continuous definition of convexity intrinsically

implies connectedness. By contrast, in Z2 the notion

of H-convexity (such as various other notions of digital

convexity) does not always offer guarantees of connect-

edness, e.g. with respect to 4- and 8-adjacencies.

In order to illustrate that fact, let us consider the

example of Fig. 8. The digital object X, composed of 8

points/pixels, is H-convex. Indeed, its convex hull con-

tains only digital points that belong to X. However, X is

not connected (neither with 4- nor 8-adjacencies). Such

phenomenon is mainly caused by angular and/or metric

factors: whenever an angle of the convex hull polygon

is too acute, and/or when an edge is too short, such

disconnections may happen.

Then, in addition to providing geometry guarantees

of convexity —via the H-convexity of digital objects—

when performing rigid transformations of a digital ob-

ject, it is desirable to also provide topology guarantees,

and more precisely connectedness guarantees.

To reach that goal, we use the notion of quasi-r-

regularity introduced in Sec. 3. This additional notion

will provide us with sufficient conditions for ensuring

that a digital H-convex object will remain not only H-

convex but also connected after any rigid motion.

In particular, the next proposition is a direct corol-

lary of Propositions 4 and 5.

Proposition 6 Let X ⊂ Z2 be a H-convex digital ob-

ject. If Conv(X) is quasi-1-regular, then TConv(X) is H-

convex, 4-connected and well-composed.

Remark 5 If Conv(X) is quasi-1-regular, then the initial

object X is also 4-connected and well-composed.

5 Rigid motions of general digital objects

In this section, we now deal with rigid motions of digital

objects without convexity hypothesis.

5.1 Polygonization of a digital object

There exist various methods for polygonizing a digital

object. In the field of digital geometry, numerous ap-

proaches used the contour curves extracted from the

digital objects; each method computes a polygonal rep-

resentation of the digital object with particular prop-

erties. In [33,34], invertible methods allow to compute

Euclidean polygons whose redigitization is equal to the

original discrete boundary. These methods use the Vit-

tone’s algorithm [35] in the preimage space for straight

line recognition. In [36–39] the arithmetical recognition

algorithm [27] is used to decompose a discrete contour

and deduce a polygonal representation. These methods

rely on the tangential cover of the contour [28], com-

posed of the sequence of its maximal discrete straight

segments. It was proved in [36] that all polygonal rep-

resentations of the contour can be deduced from its

tangential cover, leading to a linear algorithm which

computes the polygon with minimal integral summed

squared error. In [37–39], the goal was different. It con-

sisted of determining a reversible polygon that faith-

fully represents the convex and concave parts of the

boundary of a digital object. The polygonization method

proposed in [40,41] also exploits the idea of maximal

straight segment primitives. It allows to identify the

characteristic points on a contour, called dominant points,

and to build a polygon representing the given contour.

Another technique presented in [42] is the curve decom-

position. It uses the analytical primitives, called digital

level layers, to decompose a given contour and to obtain

an analytical representation. Another algorithm is pro-

posed in [43] to compute the polygonal simplification

of a curve such that the Fréchet distance between the

simplified polygon and the original curve is lower than

a given error.
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It should be mentioned that, for a given digital ob-

ject, different results can be obtained from these various

polygonization techniques. In other words, the polyg-

onal representation of a digital object is not unique.

However, the crucial property to be satisfied is that the

polygon P (X) computed for a digital object X has to be

coherent with respect to redigitization, i.e. P (X)∩Z2 =

X. A second important property, in our framework of

discrete geometry and exact calculus, is that the ver-

tices of P (X) have integer or rational coordinates. Some

other relevant, but sometimes antagonistic, properties

are discussed in Sec. 5.3.

Our chosen polygonization policy will be described

in the experimental section (Sec. 6). In particular, it

guarantees the two above properties and polygon ver-

tices have integer coordinates.

5.2 Rigid motion of a polygon

As P (X) may be non-convex, we cannot use half-planes

representation, as it was done in Sec. 4.2 for convex

polygons. Here, we use a standard vertex representa-

tion, by modeling the polygon via the sequence of suc-

cessive vertices of its boundary.

Note that the vertices of P (X) are integer points,

and those of T(P (X)) are rational points, since the rigid

motion T is given by a rational matrix and a rational

translation vector (see Sec. 4.3).

Then, for each vertex of the polygon P (X), we sim-

ply apply the rigid motion T (see Eq. (1)) and preserve

the order of the vertex sequence.

5.3 Discretization of polygons and geometry /

topology preservation

Once the polygon T(P (X)) has been computed, the re-

sulting object, noted TPoly(X) can be deduced. Simi-

larly to the case of H-convex digital objects (Eq. (17)),

this is done by embedding T(P (X)) in Z2 via a Gauss

digitization

TPoly(X) = T(P (X)) ∩ Z2 (20)

Various ways exist for carrying out this digitization in

an exact way. For instance, it is possible to decom-

pose T(P (X)) into a partition of triangles whose ver-

tices are (rational coordinate) vertices of the boundary

of T(P (X)). Each such triangle being defined as a con-

vex region modeled by three half-planes with rational

parameters, the points of Z2 contained herein can be

determined without numerical error.

In order to ensure the connectedness preservation of

X, we require, as for the H-convex case, that the digital

object be quasi-1-regular.

Proposition 7 Let X ⊂ Z2 be a digital object. Let

P (X) ⊂ R2 be a polygon such that P (X) ∩ Z2 = X.
If P (X) is quasi-1-regular, then TPoly(X) is 4-connected

and well-composed.

Remark 6 If P (X) is quasi-1-regular, then the initial

object X is also 4-connected and well-composed. Beyond

these topological guarantees, the quasi-1-regularity also

provides geometry guarantees. Indeed, the presence of

discrete points within each disk B1 located either in

the opening P (X) ◦ B1 or P (X) ◦ B1, combined to the

fact that the “oulier” discrete points are located at a

distance not greater than
√

2− 1 < 0, 5 (i.e. lower than

half a pixel length) from these openings, avoids noisy

effects that may be caused by standard pointwise rigid

motions TPoint (see Sec. 2.4).

As stated above, the polygon P (X) can be defined

by following various policies. Then, there exist many

(actually an infinite number of) polygons whose redig-

itization leads to X. In particular, it may happen that

P (X) is not quasi-1-regular while X and TPoly(X) are

indeed 4-connected and well-composed.

This statement emphasizes the importance of choos-

ing wisely a polygonization policy. In this context, var-

ious properties may be relevantly targeted.

A first property is related to the preservation of

area. Indeed, due to the digitization procedure of the

polygon, carried out by a regular sampling with respect

to Z2, it may be useful that P (X) has an area in R2

equal to the cardinal |X|. This is justified by the fact

that each pixel (i.e. Voronoi cell) of a point of Z2 as an

area of 1 in R2.

A second property is related to the positioning of

P (X) with respect to X. More precisely, it may be rel-

evant that the barycentre of both P (X) and X be the

same. Otherwise, the shift between both may statisti-

cally induce a translation bias in the rigid motion result.

A third property is to “fit at best” the polygon P (X)

with a differentiable boundary continuous object, i.e.

to minimize the size of the regions located inside P (X)

(resp. P (X)) but outside of P (X)◦B1 (resp. P (X)◦B1).

There is no unique and good answer to this question.

Indeed, the choice actually depends, on the one hand,

on the hypotheses about the semantics of the digital

object (is it a digital model of an underlying differen-

tiable object or a non-differentiable one? is it a true

discrete set, not related to a continuous object? etc.).

On the other hand, making a polygonal object minimize

the areas lying outside its opening (and the opening of
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#Points=316

θ = π
5

θ = 2π
5

θ = 3π
5

θ = 4π
5

θ = π

TPoint(X)

#Points=315 #Points=311 #Points=319 #Points=320 #Points=318

TConv(X)

#Points=282 #Points=258 #Points=215 #Points=174 #Points=148

TPoly(X)

#Points=282 #Points=288 #Points=291 #Points=288 #Points=316

Table 1 Experiments on geometry and topology preservation on a disk of radius 10, for rotations of angle θ (the rotation
centre is the centre of the disk). See Sec. 6.1.

its complement) generally requires to consider angles

at vertices that tend toward π, and edges whose length

tends toward 0. Such polygons may present a higher

space cost (and then, time cost, when processed). In

addition, the relevance of their shape may be question-

able, since “short” continuous edges may be weakly re-

lated to the digital line segments intrinsically modeling

a digital object X.

6 Experiments

In this section, we present some experimental results

obtained with the proposed method on different digital

objects. The comparison, in terms of topology and ge-

ometry, between three models of rigid motion on convex

objects is first discussed. Then, numerical experiments

are performed on non-convex objects to evaluate, more

generally, the effect of rigid motions on boundaries of

digital objects.

It should be mentioned that the digital objects used

in these experiments have their associated polygons be-

ing quasi-1-regular. For an efficient computation, we use

the discrete version of the Melkman algorithm [31] to

compute the convex hull of H-convex objects. This algo-

rithm has a linear time complexity with respect to the

number of digital points. Concerning the polygoniza-

tion, we apply the method of dominant point detection

proposed in [40,41] with adaptation in order to obtain

a result satisfying the property P (X) ∩ Z2 = X. More

precisely, from the polygon P of dominant points, we

run through the contour points of X between two con-

secutive dominant points and select those that enclose

all contour points being outside of P . It is shown in

[27] that dominant point detection algorithm can be

achieved with a linear time complexity with respect to

the number of contour points. Furthermore, the algo-

rithm involves exact computation with integers and the

obtained polygon has integer vertices.

6.1 Topology and geometry preservation of convex

digital objects under rotations

We carried out experiments on two H-convex digital ob-

jects, namely a disk of radius 10 and a square of size

20 × 20, in order to provide a first assessment of the

performance of rigid motions using three transforma-

tion models: pointwise (TPoint, see Sec. 2.3); based on
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#Points=400

θ = π
5

θ = 2π
5

θ = 3π
5

θ = 4π
5

θ = π

TPoint(X)

#Points=400 #Points=399 #Points=403 #Points=401 #Points=401

TConv(X)

#Points=320 #Points=308 #Points=268 #Points=236 #Points=200

TPoly(X)

#Points=320 #Points=328 #Points=328 #Points=320 #Points=400

Table 2 Experiments on geometry and topology preservation on a square of size 20×20, for rotations of angle θ (the rotation
centre is the barycentre of the square). See Sec. 6.1.

convex hull (TConv, see Sec. 4.3); and based on polygons

(TPoly, see Sec. 5.2).

The first of these experiments was conducted un-

der a sequence of successive rotations, to evaluate the

topology and geometry alterations accumulated in the

transformed images. The experiment is as follows: a ro-

tation is applied on the input image; then the trans-

formed image is used as input for the next rotation,

and so on. Tables 1 and 2 provide the visual results of

rotated images by the three transformation models on

the disk and the square, respectively.

We observe that the rigid motions by TPoint alter

the boundary of the objects. They do not only mod-

ify their topology but also their geometry. Indeed, the

initial disk and square objects are well-composed and

H-convex; however the transformed objects are not. By

contrast, the rigid motions by TConv allow us to pre-

serve both topology and geometry properties. However,

as mentioned in Sec. 4.3, TConv is a decreasing operator

with respect to the cardinality of the input object (see

Remark 4). The rigid motions by TPoly avoid this effect

since TPoly is based on a polygon that fits the size of

the digital object in a better way than the convex hull.

6.2 Quantitative evaluation of transformations on

convex digital objects

Now, we aim to quantify experimentally the accuracy

and stability of the three models of rigid motions on
convex digital objects. More precisely, we observe two

measures: (i) the area (i.e. the number of digital points)

of the transformed objects; and (ii) the perimeter of the

polygons extracted from these transformed objects.

Two series of experiments are performed: the first

with rotations for angles θ varying from 0 to 2π; the

second with rigid motions randomly generated.

Figs. 9 and 10 report some quantitative comparisons

between rotations by TPoint, TConv and TPoly on the

input images given in Tables 1 and 2. We can see that

TPoly preserves better the periodicity under rotations

compared to TPoint and TConv.
Figs. 11 and 12 show results under rigid motions.

These rigid motions are generated randomly with rota-

tion angles θ ∈ [0, 2π) and translations a, b ∈ [0, 1).

Since TPoint may disturbe the digital boundary, the

perimeter tends to change at each iteration. As TConv is

a decreasing operator, the area of the transformed ob-

jects is reduced at each iteration. By contrast, TPoly
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Fig. 9 Area (left) and perimeter (right) variations induced by successive rotations for the disk of radius 10 of Table 1. See
Sec. 6.2.
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Fig. 10 Area (left) and perimeter (right) variations induced by successive rotations for the square of size 20× 20 of Table 2.
See Sec. 6.2.

better preserves both the area and perimeter of the

transformed objects.

6.3 Quantitative evaluation of transformations on

non-convex digital objects

In these last experiments, we perform rigid motions on

non-convex objects (see Fig. 13). Again, we evaluate

the proposed transformation model TPoly with respect

to the following measures: (i) the area (i.e. the num-

ber of digital points in the transformed object); and

(ii) the perimeter of the polygons extracted from these

transformed objects.

The results are shown in Fig. 14, for successive rigid

motions TPoly generated randomly with rotation angles

θ ∈ [0, 2π) and translations a, b ∈ [0, 1). We can observe

that TPoly as a stable behaviour with respect to the

considered geometry measures.

7 Conclusion

In this article, we proposed an algorithmic process for

performing rigid motions on digital objects, i.e. finite
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Fig. 11 Area (left) and perimeter (right) variations induced by successive rigid motions for the disk of radius 10 of Table 1.
See Sec. 6.2.
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Fig. 12 Area (left) and perimeter (right) variations induced by successive rigid motions for the square of size 20 × 20 of
Table 2. See Sec. 6.2.

subsets of Z2, while preserving their global shape. This

shape preservation was expressed in terms of geometry,

but also in terms of topology, since the object should

not be erroneously disconnected due to the discrete

structure of Z2. In order to tackle these issues, our con-

tributions were twofold. From a methodological point

of view, we proposed to consider an intermediate con-

tinuous model of the digital object, namely a polygo-

nal model. Such polygon is continuous and can then be

processed by standard continuous transformations; it

also remains discrete, and can then be processed with-

out numerical error. From a theoretical point of view,

we proposed a new notion of quasi-r-regularity that

provides sufficient conditions for guaranteeing topolog-

ical preservation when digitizing a continuous object.

This notion of quasi-r-regularity was indeed required

to correctly handle the mandatory redigitization step

induced by the use of an intermediate continuous polyg-

onal model.

This work opens the way to various perspectives.

First we will investigate how this rigid motion scheme

can be extended to the 3D case, i.e. to digital objects

defined in Z3. In addition, we will describe how to con-

sider not only simply connected objects, but more gen-

erally arbitrary-topology objects (this is tractable in Z2,

but less simple in Z3). Second, from a practical point of
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(a) X1 (b) X2 (c) X3

Fig. 13 Non-convex digital objects used as input for the experiments of Sec. 6.3.
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Fig. 14 Area (left) and perimeter (right) evolution of the three digital objects X1, X2 and X3 (see Fig. 13), under successive
rigid motions TPoly. See Sec. 6.3.

view, we will investigate the relevance of different poly-

gonization approaches, in order to identfy those that

are the best fitted to the proposed transformation ap-

proach. We will also investigate digital objects that cor-

respond to limit cases, just beyond the domain of valid-

ity of quasi-1-regularity; indeed, some of these objects

(often thin, or small-sized) may preserve some topo-

logical properties, although not being quasi-1-regular.

Third, we will explore more deeply the notions of regu-

larity. In particular, we will aim at proposing a notion

that may encompass both the notions of Pavlidis’ r-

regularity and of quasi-r-regularity. Such notion could

allow us to better understand —and handle— the in-

trinsic mechanisms of topology-preserving digitization,

in various regular grids, adjacency models and space

dimensions.
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