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Abstract Connected morphological operators based on

hierarchical image models have been increasingly con-

sidered to provide efficient image segmentation and fil-

tering tools in various application fields, e.g. (bio)medical

imaging, astronomy or satellite imaging. Among hier-

archical image models, component-trees represent the

structure of grey-level images by considering their nes-

ted binary level-sets obtained from successive thresholds.

Recently, a new notion of component-graph was intro-

duced to extend the component-tree to model any grey-

level or multivalued images. The notion of shaping was

also recently introduced as a way to improve the anti-

extensive filtering of grey-level images by considering

a two-layer component-tree for grey-level image pro-

cessing. In this article, we study how component-graphs

(that extend the component-tree from a spectral point

of view) and shapings (that extends the component-

tree from a conceptual point of view) can be associated

for the effective processing of multivalued images. We

provide structural and algorithmic developments. The

relevance and usefulness of such association are illus-
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trated by applicative examples. This study opens the

way to new paradigms for connected filtering based on

hierarchies.
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1 Introduction

Mathematical morphology is a well-known non-linear

theory of image processing [1,2]. It was first defined

on binary images, and then extended to the grey-level

case [3]. Its extension to multivalued (e.g., colour, multis-

pectral, label) images is an ongoing, important task,

motivated by potential applications in multiple areas,

such as medical imaging, remote sensing, astronomy or

computer vision. Indeed, with the evolution of imaging

technology, an increasing number of image modalities

have become available: colour photography is an obvi-

ous example. In medical imaging, distinct image modal-

ities are used in combination to provide complementary

characteristics in the body; in remote sensing, sensors

are used to generate a number of multispectral bands [4,

5]. There are many others.

In the framework of mathematical morphology, the

basic algebraic structure is the complete lattice [6], namely

a non-empty set of ordered elements, whose every non-

empty subset admits an infimum and a supremum. This

means that the definition of morphological operators

requires the definition of an ordering relation between

points to be processed. In the case of grey-level (resp.

binary) images, the complete lattice is the partially

ordered set of functions on R or Z (resp. on {0, 1}),
equipped with the point-wise partial ordering induced
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from the canonical total order on the reals or integers.

In the case for multivalued images, values are only ca-

nonically equipped with a partial ordering due to their

vectorial nature. While this does not prevent the defini-

tion of a mathematically correct complete lattice struc-

ture, in applications this can create difficulties [7].

Several contributions have been devoted to this spe-

cific problem. A recent review can be found in [8]. Ex-

cept in a small number of works (for instance in the

case of label spaces [9,10]), most contributions intend

to define relevant total orderings on multivalued spaces

as originally described in [11]. In particular, two main

ways were explored: splitting the value space into sev-

eral totally ordered ones (marginal processing), or de-

fining ad hoc total order relations [7], often guided by

semantic considerations (vectorial processing), in par-

ticular for handling colour images [12,13,14] and less

frequently multi- / hyperspectral images [15]: marginal

ordering, conditional ordering (C-ordering, widely stud-

ied in the framework of colour morphology [7], including

lexicographic ordering [16,14]), reduced ordering (R-

ordering) [4], partial ordering (P-ordering), and more

recently a combination of several of these orderings [12].

These approaches present the advantage of embed-

ding multivalued images into models that simplify pro-

cessing, similarly to grey-level images, in particular re-

ducing algorithmic complexity. However, these simpli-

fications of multivalued spaces potentially induce a loss

of information intrinsically carried by these – more com-

plex but richer – partially ordered value sets.

In this article – which is an improved version of

the conference paper [17] – our purpose is to propose

a new way to efficiently handle multivalued images in

the framework of connected filtering. Our approach re-

lies on the paradigm of connectivity, which models the

spatial / structural links between some elementary pat-

terns in an image. Intuitively (and informally), the no-

tion of connectivity on a set Γ allows us to decide

whether it is possible to move from a point (or a subset)

of Γ to another, while always remaining in Γ . If this

property is verified, we say that Γ is connected. Sev-

eral (similar, and sometimes equivalent [18]) ways can

be considered to define connectivity: from the stand-

ard notions of algebraic topology; from the notions of

paths in digital / discrete spaces [19,20,21]; or by us-

ing morphological definitions of connectivity [6,22,23,

24,25].

In mathematical morphology, the notion of connectiv-

ity led to define many hierarchical data-structures, de-

signed to model simultaneously the spatial and spectral

information of an image. These data-structures induced

various algorithmic approaches for image processing, ly-

ing in the family of connected operators. A brief state of

the art on the notion of component-tree, which is the

most popular morphological hierarchy data-structure,

such as previous works about the hierarchical handling

of multivalued images, are proposed in Section 2, in

order to provide the context of our contribution. The

formalism of component-tree and its extension to mul-

tivalued imaging, namely component-graphs, is then re-

called in Section 3.

Our main contribution is proposed in Sections 4 and

5, where we describe how the notion of shaping, which

consists of composing several component-trees at dif-

ferent semantic levels, can be extended to handle both

component-trees and component-graphs, thus allowing

the processing of multivalued images via a hierarchical

approach. In particular, we provide in Section 4 a con-

ceptual description of the extension of the classical anti-

extensive filtering paradigm based on component-trees;

while we provide a complete algorithmic description

of the way to actually implement this filtering in the

case of multivalued images taking their values in mult-

iband spaces. Some application examples, provided in

Section 6, illustrate the methodological interest of our

hierarchical approach for handling multivalued images,

via component-graphs and shapings.

2 Related works

2.1 Component-trees

The component-tree is a compact, information preserving,

hierarchical representation of grey-level images. Indu-

ced by the inclusion relation between the binary com-

ponents of successive level-sets obtained at different

thresholdings, this structure models image characterist-

ics in a mixed spectral-spatial space. By construction,

the component-tree is well-adapted for the development

of image processing and analysis methods, based on to-

pology properties (connectivity), and aiming at extract-

ing structures of interest with specific intensities (global

/ local extremal values).

From a methodological point of view, the efficiency

of the component-tree relies on its low computation

cost. Several efficient algorithms have been proposed

for building the component-trees in quasi-linear time, in

sequential [26,27,28] and in distributed ways [29]. A re-

cent survey on the different computation algorithms can

be found in [30]. This capacity to efficiently compute

component-trees opens the way to the development of

techniques, performed on an image via its component

tree, that also present low algorithmic complexity.

As basic operations on tree nodes can be interpreted

in terms of processing on the image, component-trees

have been involved in several applications. Practically,
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the proposed techniques have been designed to detect

structures of interest using information computed on

the nodes. In particular, filtering and segmentation [26,

31,25] can be easily carried out by simply selecting

nodes, leading to connected operators. The versatility

of the component-tree structure has also led to many

other applications, such as image retrieval [32], classi-

fication [33], interactive visualisation [34], or document

binarisation [35].

The success of these methods relies on the develop-

ment of efficient algorithmic processes for node selec-

tion. Two main approaches were developed to cope with

filtering and segmentation issues. The first approach

consists of minimizing an energy globally defined over

the tree nodes, leading to define an optimal cut [36],

that can be interpreted as a segmentation of the un-

derlying image. These approaches are often formulated

as optimization problems, where the space of solutions

is composed of partitions from the hierarchy. This is

the basis for carrying interactive segmentation [37]. Re-

cently, the notion of braids of partitions [38] was in-

troduced as a general framework for the optimization

of segmentations based on hierarchical partitions. The

second approach consists of determining locally the nodes

that should be preserved or discarded, based on attrib-

ute values [39] stored at each node of the tree. The

computed attributes are chosen according to the ap-

plication context. This approach is formalized as an

anti-extensive filtering framework [26,31], recalled in

Section 4, and constitutes the methodological basis of

the present work. The subtree obtained by pruning the

component-tree of the image, with respect to these at-

tributes, can then be used to reconstruct a binary (seg-

mentation) or grey-level (filtering) result.

The main two limitations of the component-tree are

(1) structural: it is heavily constrained by the topo-

logical structure of the image; and (2) spectral: it is

limited to grey-level (i.e., totally ordered) value im-

ages. Structural extensions of the component-tree have

been proposed in [40] to deal with ordered families of

connectivities, leading to component-hypertrees, and in

[41] to handle images defined as valued directed graphs,

leading to directed acyclic graphs (DAGs) structured

over a tree. Spectral extensions were first considered by

exploring marginal approaches for colour image hand-

ling [42]. Then, actual extensions of component-trees

to partially-ordered value images were pioneered in [43]

and further formalized in [44]. Except in specific cases

where the values are themselves hierarchically organ-

ized [45], the induced data-structure, namely a compo-

nent-graph, is no longer a tree, but a DAG. The anti-

extensive framework proposed for component-tree fil-

tering remains valid in theory, but algorithmic issues

have to be dealt with, both for node selection and im-

age reconstruction [46,47].

2.2 Hierarchical approaches for multivalued image

processing

Connected operators are effective image processing tools

in the framework of mathematical morphology. They

were intensively studied for the last twenty years [1,48,

26,49]. In this context, operators based on hierarchical

image models (i.e., trees) have been the object of sev-

eral structural, algorithmic and methodological devel-

opments [50], in order to tackle specific issues associated

to various application fields.

When dealing with the extension of connected op-

erators based on hierarchical image models1 to multi-

valued image, two major approaches are generally con-

sidered: hierarchies of segmentations and morphological

trees.

The first relies on hierarchical clustering. Indeed,

hierarchical segmentation trees aim at either growing

and merging regions in a bottom-up or splitting re-

gions in a top-down fashion. (See [52] for a recent survey

on hierarchical segmentations in the graph framework,

as used in image processing.) The advantage of these

methods when dealing with multivalued images is that

they do not directly consider image levels but a simpli-

fying metric during their construction process, i.e., they

only rely on a distance function / norm between im-

age values (e.g., a saliency measure for hierarchical wa-

tersheds [53], a merging order (region adjacency graph

merging using techniques such as the irregular pyramid

[54], constrained connectivity [55]) for partition trees

(binary partition trees [56], α-trees [57], quadtrees [58]),

or via hyperconnections [59]). The use of these inter-

mediate functions “hides” the complexity of the space,

but necessarily induces a bias in the constructed data-

structure.

On the other hand, morphological trees focus on the

inclusion relationship between components. These com-

ponents result from thresholding operations on the im-

age at all level. A total order on the image levels ensure

the inclusion of the level sets. A total ordering is then

required to compute this thresholding decomposition-

based trees. Unfortunately, and contrary to grey-level

images, the spaces in which multivalued images take

their values are not canonically equipped with total or-

ders. This is problematic as the hierarchy in the tree

(such as component-tree-based processing) is driven by

the total order of the image values. Then, building such

1 The links that exist among most of the presented hier-
archies are described in [51].
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trees requires an ordering on intensities that has to

be decided upon. Hence, morphological trees consist

of simplifying the multivalued space of images a pri-

ori to retrieve tractable totally ordered values, e.g., by

marginal or vectorial policies [5]. This strategy makes

it possible to reuse morphological trees specifically de-

signed for grey-level images, such as the component-tree

[26] and its auto-dual version, the tree of shapes [60,

61]. However, this simplification of multivalued spaces

induces a loss of information.

To cope with this problem, efforts have been con-

ducted to extend these data-structures to more com-

plex spaces. Nevertheless, preserving a tree structure

still requires a final simplification [62], or restrictive

constraints on the value space [45]. More specifically, for

the extension of the tree of shapes to multivalued image,

instead of imposing a total ordering on values, in [63],

authors marginally compute the tree of shapes for each

colour channel, and merge them into a single tree. The

merging decision does not rely on values anymore but

on properties computed in a shape space, potentially in-

ducing a loss of coherence by merging unrelated shapes

together. In [62], the inclusion relationship between the

marginally computed tree of shapes enables the con-

struction of a graph of shapes in a most efficient way.

Since a natural total order on multivariate data is usu-

ally not obvious, some approaches try to deal with the

inherent natural partial order. Consequently, a true ex-

tension of such hierarchies to multivalued spaces neces-

sarily leads to a data-structures that is no longer a tree,

but a directed acyclic graph. This is in particular the

case for the notion of component-graph [44], that ex-

tends the component-tree. This approach uses directly

the partial ordering of values and manipulates the un-

derlying graph structure. The higher richness and struc-

tural complexity of the component-graph, with respect

to the component-tree, induces algorithmic issues when

considering the classical anti-extensive filtering process

developed in [26,31]. This is in particular the case for

handling spatial complexity [46], pruning policies and

image reconstruction [47].

Recently, a new notion of shaping [64] was intro-

duced as an efficient way to improve the framework of

anti-extensive filtering of [26,31], by considering a two-

layer component-tree for grey-level image processing

[64,65]. In [17], we proposed to associate the notions

of component-graphs and shaping for the effective pro-

cessing of multivalued images, opening the way to new

paradigms for connected filtering based on hierarchical

representations.

3 Structural background notions

This article is set in the framework of vertex-valued

graphs. We now recall some basic notions and nota-

tions on graphs. They will allow us to describe the

component-tree and the component-graph in a simple

and unified formalism, and to discuss, in Sections 4 and

5, how to carry out shaping on component-graphs to

handle multivalued images. For the sake of clarity, Sec-

tion 3 is written in a self-contained pedagogical way.

3.1 Order relations

Let Γ be a finite set of elements. Let ≤ be a (binary)

relation on Γ . We say that ≤ is an order relation (and

that (Γ,≤) is an ordered set) if ∀x, y, z, the relation ≤
satisfies the following conditions:

(i) x ≤ x (reflexivity);

(ii) (x ≤ y ∧ y ≤ z)⇒ (x ≤ z) (transitivity); and

(iii) (x ≤ y ∧ y ≤ x)⇒ (x = y) (antisymmetry).

Moreover, we say that ≤ is a total (resp. partial) order

relation (and that (Γ,≤) is a totally (resp. partially)

ordered set), if ≤ is total (resp. partial) (i.e., if ∀x, y ∈
Γ, (x ≤ y ∨ y ≤ x) (resp. if ∃x, y ∈ Γ, (x 6≤ y ∧ y 6≤ x))).

The word “partial” indicates that there is no guarantee

that two elements can always be compared

A partially ordered set can be modelled via its Hasse

diagram, which depicts the ordering relation. More pre-

cisely, the Hasse diagram of an ordered set (Γ,≤) is its

transitive reduction, i.e., the strictly ordered set (Γ,≺)

such that for all x, y ∈ Γ , we have x ≺ y iff y covers x,

i.e. x < y and there is no z ∈ Γ such that x < z < y.

In the sequel, it is drawn so that elements are placed

higher than (i.e., above) the elements they cover. The

resulting diagram provides a compact and lossless de-

scription of the order relation ≤.

3.2 Vertex-valued graphs

We define a graph G as a couple (Γ,a), where Γ is a

nonempty finite set, and a is a binary relation on Γ .

The elements of Γ are called vertices or points. If two

vertices x, y of Γ satisfy x a y, we say that they are

adjacent ; any such couple (x, y) is called an edge. A

subgraph G′ of G is a graph (Γ ′,a) such that Γ ′ is a

subset of Γ , equipped with the restriction of a to Γ ′.

In this work, we consider irreflexive graphs, i.e., we

never have x a x. These irreflexive graphs are further-

more non-directed graphs, i.e., x a y ⇔ y a x; the

edges (x, y) and (y, x) are then the same.
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In G, a path between two vertices x and y is defined

as a sequence of distinct vertices of G from x to y such

that any two successive vertices are adjacent. In this

case, we say that x and y are connected in G. If this path

exists and is unique for any two vertices of the graph,

then the graph is a tree. We say that G is connected

if any two vertices of G are connected. The connected

components of G are the maximal sets of vertices that

can be linked by a path. The set of all these connected

components is noted C[G]; it is a partition of Γ . Recall

that a partition of Γ is a set P of nonempty disjoint

subsets of Γ whose union is Γ i.e., ∀X,Y ∈ P, X ∩Y =

∅ ifX 6= Y and ∪ {X ∈ P} = Γ .

Let F : Γ → V be a function such that V is a

non empty finite set canonically equipped with an order

relation ≤. The triple (G,V,F) is called a vertex-valued

graph (or valued graph, for brief). We now define the

notions of component-tree and component-graph, based

on this notion of valued graph.

3.3 Component-tree [26]

Let (G,V,F) be a valued graph. In the sequel of this

section, we assume that ≤ is a total order on V, and

that G is connected, i.e., C[G] = {Γ} contains a unique

connected component. Since Γ is finite, so is the set

F(Γ ) = {F(x) | x ∈ Γ} ⊆ V. Without loss of general-

ity, we can assume that V = F(Γ ) and is then finite. In

particular, (V,≤) admits a minimum, noted ⊥.

For any v ∈ V, we define the threshold set Γv by

Γv = {x ∈ Γ | v ≤ F(x)} (1)

Any such threshold set Γv induces a subgraph Gv =

(Γv,a) of G. For any v, v′ ∈ V we have v ≤ v′ ⇔ Γv′ ⊆
Γv. In addition, for any connected component Xv′ of

C[Gv′ ], there exists a (unique) connected component Xv

of C[Gv] such that Xv′ ⊆ Xv.

We note Ψ the set of all the connected components

of the subgraphs Gv obtained by successive threshold-

ings of G

Ψ =
⋃
v∈V
C[Gv] (2)

The component-tree of (G,V,F), noted CT, is the

Hasse diagram of the partially ordered set (Ψ,⊆). We

can observe that X ∈ Ψ can correspond to several con-

nected components in distinct threshold sets Γv ⊆ Γ for

successive values v ∈ V. Each X ∈ Ψ is intrinsically as-

sociated in CT to a value l(X), defined as the maximal

value of V which generates this connected component

by thresholding of F .

(a) (G,V,F)

A

B

C D,E

K

L M N

F,G H,I,J

O,P

(b) CT

A

(c) Γ0

D

H

B

D

(d) Γ1

D

I

C

F

E

(e) Γ2

J

C

G K

O

(f) Γ3

N

C

L M

P

(g) Γ4

Fig. 1 (a) A grey-level image, viewed as a valued graph
(G,V,F), where V = [[0, 4]] ⊂ Z (from 0 in black; to 4 in
white) equipped with the canonical order relation ≤. (c–g)
Thresholded sets Γv ⊆ Γ (in white) for v varying from 0 to 4.
(b) The component-tree CT associated to (G,V,F). The let-
ters (A–P) in nodes correspond to the associated connected
components (c–g).

As suggested by its denomination, the component-

tree has a tree structure. Its vertices are also called

nodes. Among them, the largest component is the max-

imum for the Hasse diagram, namely the set Γ , ob-

tained as the unique connected component of G = G⊥;

it is the root of the tree.

On the opposite side, the leaves are the minimal ele-

ments of the Hasse diagram, i.e., the nodes of Ψ that

do not strictly include any other nodes (see Figure 1).

The order relation ≤ between nodes defines a parent-

hood relationship : a node n1 is the parent of a node

n2 if n2 ⊂ n1 and if there is no other node n3 such that

n2 ⊂ n3 ⊂ n1. In that case, we also say that n2 is a

child of n1.

For image processing purposes, each node of CT

generally stores a value: either an energy (for global

optimization) or an attribute (for local selection); this

value is most often real. In both cases, this valuation

is modelled by a function V : Ψ → R. In other words,

such enriched component-tree can be itself interpreted

as a valued graph (CT,R,V).

3.4 Component-graph [44]

Let (G,V,F) be a valued graph. We still assume that

V = F(Γ ) is finite and that (V,≤) admits a minimum,

noted ⊥. The graph G also remains connected, but the

order relation ≤ on V need not be total.

We extend the notion of connected component in

the following way. Let X ∈ C[Gv] be a connected com-
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ponent of the threshold set Γv inducing Gv at value v.

(By opposition to totally ordered sets, there may exist

several values vi ≤ v (i ∈ N) such that X ⊆ Xi ∈ C[Gvi]
while vi is a maximal value lower than v.) We define the

couple K = (X, v) as a valued connected component. We

note Θ the set of all the valued connected components

of G, with respect to its successive thresholds, defined

as

Θ =
⋃
v∈V
C[Gv]× {v} (3)

From the order relation ≤ defined on V, and the

inclusion relation ⊆, we define2 the order relation E on

the valued connected components of Θ as

(X1, v1) E (X2, v2)⇔
{

(X1 ⊂ X2)∨
(X1 = X2 ∧ v2 ≤ v1)

(4)

This order, which intuitively mixes the inclusion and

the value orders between connected components in a

lexicographic way, can be considered as an extension of

the inclusion relation to valued connected components.

The component-graph, noted CG, of the valued gra-

ph (G,V,F) is the Hasse diagram of the partially ordered

set (Θ,E). It does not necessarily have a tree structure;

indeed several paths may exist between two nodes. This

derives from the fact that a node can be the child of sev-

eral parents (and not only one, as in a tree). When a

node is the child of two parent nodes that are not com-

parable in values, it means that either the two parent

nodes meet without inclusion, i.e., they are not mutu-

ally included; or one of them is strictly included in the

other.

The component-graph still has a unique “largest”

node that is the maximum for the Hasse diagram, i.e.,

the node (Γ,⊥); it is the root of the graph. Similarly

to the component-tree, the component-graph still has

leaves, that are the minimal elements of the Hasse dia-

gram.

Three variants of the component-graph exist, by de-

fining different subsets of valued connected compon-

ents:

1. Θ (see Equation (3)) represents all the valued con-

nected components induced by G;

2. Θ̇ (see Equation (5)) corresponds to the set of the

valued connected components of maximal values con-

sidering all connected components. The set of nodes

2 Practically, when ≤ is a total order, the component-graph
and the component-tree are isomorphic [44]. Consequently, it
would make sense to also consider the valued connected com-
ponents and the order E for building the component-tree, as
the threshold value that leads to the generation of a connected
component is useful for image modelling and reconstruction;
see Equation (10).

Θ̇ provides at least one occurrence of a valued con-

nected component for each possible support X in-

duced by the image, while removing those that are

hidden as the value v is lower; and

3. Θ̈ (see Equation (6)) gathers the valued connected

components which are generators of F , i.e., those

that actually contribute to the definition of the im-

age support.

Θ̇ = {(X, v) ∈ Θ | ∀(X, v′) ∈ Θ, v 6< v′} (5)

Θ̈ = {(X, v) ∈ Θ | ∃x ∈ X, v = F(x)} (6)

Based on these definitions, we observe that

Θ̈ ⊆ Θ̇ ⊆ Θ (7)

The Θ- (resp. Θ̇-, resp. Θ̈-) component-graph of F
is the Hasse diagram of the partially ordered set (Θ,E)

(resp. (Θ̇,E), resp. (Θ̈,E)).

The three variants of component-graphs present in-

verse relationships between computational cost and in-

formation richness: the representation is either highly

informative but relies on expensive computational costs;

or much lighter in terms of information richness but less

costly. The set Θ, that models all the valued connected

components in the image, is the most informative but

also the most costly. The set Θ̇, which gathers the val-

ued connected components with maximal level, is inter-

mediate in terms of both cost and information. Finally

the set Θ̈, that is reduced to the minimal set of valued

connected components needed to define the image sup-

port, is the least costly and informative. The relevance

of each component-graph is directly dependent on the

targeted image processing application.

An example of multivalued image F and its associ-

ated value set V are provided in Figure 2(a) and (b).

Figure 2(c–l) depicts the various valued connected com-

ponents obtained from this image. More precisely, the

support X of a valued connected component is repres-

ented in white in each subfigure, while v is given by the

value at which the image has been thresholded in the

subfigure. The three variants of component-graphs are

illustrated in Figure 2(m–o).

The component-graph is a relevant extension of the

component-tree, as both (i) data structures are compli-

ant for total ordered sets (V,≤), hence compatible for

grey-level images, and (ii) the component-graph sat-

isfies the image (de)composition model associated to

component-tree, defined later in the paper in Equa-

tion (10). In addition, similarly to component-trees,

an attribute value can be stored in each node of the

component-graph to characterize the corresponding com-

ponent. The local node selection based on attributes

can lead to filtering or segmentation strategies. This
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(a) (G,V,F)

(0,3)

(1,3) (2,2)

(1,2) (2,1)

(1,1)

(1,0)

(0,2)

(2,3) (3,2)

(3,1)

(3,0)

(2,0)

(0,1)

(0,0)

(b) (V,≺)

B

F

(c) Γa

C

E

(d) Γb

D

K

(e) Γc

I

L

(f) Γd

J

P

R

(g) Γe

X

H

Q

(h) Γf

N

O

(i) Γg

M

U

W

(j) Γh

G

(k) Γi

X

S

V

(l) Γj

T

Y

Z

(m) Γk

AA

(n) Γl

X

X

AB

(o) Γm

AC

(p) Γn

(q) Θ (r) Θ̇ (s) Θ̈

Fig. 2 (a) A multivalued image, viewed as a val-
ued graph (G,V,F), where F : Γ → V and
V = {(0, 1), (1, 0), (0, 2), (1, 1), (2, 0), (0, 3), (1, 2), (2, 1), (3, 0),
(1, 3), (2, 2), (3, 1), (2, 3), (3, 2)}. (b) The Hasse diagram of the
ordered set (V,6). For the sake of readability, each value of V
is associated to an arbitrary colour. (c–p) Threshold sets Γv

for v ∈ V. (q–s) The Θ, Θ̇, Θ̈-component-graphs of F . The
letters (A–AC) in nodes correspond to the associated connec-
ted components in (c–p). We can distinguish different types
of valued connected components: they are either “completely
visible” (e.g., the salmon/orange X), or “partially visible”
(e.g., the green G), or “totally hidden” (e.g., the brown B).
Those that are either partially or totally visible participate
to the formation of the image support and then belong to
Θ, Θ̇, Θ̈. Those that are invisible cannot belong to Θ̈ but do
belong to Θ. Among this set, the valued connected compon-
ents that also belong to Θ̇ are those that present a maximal
value v for a given support X.

valuation can also be interpreted as a function A : Θ →
R. Then, such enriched component-graph is also inter-

preted as a valued graph (CG,R,A).

4 Shape-space analysis of multivalued images

A (discrete) image I is a mapping from a finite spatial

domain Ω (the image support, i.e., the set of its pixels

/ voxels) to a value space V, equipped with an order

relation ≤. For any x ∈ Ω, I(x) ∈ V is the value of I
at x:∣∣∣∣I : Ω → V

x 7→ I(x) = v
(8)

Various choices are available for V, such as V = Rn or

V = Zn. The case of n > 1 corresponds to multivalued

images, i.e., images with n components and V = V1 ×
. . . × Vn, whose Cartesian product forms a complete

lattice. Each mapping Ii : Ω → Vi is called a band of

the multivalued image; and v is a n-dimensional vector.

In order to develop morphological hierarchies, such

as component-trees or component-graphs, it is required

to know the order ≤ on V. If (V,≤) is a totally (resp.

partially) ordered set, we say that I is a grey-level (resp.

multivalued) image. For any X ∈ Ω, and any v ∈ V, we

define the cylinder function C(X,v) of support X and

value v, as:∣∣∣∣∣∣
C(X,v) : Ω → V

x 7→
{
v if x ∈ X
⊥ otherwise

(9)

In addition, to develop connected operators, it is ne-

cessary to handle the structure of Ω, i.e., to know the

adjacency between its points, leading to a graph S. An

image is then modelled as a valued graph (S,V, I).

4.1 Anti-extensive filtering with the component-tree

The component-tree and the component-graph are im-

age lossless models. Indeed, if we consider the image I
in its functional form, i.e., as a mapping I : Ω → V,

then I can be fully recovered from the (de)composition

formula of Equation (10), i.e., the image can be ex-

pressed as the supremum of the nodes of its associated

component-tree (Ψ) or component-graph (Θ):

I =
∨

(X,v)∈Θ

C(X,v) =
∨
X∈Ψ

C(X,l(X)) (10)

In the framework of component-trees (i.e., for grey-

level images, i.e., when ≤ is a total order), this formula

leads to a well-defined image for Ψ , but also for any

subset of nodes Ψ̂ ⊆ Ψ . In other words, it is possible to

filter the image I by discarding some of the nodes of

its hierarchical representation, and then reconstructing

a resulting image from the preserved nodes. Each point

x ∈ Ω in the filtered image then presents a value that is
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lower or equal to the initial image; the induced operat-

ors are then anti-extensive. This anti-extensive filtering

scheme was formalized for grey-level images in [26,31].

It basically consists of three successive steps:

(i) construction of the component-tree CT associated

to the image I;

(ii) reduction of the component-tree by selection of nodes

Ψ̂ ⊆ Ψ ; and

(iii) reconstruction of the result image Î ≤ I from the

reduced component-tree ĈT.

(S,V, I)
(i)−−−−→ (CT,R,V)y y(ii)

(S,V, Î)
(iii)←−−−− (ĈT,R,V|Ψ̂ )

(11)

Step (i) is carried out from a wide range of available

component-tree construction methods [30], while Step

(iii) is straightforward from Equation (10). The restitu-

tion phase consists of transforming the output tree into

an output filtered image. If a node has been removed, a

new grey-level has to be assigned to it. Generally, this

is the grey-level of the nearest preserved ancestor in the

tree [26]. As a result, the grey-level values of the ori-

ginal image are assigned to the voxels of the preserved

nodes, and no new grey-levels appear in the image.

The core of the process is Step (ii); it implies to

choose a subset of nodes Ψ̂ ⊆ Ψ . This choice is based on

a selection criterion, i.e., a Boolean predicate that indic-

ates if a node satisfies a required property; and a reduc-

tion policy to determine which parts of the component-

tree should be kept or removed. More formally, con-
sidering attribute values carried by each node of the

component-tree, namely the valuation V : Ψ → R,

guides the decision of preserving or discarding a node.

If V models an increasing attribute, the restitution is

simple because the tree branch is pruned, i.e., if a node

is rejected, then all its descendants are also removed.

However, if V models a non-increasing attribute, this

phase is more difficult, as some rejected nodes can have

preserved descendants. This means that the validity of

the predicate for a given node does not imply its valid-

ity for the rest of the branch. Several classical policies

have been defined, including in particular the Min, Dir-

ect and Max ones [26,31]:

– Min: a node is removed if it does not fulfill the cri-

terion, or at least one of its parent node has been

removed;

– Max: a node is removed if it does not fulfill the cri-

terion, and all of its children nodes have been re-

moved;

– Direct: a node is removed if it does not fulfill the

criterion.

The Min/Max policies have a (sub)linear computational

cost but might lack coherence in regards to the cri-

terion. Indeed, they might discard/preserve nodes that

meet/do not meet the criterion, depending on their po-

sition in the tree. The Direct policy only preserves the

nodes fulfilling the criterion, but relies on an exhaustive

scanning of all the nodes in the tree; its computational

cost is then equal to the tree size.

4.2 Coupling shaping and component-graphs

In this section, we propose to describe how component-

graphs (that extend the component-tree from a spectral

point of view) and shaping (that extends the component-

tree from a conceptual point of view) can be associated

for the effective processing of multivalued images.

4.2.1 Extension of the anti-extensive filtering to

component-graphs

The component-graph also satisfies the (de)composition

formula classically associated to the component-tree (see

Equation (10)). Indeed, an image I can be represen-

ted via the cylinder functions induced by the nodes Θ

of its component-graph. In principle, we can then ex-

tend the above anti-extensive filtering to images taking

their values in any value space V, without the assump-

tion that ≤ is a total order. We thus have to consider

a component-graph, instead of a component-tree. This

allows us to process any image in the same framework
as initially proposed in [26,31]:

(S,V, I)
(i)−−−−→ (CG,R,A)y y(ii)

(S,V, Î)
(iii)←−−−− (ĈG,R,A|Θ̂)

(12)

However, due to the complex structure of multi-

valued images and component-graphs, extending this

framework is not straightforward and raises two diffi-

culties. As the data-structure is no longer a tree, Step

(ii) is now more complex. Indeed, even if pruning poli-

cies, defined for component-trees, remain consistent for

component-graphs, they have to be adapted for dealing

with non-linear bottom-up or top-down node parsing.

Besides, Step (iii) can be an ill-posed problem, depend-

ing on the nature of the order ≤, and the preserved

nodes Θ̂. This issue is inherent to the component-graph

structure. Indeed, if a node with several non-comparable
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parents is removed during the filtering, the reconstruc-

tion can be challenging and subject to decisions (due

to non-determinism). In addition, structural stability

may be lost as the obtained image may correspond to a

set of nodes that are different from those of the initial

image.

4.2.2 Shaping: anti-extensive filtering in the

shape-space [64]

The paradigm of shaping proposes to improve the frame-

work of anti-extensive filtering to non-monotonic at-

tributes, for grey-level image processing. It consists of

performing the filtering on a double layer of component-

trees, i.e., on the component-tree of the component-tree

of the image, that transforms any attribute into a mono-

tonic one.

Formally, the first layer corresponds to the compo-

nent-tree CT of the image. Then, basically, the shaping

consists of considering the component-tree CT itself as

an image. Indeed, from a functional point of view, it

can be defined as a mapping CT : Ψ → V, where points

are replaced by nodes, while intensities correspond to

attribute values. Two nodes of the component-tree are

adjacent if one of them if the parent of the other. This

approach is tractable only if the space of the attribute

values V is equipped with a total order relation, i.e., can

be modelled as (a subset of) R or Z; this is however the

case for most attributes, in particular numerical ones.

In this case, it is then possible to build a component-

tree of this first tree CT.

This “tree of tree” CT′ can be processed as any

other component-tree and we can perform anti-extensive
filtering with it. It is then possible to process any grey-

level image in the framework initially proposed in [26,

31], by performing node selection in a data-structure

that is no longer defined at the image level, but at a

higher semantic level. The virtue of this new tree is

that the attribute computed from the nodes of CT is

now increasing in CT′; this allows us to perform real-

time threshold-based node selection. The overall pro-

cedure remains quasi-linear in time and space, since

we only duplicate the standard component-tree anti-

extensive filtering process. The main limitation of this

framework is that it considers a tree as intermediate

data-structure, thus limiting its use to grey-level im-

ages.

(S,V, I)
(i)−−−−→ (CT,R,V)

(i′)−−−−→ (CT′,R,V)y y(ii)

(S,V, Î)
(iii′)←−−−− (ĈT,R,V|Ψ̂ )

(iii)←−−−− (ĈT
′
,R,V|Ψ̂ )

(13)

4.2.3 From “a tree on a tree” to “a tree on a graph”

The notion of valued graphs sheds light on the common

structure of images, component-trees and component-

graphs. In particular, it allows us to describe them with

a simple and unified formalism. As a side effect, it em-

phasises the fact that shape-space filtering does not ne-

cessarily require a tree as inner layer, but it can also

accept a graph. The cornerstone of this work is the

generalization of the initial shaping paradigm: it can

be used not only do build a “tree on a tree” but a

“tree on a graph”. This simple idea, summarized by

Diagram (14), allows us – in theory – to process any

image via a shape-based filtering.

(S,V, I)
(i)−−−−→ (CG,R,A)

(i′)−−−−→ (CT,R,A)y y(ii)

(S,V, Î)
(iii′)←−−−− (ĈG,R,A|Θ̂)

(iii)←−−−− (ĈT,R,A|Ψ̂ )

(14)

Based on the above remarks, this approach has the

following virtues:

– it avoids the complex selection of nodes directly in

the component-graph, since this task is indirectly

carried out on the outer-layer component-tree;

– it extends the initial shaping approach beyond grey-

level images to multivalued images;

– it inherits the good properties of shape-space filter-

ing from increasing criteria, among which real time

and interactive node selection at higher semantic

level.

Nevertheless, behind this simple idea, and its intrinsic

advantages, some algorithmic issues remain to be con-

sidered, in particular for the two reconstruction steps

(iii′), (iii), from the component-tree to the component-

graph, and then to the image. In Section 5, we propose

some solutions to these issues.

5 Shape-space analysis of multivalued images:

algorithmics

In this section, we now provide an algorithmic discus-

sion about each step of the filtering framework depicted

in Diagram (14), for handling multivalued images in the

shape space. This algorithmic discussion is provided un-

der the assumption that the considered multivalued im-

ages are multiband data, i.e., that the set of values V is

composed of k spectral bands Vi, each equipped with a
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total order. In particular, we consider the canonical par-

tial order ≤ on V defined by (vi)
k
i=1 ≤ (wi)

k
i=1 ⇔ ∀i ∈

[[1, k]], vi ≤ wi. This hypothesis is motivated by the high

frequency of such images in current image processing

applications, which justifies to study them prioritarily.

5.1 Component-graph construction

Three variants of component-graphs were introduced in

[44] (see Section 3.4), in particular to simplify CG by

considering smaller subsets of Θ. In the first Step (i) of

our framework, that builds the first layer component-

graph CG from the initial multivalued image (S,V, I),

we chose to consider the lightest version Θ̈ of component-

graph (Figure 2(o)), i.e., the one that represents only

the nodes which actually contribute to the construction

of the image according to Equation (10).

Practically, this choice is motivated by several facts.

First, we are considering multiband images, that gener-

ally correspond to “real” images, where values at each

point have a physical meaning (by contrast, e.g., with

semantic-content images, considered for instance in [45]).

The Θ̈-component-graph is the only one that guaran-

tees that no new value will be introduced via a node ini-

tially “hidden” in the graph; this is a reasonable prop-

erty in this context. For instance, it was observed in [46]

that such component-graph was indeed relevant for fil-

tering (i.e., denoising, simplification) purposes.

Second, from a space complexity point of view, this

component-graph is much more efficient than the other

two. Indeed, by construction, each node is “visible” in

the modelled image; this means that at least one point

of the image is directly and uniquely modelled by one

node of the component-graph. A corollary of this prop-

erty is that the number of nodes within Θ̈ is bounded

by the number of points of the image; in other words,

the space complexity of the graph is (in the worst case)

linear with respect to the image size. Since no interme-

diate superlinear data-structure is required for its con-

struction, which may lead to extra computational cost,

the building of this component-graph also presents a

linear time complexity.

The component-graph CG is built from the algorithm

recently proposed by some of the authors in [46]. For

the sake of simplicity, we will now note Θ̈ as Θ.

5.2 Component-graph valuation

At this stage, an attribute can be associated to each

node of Θ, in the component-graph CG, to retrieve a

structure of valued graph, namely (CG,R,A) in Dia-

gram (14).

We chose to consider here an attribute taking its val-

ues in R, namely a set where all values are comparable.

While alternative choices are possible (see Section 7),

we assume here that a valuation A : Θ → R contains

enough information to accurately filter the nodes, while

leading to / forming a valued graph that authorises the

building of a tree structure as second layer (that con-

stitutes the very principle of shaping).

The criteria possibly modelled by A for each node

K = (X, v) ∈ Θ can depend on:

(1) spectral properties, relying on image intensities, tex-

ture, etc. (i.e., the information stored in the v part,

e.g., intensity mean, extrema, . . . ): then, we prac-

tically have A : V→ R;

(2) geometric properties, relying on spatial information

of the image (i.e., the information stored in the X

part, e.g., compacity, flatness, . . . ): then, we prac-

tically have A : 2Ω → R;

(3) structural properties, relying on the topology of the

graph structure (e.g., branch length, position / rank

of the node in the branch, . . . ): then, A(K) depends

on the relationships of K and its neighbours within

CG;

or any combination of some of these three classes.

In contrast to the other two kinds of component-

graphs, the chosen version of CG is relatively light. As

a consequence, a criterion of type (3) would be weakly

relevant, as all “internal” nodes of the graph are not

modelled, thus making the graph structurally sparse.

Indeed, the elimination of nodes from the richer variants

of CG may hide information and introduce a bias in

the graph structure, with respect to this specific type

of attributes.

Then, only geometric criteria (type (2)) are con-

sidered here, for building the component-tree of the

second layer. In particular, this choice is coherent with

the paradigm of shaping – initially designed to focus

on higher semantics at higher levels – and also motiv-

ated by the fact that the spectral handling (criteria of

type (1)) of the image is intrinsically carried out at the

first layer of the structure, since the component-graph

already models the order between values in V via its or-

ganization; this spectral handling indeed happens both

before (during the component-graph construction) or

after the shaping stage (during the image reconstruc-

tion).

Another possibility is to define on this outer compo-

nent-tree a second attribute V on which will be pro-

cessed the tree pruning. In order to preserve the good

properties of such filtering, it is essential that this new

attribute V keeps the same behaviour as the first at-

tribute A, i.e., an increasing or decreasing evolution
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along the tree. An example can be given by consider-

ing as attribute V the gap between the attribute value

Ak of the node K and the value Al of the leaves of its

branch. Such criterion remains increasing, thus author-

ising a (relative) thresholding approach, similar to the

first strategy but with a fine behaviour.

5.3 Component-tree construction and pruning

From the valued graph (CG,R,A) associated to the

component-graph, a shape-based component-tree can

now be defined (Step (i′) of our framework). This tree is

the data-structure that will be considered for the prun-

ing process (Step (ii)).

In practice, the structures of interest can be of two

kinds, depending on the adopted processing paradigm:

they are either structures to be preserved in the image

(typically in a paradigm of segmentation), or structures

to be removed (typically in paradigms of filtering or

denoising). In both cases, the tree CT is built in order

to model such structures as nodes located on the most

distal parts of the tree, i.e., near the leaves.

Based on this fact, two basic policies can be con-

sidered to build the component-tree CT, guided by the

nature of the attribute A, and more specifically by the

correlation between the extremal values of A and the

structures of interest. When these structures of interest

correspond to the lowest values of A, a min-tree repres-

entation ( Figure 3(b)) is chosen, i.e., the root has the

highest value, while the leaves have the lowest; when the

structures of interest correspond to the highest values

of A, a – dual – max-tree representation (Figure 3(c)) is

adopted. The inversion of the attribute allows to switch

from one representation to the other.

Once the component – either min- or max- – tree has

been built, the pruning process is carried out in a way

that depends on the kind of processing paradigm. In

the first case (segmentation paradigm), i.e., when struc-

tures of interest are to be preserved, relevant nodes are

selected by preserving the distal parts, i.e., the branches

of the tree (Figure 3(d)). In the second case (filtering

paradigm), i.e., when structures of interest are to be

eliminated, the pruning consists of eliminating those

distal parts of the tree, i.e., preserving the proximal

part (Figure 3(e)). In practice, the principle is to com-

pute the most discriminative cut in the tree, and to

preserve nodes located either below or above this cut,

according to the chosen paradigm.

Practically, each node Y ∈ Ψ of the component-tree

CT is a connected component gathering nodes of a sub-

graph of CG, for a given threshold value with respect to

A. This threshold value then constitutes the valuation

M N

X

AB AC

H

G

A6

1

3

1 5

1

2 5

(a) Θ̈

{N-AC}

X

{AB}

{H}

{G}

{A}

1

2

3

4

5

6

{X-M}

6

5

3

2

1 1

(b) Ψmintree
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(e) Ψ leaves
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Fig. 3 Component-tree construction and pruning : (a) The
Θ̈-component-graph valued with attribute A. (b) The min-
tree Ψmintree built from Θ̈. (c) The max-tree Ψmaxtree built
from Θ̈. In these representations, a node of the component-
tree may correspond to a node of the component-graph
(in particular leaves nodes such as G in Ψmintree), or
a set of nodes of the component-graph due to the inclu-
sion relationship (for example, {A} gathers all the nodes of
{A,G,H,M,N,X,AB,AC} in a same node in Ψmintree. The red
line represents the cut in the tree. Depending on the policy,
the nodes to be preserved are either located below the cut (c)
or above it (d).
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of this node. Following the above criteria classification,

this new valuationA – that is however directly obtained

from a valuation of class (2) – is now a valuation of

class (1) in the shape-space. In addition, it defines a

monotonic criterion, allowing for an easy selection by

thresholding, and avoiding the use of any specific (e.g.,

Min, Max) pruning policies.

5.4 Component-graph filtering

A “standard” component-tree – defined from a grey-

level image – contains nodes which represent connec-

ted components of points of the image, obtained at a

given threshold value. By contrast, the component-tree

CT, defined at the outer layer of the shape-space model

– computed from the valued graph (CG,R,A) – con-

tains nodes that are connected components of Θ, which

are themselves connected components of Ω. Such nodes

Y ∈ Ψ are thus defined as sets {Ki = (Xi, vi)}ki=1 ⊆ Θ,

with k ≥ 1.

Once the pruning process, carried out on the com-

ponent-tree, has reduced the number of nodes Y pre-

served in Ψ̂ , several policies can be considered to de-

termine which nodes Ki ∈ Y have to be preserved

in the resulting “pruned” component-graph ĈG, i.e.,

which nodes should form Θ̂ (Step (iii)).

The easiest and most intuitive choice is to keep all

the Ki contributing to the preserved Y , since they all

provide spectral information in the image. However,

since spectral information is already taken into consid-

eration within the first layer of the structure, via the

component-graph, while the geometric attributes rely

on spatial information, it is reasonable to exclusively

consider the spatial information handled by the pre-

served nodes Y . See Figure 4.

In particular, each node Ki ∈ Y is either included

in another node Kj ∈ Y , or is a maximal element in Y

with respect to the E relation. When dealing with geo-

metric criteria, only these latter nodes, that contribute

to define the support
⋃k
i=1Xi of Y in Ω, are of actual

interest. In other words, if Y is preserved in Ψ̂ , only

these nodes may be preserved (both spatially and spec-

trally) in the filtered image. We note Ŷ ⊆ Y the subset

of Y formed by such nodes.

The other nodes of Y are not taken into account and

are lost in the representation. Practically, this is not

a problem in general; indeed, most3 of nodes K ∈ Θ

3 Remark: In [17, p. 453], it was written that “any node

K ∈ Θ belongs to Ŷ for at least one Y ∈ Ψ”. This is not
verified in all cases; a trivial counter-example is the case where
Θ has at least 2 nodes, while the same value is given by A to
each K ∈ Θ, thus leading to a degenerated component-tree
CT composed by a single node. However, for “real” valuation

belong to Ŷ for at least one Y ∈ Ψ . In other words,

even by preserving a strict part of the nodes within the

elected Y , each node K still has a chance to be finally

preserved, thus avoiding erroneous removals.

The main difference between the initially proposed

shaping paradigm (“a tree on a tree”) and the present

one (“a tree on a graph”) is that the first defines any

Ŷ as a singleton set {K}, while the second can now

associate several – overlapping – nodes of Θ into a same

Ŷ , since some values of V may be non-comparable.

A C B

A C B AUB

(a)

(b) (c)
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Fig. 4 Component-graph filtering: (a) Y , node from the

component-tree preserved in Ψ̂ during pruning. Y is com-
posed of three nodes of the component-graph CG: A, B and
C such that C ∈ A and C ∈ B. Two choices can be considered
for the filtering of Y : (b) either all nodes (A, B and C) are

preserved in Ŷ as they all contribute to the spectral values of
the component; or (c) only A and B are kept in Ŷ when C is
eliminated since A ∪B define the spatial support of Y while
C does not participate to the definition of the boundaries of
Y ; then the reconstructed intensities are determined thanks
to policies described in Section 5.5.

5.5 Image filtering

The data-structure considered for processing an image

is composed here of two layers of component-graph /

tree. As a consequence, the final filtering of the image

has to go successively through these two layers, thus

leading to two filtering steps.

(1) The first step is a temporary reconstruction at the

component-tree level: it consists of reconstructing

regions of the image corresponding to each reduced

node Ŷ , associated to each node Y ∈ Ψ̂ , based on

the set of nodes Ki = (Xi, vi) ∈ Ŷ .

functions A, and in particular those taking their values in R,
it is quite probable that most nodes K ∈ Θ belong to Ŷ for
at least one Y ∈ Ψ .
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(2) A given node K ∈ Θ may belong to Ŷj , for sev-

eral nodes Yj ∈ Ψ̂ , in that case, the second step –

which leads to the final reconstruction of the image

– handles the conflicting intersection between those

reconstructed regions.

We recall that we deal here with multivalued images,

and we assume that the value space (V,≤) is structured

as a lattice. As a consequence, the value set is an en-

semble of ordered elements which admits an infimum

and a supremum; this assumption is used hereafter for

reconstruction purpose.

For the first step, various approaches can be con-

sidered to reconstruct image regions associated to the

nodes Ŷ of the reduced component-tree. The first, and

most straightforward possibility, is to preserve all val-

ues vi associated to each node Ki of the reduced node

Ŷ ; and delegate the real image valuation to the second

step. We do not describe how to do that in the sequel of

the paper. Instead, we focus on the second possibility

that consists of assigning a unique value v – that can

be defined with different policies – to the whole reduced

node Ŷ , thus creating a flat zone of value v, over the

whole set of nodes (Ki, vi) ∈ Ŷ . In this case, we mainly

have two options for defining v:

– v can be set as the supremum of all the vi of each

node Ki = (Xi, vi) ∈ Ŷ . However, this policy is not

optimal as it leads to the loss of the anti-extensivity

property of the designed filters. Indeed, the choice of

the supremum creates connected components, pos-

sibly presenting a high value that did not exist in the

initial set of connected components of the original

image; or

– v can be defined as the infimum of all the vi of each

node Ki ∈ Ŷ . This policy is more reasonable, as it

ensures to preserve the property of anti-extensivity

of the subsequent filters. This strategy is justified by

the fact that the node Y has been preserved with

respect to a geometrical attribute, computed for the

union of all supports Xi of the Ki; in such condi-

tions, the least common threshold value associated

to all these nodes should be considered. Neverthe-

less, this strategy tends to “flatten” the intensities

in the image and create connected components val-

ued with intensities that are lower or equal to that

of the existing support.

The second step consists of handling the conflicts

of intensities assigned to nodes K belonging to several

nodes Yj ∈ Ψ̂ . As in the first step, two policies can be

considered.

(i) In the case where v was defined by a supremum

paradigm:

– the value finally assigned to the node K can be

defined as the supremum of all the conflicted val-

ues. This may tend to create connected compon-

ents valued with higher or maximal intensities,

that did not exist in the original image. The re-

construction of the filtered image can then be

formalized as follows:

Î =
∨
Y ∈Ψ̂

C(
⋃

(X,v)∈Ŷ X,
∨

(X,v)∈Ŷ v) (15)

– alternatively, the value assigned to the node K

can be defined as the infimum of all the values in

conflict. This policy will only lower the intensity

of the connected components created at step one,

or enlarge their spatial support. The spectral or

spatial properties of the image are possibly lost

as the resulting components did not exist in the

initial image. The reconstruction of the filtered

image can then be formalized as follows:

Î =
∧
Y ∈Ψ̂

C(
⋃

(X,v)∈Ŷ X,
∨

(X,v)∈Ŷ v) (16)

(ii) In the case where v was defined by an infimum

paradigm:

– the value finally assigned to the node K can be

defined as the supremum of all these values in

conflict. This policy is justified by the fact that

a node Y ∈ Ψ , defined as the union of several

nodes of Θ, should not lose its geometry in the

filtered image. The choice of the supremum en-

ables the construction of the cylinder function

C(X,v) of support X and value v (as defined in

Equation (9)). It allows us to offset the flattening

of intensities (due to the infimum policy at step

one) and to come up with intensities closer to the

ones of the original support. The reconstruction

of the filtered image can then be formalized as

follows:

Î =
∨
Y ∈Ψ̂

C(
⋃

(X,v)∈Ŷ X,
∧

(X,v)∈Ŷ v) (17)

– alternatively, the value assigned to the node K

can be defined as the infimum of all values in

conflict. This policy is nevertheless not reason-

able because it will tend to completely flatten the

intensity in the image; and the resulting support

may be spectrally far from the real intensities.

Besides, the choice of the infimum may result in

the loss of the geometry of individual nodes Y

due to the building of large flat components. The

reconstruction of the filtered image can then be

formalized as follows:

Î =
∧
Y ∈Ψ̂

C(
⋃

(X,v)∈Ŷ X,
∧

(X,v)∈Ŷ v) (18)
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One may notice that these various strategies, al-

though presented in the general case of handling all

bands of a multivalued image, can be restricted to a

strict subset of bands. In the case where only one band

is considered, the reconstructed image is a grey-level

one, and the supremum and infimum on V considered

above are simply replaced by the maximum and min-

imum in the considered band.

6 Application examples

In this section, we illustrate the relevance of the pro-

posed framework on two application examples. All the

presented results are based on the Θ̈ component-graph.

The first application (Section 6.1) is the filtering

of a real colour image. In this context, the multiband

image corresponds to a function taking its values in a

standard space (e.g., RGB, HSV), and the multivalued

set V is equal to [[0, 255]]k, namely a space with several

values in each band, but few bands (k ≤ 3). This ap-

plication consists of the filtering of a natural scene, by

considering the issue of noise reduction.

The second application (Section 6.2) is the segment-

ation of multi-modality images. In this context, the

multiband image corresponds to a function taking its

values in a space with many values in each band, and

two bands corresponding each to a given imaging mod-

ality, namely morphological X-ray Computed Tomo-

graphy and functional Positron Emission Tomography.

The segmentation of such images is designed to em-

phasise tumours based on their shape and metabolic

activity.

The purpose of these examples is to qualitatively

emphasise that the proposed framework is versatile en-

ough for allowing us to process a wide range of useful

applications. In particular, since this framework is very

general, our purpose is not to prove that our approach

is more efficient than others, but that it opens the way

to alternative possibilities of image processing of mul-

tivalued images via connected operators. A complete

application relying on this framework is a topic for fur-

ther research.

6.1 Colour image filtering

6.1.1 Colour space

The processing of natural images, and in particular col-

our images, constitutes a major application field of mul-

tivalued mathematical morphology. As stated in Sec-

tion 1, most approaches consist of defining ad hoc total

orders on standard colour spaces, e.g., RGB or HSV

value spaces, or splitting these orders into total orders

on each band, with the purpose to take advantage of

the existing tools initially designed for grey-level image

processing, in particular in the framework of connected

operators.

In this first experiment, we aim to investigate how

the proposed framework can be used for processing co-

lour images, by directly considering the standard or-

ders on colour spaces. In this context, working with the

chromatic bands is not relevant, since we do not make

specific assumptions on objects sought in images. As a

consequence, the HSV space was considered, instead of

the RGB space. In addition, we only focus on the SV

part of this space, as the H part carries – as RGB – a

chromatic information that is not prone to be modelled

by a natural order.

Let us consider a colour image I : Ω → V, where

V = H × S × V is the HSV space. Each of the bands

is an interval of integers; we only focus on the last two,

namely S and V . As a consequence, we will let un-

touched the chromatic band H, and we can then only

consider the image as a bi-band function I : Ω →
[[0, N − 1]]2 (in our application, we will set N = 256).

For each point x of Ω, we have Ii(x) = (s, v); s = 0

(resp. N − 1) means that the colour at x is completely

unsaturated, i.e., “grey” (resp. completely saturated);

while v = 0 (resp. N−1) means that the colour at x has

the darkest value, i.e., black (resp. the brightest value).

The set of values S × V = [[0, N − 1]]2 is composed

of couples, and then has a cardinal of N2. According to

the nature of the structures that we wish to emphasise

in the image, or the “noise” we wish to lower, the choice

of the order ≤ on S × V differs. Indeed, we can define

4 orders, by defining (s1, v1) ≤ (s2, v2) by:

(s1 ≤ s2) ∧ (v1 ≤ v2) (19)

(s1 ≤ s2) ∧ (v1 ≥ v2) (20)

(s1 ≥ s2) ∧ (v1 ≤ v2) (21)

(s1 ≥ s2) ∧ (v1 ≥ v2) (22)

All these orders are partial, and lead to a structuration

of S × V = [[0, N − 1]]2 as a complete lattice, organized

into N + 1 layers.

We propose to filter some natural images I : Ω →
[[0, N−1]]2 in the HSV space, modelled as valued graphs

(S, [[0, N − 1]]2, I), where S is the graph corresponding

to the topological structure of Ω. In other words, we

only focus on the saturation and brightness of these

images, while letting untouched the hue.

6.1.2 Salt-and-pepper removal

We have considered natural images corrupted with salt-

and-pepper impulse noise, with various noise densities
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(a) (b) (c)

(d) (e) (f)

Fig. 5 Filtering results (second row) for different noise rate using attribute-based component-graph : 10% (First column), 30
% (second column), and 50% (third column).

(varying from 1% to 90%). The salt-and-pepper noise

was generated independently on each color (R, G and

B) channels so the produced noise may be more natural,

before converting into the HSV space. In this space,

as explained before, the computing of the component-

graph relies on the S and V components, while the ori-

ginal H component is restored in the filtered image.

For images corrupted with salt-and-pepper noise,

noisy pixels can only take the maximum (salt noise) and

minimum (pepper noise) values in the dynamic range.

Based on that specific noise structure and on the filter

spectral properties, our denoising scheme will consist of

two similar consecutive steps, each enabling the elimin-

ation of one type of noise values.

Due to the conversion from RGB to HSV, noisy

pixels defined on the RGB image will be in spatial cor-

respondence in the S and V bands. The order between

those channels can then be formalized by defining (s1, v1) ≤
(s2, v2) such that (s1 ≤ s2) ∧ (v1 ≤ v2), in order to

represent the most saturated and bright structures as

maximal values in the graph. As salt-and-pepper noise

can be characterized as randomly distributed dots of

one or more pixels (speckles), in that representation,

the criterion considered for filtering is the compactness

factor [65], defined as the ratio between the extremal

eigenvalues of the matrix of inertia. The filtered image

is reconstructed in N2, following the policy proposed in

Equation (17).
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(a) (b) (c) (d)

Fig. 7 The two consecutive steps of the salt-and-pepper filtering process, based on a compactness-based filtering on component-
graph. (a) Original lena image. (b) Initial lena image corrupted with a salt-and-pepper noise with a density of 10 %. (c)
Intermediate result of salt noise removal. (d) Final image with pepper noise filtering.

(a) (b) (c)

Fig. 8 Filtering results for recursive filtering steps (with different attributes) on lena image affected with salt-and-pepper
noise of 50 %. First column: original noisy image. Second column: intermediate denoised image after elimination of compact
noise. Third column: final image after removal of compact and elongated noisy structures.

The experimental PSNR results (Figure (6)) show

good denoising power of the filter (Figure 5). Indeed,

the first step (Figure 7(c)), which consists of the salt

noise removal, enables to eliminate the small bright tex-

tural parts of the image, while leaving most of the other

parts unchanged. On the other side, the second step

(Figure 7(d)) i.e. pepper noise filtering, efficiently elim-

inates the dark noisy speckles. However, some details

of the original image can be smeared by the filter when

they correspond to the considered feature. We observe

that phenomenon in the textured leaves of lena’s hat or

near her right eyes on Figure 7(d). Furthermore, we can

note that our filter can remove noise of different size and

shape, while maintaining the sharpness of structures.

Indeed, when the noise rate is over 30 %, some noisy

pixels can randomly constitute elongated structures. In

such cases, the first filtering process, aiming at remov-

ing small compact structures will not be enough to elim-

inate all noisy structures, and the most noisy elongated

objects will remain in the filtered image (Figure 8(b)).

One simple way to improve this limitation is to em-

ploy a second filtering process (Figure 8(c)), to remove

those remaining structures. We observe on the PSNR

curve (Figure (6)) that the combination of two-passes

filtering, corresponding to the blue curve, outperform

the one-pass filtering, red curve, when noise density ex-

ceeds 30%.
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Fig. 6 Denoising PSNR on lena image for one-pass (red
curve : elimination of small compact noisy structures) and
two-passes (blue curve : removing of elongated noisy objects)
of our proposed filtering process of shaping on component-
graph, based on an elongation attribute.

Nevertheless, an intense recursive use of attribute-

based filtering steps for salt-and-pepper removal can

produce output artefacts, most apparent on the edges

and details of the image.

6.2 Multi-modality image segmentation

Medical imaging has evolved in the past decades, with

the development of new modalities, the increasing avail-

ability of hybrid imaging systems, and a greater integ-

ration of multiple modalities, providing complementary

information. Medical imaging modalities can be divided

into two major categories : anatomical, that mainly de-

pict morphology; and functional, that describe inform-

ation of the physiological and biochemical processes

in the underlying anatomy. The combined processing

of multi-modalities offers great potential for achieving

more accurate and more reliable image segmentation.

Positron Emission Tomography (PET) using 18F-

FDG, provides metabolic activity visualization charac-

terized by the intensity of an injected radiotracer (18F-

FDG). It is routinely used in cancer imaging for dia-

gnosis and characterization of malignant tissues, corres-

ponding to FDG hyperfixations (represented as black

regions surimposed in purple on Figure 9(b)). PET im-

ages are classically associated to anatomical X-ray com-

puted tomography (CT) images (Figure 9(a)), for visu-

alizing the anatomy. The interpretation of PET images

require a thorough knowledge of the normal patterns

of the FDG uptake. Indeed, as FDG uptake reflects

glucose metabolism, an increased FDG uptake is not

limited to malignant tissues. In addition to this abnor-

mal uptake, associated to tumours, both physiological

and normal FDG uptakes are seen in various organs

such as the brain, the heart, the liver, the bladder,...

Then, such coupled images can provide complementary

information : when abnormal uptake on PET helps the

clinicians to identify subtle anatomical changes of po-

tential cancer lesions in lightly contrasted areas on CT

images where the tumour would not be detected, CT

enhances specificity by localising FDG updates corres-

ponding to physiological sites. It is then pertinent to

process them as a unique bivalued image in order to

more accurately extract the lesions and their activity.

The idea is to highlight tumours, i.e. maximal intens-

ities in the PET image (represented as black regions

in the PET) and discriminate those corresponding to

physiological uptakes, using the CT information.

In contrast to PET images, where the canonical or-

der on R captures the semantics of metabolic activity,

this order is – partially – meaningless with respect to

the Hounsfield scale in CT. Consequently, we apply a

non injective mapping on CT to the regions known as

physiological uptakes on the PET. More precisely, we

associate the lowest CT values to tissues of extremal

(low, e.g., water and blood; and high, e.g., bones) in-

tensities. The order ≤ on R for the resulting image asso-

ciates the least values in the CT data to tissues which

are more likely to induce false positives in PET. The

value space is subsampled to 256 values for both PET

and CT, leading to a space of V of 65536 distinct values.

In the case of adults lymphomas, lymphatic lesions

in the thorax are characterized as compact masses. Con-

sequently, the criterion considered for lesions filtering is

also the compactness factor [65]. As above, the filtered

image is reconstructed in V, following the policy pro-

posed in Equation (17).

Results are shown in Figure 9(c). We observe sat-

isfactory spatial accuracy for the detection of lesions

(ground truth superimposed in purple on the PET im-

age in Figure 9(b)). All lymphatic lesions are detected

and we note a good discrimination between the lesions

and false positives (i.e. the bladder physiological up-

take). A medical study to validate the process is in

progress and will be the topic of another article.

7 Conclusion

By coupling the two recently introduced notions of shap-

ing and component-graph, we open the way to the de-

velopment of new connected operators based on mor-

phological hierarchies, to process multivalued images.

This work constitutes a first algorithmic contribution to

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



18

(a) (b) (c)

Fig. 9 Coupled CT (a) and PET (b) images. (b) Ground-truth of the lesions, in purple. (c) Multivalued shape-based filtering
from (a+b), visualized in the PET value space. ((a,b) Courtesy M. Meignan, Hôpitaux Universitaires Henri-Mondor, Lymphoma
Academic Research Organization, Créteil, France.)

such an approach, in the field of multivalued mathemat-

ical morphology. Beyond promising results obtained on

application examples, this pioneering work opens vari-

ous algorithmic , methodological and applicative per-

spectives.

From an algorithmic point of view, we have only

considered here the case of multiband images, i.e., im-

ages that take their values in well-structured ordered
sets, namely complete lattices. This allowed us to “eas-

ily” reconstruct filtered images from pruned component-

trees / graphs. Indeed, the existence of suprema / in-

fima provides non-ambiguous valuation policies at each

point. In order to go a step further, and also process

more complex value spaces, it will be necessary to pro-

vide efficient (with respect to computational cost) and

relevant (with respect to image processing) solutions

for reconstructing filtered images when various non-

comparable values coexist spatially after graph prun-

ing. As well, we have only considered the simplest ver-

sion of component-graph, that models only the values /

nodes that are “visible” in the image. This assumption

is fulfield in many cases, including those of the proposed

application examples. However, there exist situations

where the image processing issues require to handle

more complex component-graphs, that explicitly model

“non-visible” nodes. Such graphs are more complex to

compute, but also much larger and then non-obvious

to process. We will investigate algorithmic solutions to

handle these richer component-graphs, and to include

them in our proposed framework.

From a methodological point of view, we have con-

sidered scalar attributes as valuation for the first layer

of component-graph. Such scalar attributes are gen-

erally defined on integers or real numbers, and then

equipped with a canonical total order. The second layer

of the proposed data-structure is therefore a component-

tree. More generally, the explicit handling of vectorial

attributes [66] at the first layer of the structure would

lead to the construction of a component-graph at the

second layer also. To handle that case, it would be man-

datory to develop new strategies to perform the shap-

ing operator for “graphs on graphs” instead of “trees

on trees” in previous works, or “trees on graphs” as

proposed here. The main difficulty will hinge on the

handling of the space cost (and, by side effect, the com-

putational complexity), for instance by using simplified

data-structures, e.g., as investigated for the definition

of multivalued trees of shapes [63].

From an applicative point of view, the proposed

framework has already been utilised in medical imaging,

for the segmentation of 3D images from multimodal ac-

quisition devices (in our case, positron emission tomo-

graphy coupled with X-ray computed tomography) [65,

17]. The main issues raised by these applications are dir-

ectly related, on the one hand, to the design of a com-

mon spatial framework for images generally acquired
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at different resolutions; and on the other hand, to the

definition of orderings that actually model relevant in-

formation in each band. This can involved combining

different modalities, which can be sometimes straight-

forward, but is often in fact quite complicated (for in-

stance when combining morphological with functional

images). In this context, coupling component-trees /

graphs with other kinds of hierarchies (trees of shapes,

binary partition trees, or watershed hierarchies) may

constitute an interesting perspective.

In the spirit of reproducible research, the code used

for the experiments of this paper is freely available at

https://github.com/bnaegel/component-graph.git.

Acknowledgements This research was partially funded by
the French Agence Nationale de la Recherche (Grant Agree-
ment ANR-10-BLAN-0205) and the Programme d’Investis-
sements d’Avenir (LabEx Bézout, ANR-10-LABX-58). The
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17. Grossiord, É., Naegel, B., Talbot, H., Passat, N., Naj-
man, L.: Shape-based analysis on component-graphs for
multivalue image processing. In: ISMM, International
Symposium on Mathematical Morphology, Proceedings,
Lecture Notes in Computer Science, vol. 9082, pp. 446–
457. Springer (2015)

18. Mazo, L., Passat, N., Couprie, M., Ronse, C.: Paths, ho-
motopy and reduction in digital images. Acta Applic-
andae Mathematicae 113(2), 167–193 (2011)

19. Rosenfeld, A.: Connectivity in digital pictures. Journal
of the ACM 17(1), 146–160 (1970)

20. Kovalevsky, V.A.: Finite topology as applied to image
analysis. Computer Vision, Graphics, and Image Pro-
cessing 46(2), 141–161 (1989)

21. Kong, T.Y., Rosenfeld, A.: Digital topology: Introduc-
tion and survey. Computer Vision, Graphics, and Image
Processing 48(3), 357–393 (1989)

22. Ronse, C.: Set-theoretical algebraic approaches to con-
nectivity in continuous or digital spaces. Journal of Math-
ematical Imaging and Vision 8(1), 41–58 (1998)

23. Braga-Neto, U., Goutsias, J.: Connectivity on complete
lattices: New results. Computer Vision and Image Un-
derstanding 85(1), 22–53 (2002)

24. Braga-Neto, U., Goutsias, J.K.: A theoretical tour of con-
nectivity in image processing and analysis. Journal of
Mathematical Imaging and Vision 19(1), 5–31 (2003)

25. Ouzounis, G.K., Wilkinson, M.H.F.: Mask-based second-
generation connectivity and attribute filters. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence 29(6), 990–1004 (2007)

26. Salembier, P., Oliveras, A., Garrido, L.: Anti-extensive
connected operators for image and sequence processing.
IEEE Transactions on Image Processing 7(4), 555–570
(1998)

27. Najman, L., Couprie, M.: Building the component tree
in quasi-linear time. IEEE Transactions on Image Pro-
cessing 15(11), 3531–3539 (2006)
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