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Abstract Connected operators based on hierarchical

image models have been increasingly considered for the

design of efficient image segmentation and filtering tools

in various application fields. Among hierarchical im-

age models, component-trees represent the structure

of grey-level images by considering their nested binary

level-sets obtained from successive thresholds. Recently,

a new notion of component-graph was introduced to

extend the component-tree to any grey-level or multi-

valued images. The notion of shaping was also intro-

duced as a way to improve the anti-extensive filtering

by considering a two-layer component-tree for grey-level

image processing. In this article, we study how compo-

nent-graphs (that extend the component-tree from a

spectral point of view) and shapings (that extend the

component-tree from a conceptual point of view) can

be associated for the effective processing of multival-

ued images. We provide structural and algorithmic de-

velopments. Although the contributions of this article

are theoretical and methodological, we also provide two

illustration examples that qualitatively emphasize the

potential use and usefulness of the proposed paradigms

for image analysis purposes.
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1 Introduction

Mathematical morphology is a well known non-linear

theory of image processing [1,2]. It was first defined

on binary images, and then extended to the grey-level

case [3]. Its extension to multivalued (colour, multis-

pectral, label) images is an ongoing, important task,

motivated by potential applications in multiple areas,

such as medical imaging, remote sensing, astronomy or

computer vision. Indeed, with the evolution of imaging

technology, an increasing number of image modalities

have become available. For instance, in medical ima-

ging, distinct image modalities are used in combination

to provide complementary characteristics in the body;

in remote sensing, sensors are used to generate a num-

ber of multispectral bands [4,5]. There are many others.

In the framework of mathematical morphology, the

basic algebraic structure is the complete lattice [6], i.e.

a non-empty set of ordered elements, whose every non-

empty subset admits an infimum and a supremum. This

means that the definition of morphological operators

requires the definition of an ordering relation between

elements to be processed. In the case of grey-level (resp.

binary) images, the complete lattice is the partially

ordered set of functions on R or Z (resp. on {0, 1}),
equipped with the point-wise partial ordering induced
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from the canonical total order on the reals or integers.

In the case for multivalued images, values are not ca-

nonically equipped with a total ordering due to their

vectorial nature. While this does not prevent the defin-

ition of a mathematically correct complete lattice struc-

ture, in applications this can create difficulties [7].

Several contributions have been devoted to this spe-

cific problem. A recent review can be found in [8]. Ex-

cept in a small number of works (for instance in the

case of label spaces [9,10]), most contributions intend

to define relevant total orderings on multivalued spaces

as originally described in [11]. In particular, two main

ways were explored: splitting the value space into sev-

eral totally ordered ones (marginal processing), or de-

fining ad hoc total order relations [7], often guided by

semantic considerations (vectorial processing). This is

particularly considered for handling colour images [12,

13,14] and less frequently multi- / hyperspectral im-

ages [15]: marginal ordering, conditional ordering (C-

ordering, widely studied in the framework of colour

morphology [7], including lexicographic ordering [16,

14]), reduced ordering (R-ordering) [4], partial order-

ing (P-ordering), and more recently a combination of

several of these orderings [12].

These approaches present the advantage of embed-

ding multivalued images into models that simplify pro-

cessing, similarly to grey-level images, in particular re-

ducing algorithmic complexity. However, these simpli-

fications of multivalued spaces induce some possible

loss and bias of the information intrinsically carried by

these, more complex but richer, partially ordered value

sets.

In this article —which is an improved version of the

conference paper [17]— we propose a new way to effi-

ciently handle multivalued images in the framework of

connected filtering. Our approach relies on the paradigm

of connectivity, which models the spatial / structural

links between some elementary patterns in an image.

Intuitively, the notion of connectivity on a set Γ allows

us to decide whether it is possible to move from a point

or a subset of Γ to another, while always remaining in

Γ . If this property is verified, we say that Γ is connec-

ted. Several —similar, and sometimes equivalent [18]—

ways can be considered to define connectivity: from the

standard notions of algebraic topology; from the no-

tions of paths in digital / discrete spaces [19,20,21]; or

by using morphological definitions of connectivity [6,

22,23,24,25].

In mathematical morphology, the notion of connecti-

vity led to define many hierarchical data structures, de-

signed to model simultaneously the spatial and spectral

information of an image. These data structures induced

various algorithmic approaches for image processing, ly-

ing in the family of connected operators. A brief state

of the art on the notion of component-tree (the most

popular morphological hierarchy data structure) and

previous works about the hierarchical handling of mul-

tivalued images, are proposed in Sec. 2, in order to

provide the context of our contribution. The formal-

ism of component-tree and its extension to multivalued

imaging, namely component-graphs, is then recalled in

Sec. 3.

Our main contribution is proposed in Secs. 4 and

5. We describe how the notion of shaping, which con-

sists of composing several component-trees at differ-

ent semantic levels, can be extended to handle both

component-trees and component-graphs, thus allowing

the processing of multivalued images via a hierarchical

approach. In particular, we describe in Sec. 4 the ex-

tension of the classical anti-extensive filtering paradigm

based on component-trees; and we provide a complete

algorithmic description of the way to actually imple-

ment this filtering in the case of images taking their

values in multiband spaces. Two application examples,

provided in Sec. 6, qualitatively illustrate the method-

ological interest of our hierarchical approach, for hand-

ling multivalued images and for fusing multiple binary

segmentations, via component-graphs and shapings.

2 Related works

2.1 Component-trees

The component-tree is a compact, lossless, hierarchi-

cal representation of grey-level images. Induced by the

inclusion relation between the binary components of
successive level-sets, this structure models image char-

acteristics in a mixed spectral-spatial space. By con-

struction, the component-tree is well adapted for the

development of image processing and analysis meth-

ods, based on topology properties (connectivity), and

aiming at extracting structures of interest with specific

intensities (global / local extremal values).

From a methodological point of view, the efficiency

of the component-tree relies on its low computation

cost. Several efficient algorithms have been proposed

for building the component-tree in quasi-linear time, in

sequential [26,27,28] and in distributed ways [29]. A

recent survey on the different computation algorithms

can be found in [30]. More generally, a recent survey

on partition hierarchies, including the component-trees,

can be found in [31].

As basic operations on tree nodes can be interpreted

in terms of processing on the image, component-trees

have been involved in several applications. Practically,

the proposed techniques have been designed to detect
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structures of interest using information computed on

the nodes. In particular, filtering and segmentation [26,

32,25] can be easily carried out by simply selecting

nodes, leading to connected operators. The versatility

of the component-tree structure has also led to many

other applications, such as image retrieval [33], classi-

fication [34], interactive visualisation [35], or document

binarisation [36].

The success of these methods relies on the develop-

ment of efficient algorithmic processes for node selec-

tion. Two main approaches were developed to cope with

filtering and segmentation issues. The first approach

consists of minimizing an energy globally defined over

the tree nodes, leading to compute an optimal cut [37],

interpreted as a segmentation of the image. This of-

ten formulated as an optimization problem, where the

space of solutions is composed of partitions from the

hierarchy (in this context, a notion of braids of parti-

tions [39] was introduced as a general framework for

the optimization of segmentation based on hierarchical

partitions). This is the basis for interactive segmenta-

tion [38]. The second approach consists of determining

locally the nodes that should be preserved or discarded,

based on attribute values [40] stored at each node of the

tree. The computed attributes are chosen according to

the application context. This approach is formalized as

an anti-extensive filtering framework [26,32], recalled

in Sec. 4, and constitutes the methodological basis of

the present work. The subtree obtained by pruning the

component-tree of the image, with respect to these at-

tributes, can then be used to reconstruct a binary or

grey-level result.

The main two limitations of the component-tree are

(1) structural: it is heavily constrained by the topo-

logical structure of the image; and (2) spectral: it is

limited to grey-level (i.e. totally ordered) value images.

Structural extensions of the component-tree have been

proposed in [41] to deal with ordered families of con-

nectivities, leading to component-hypertrees, and in [42]

to handle images defined as valued directed graphs,

leading to directed acyclic graphs (DAGs) structured

over a tree. Spectral extensions were first considered by

exploring marginal approaches for colour image hand-

ling [43]. Then, actual extensions of component-trees

to partially-ordered value images were pioneered in [44]

and further formalized in [45]. Except in specific cases

where the values are themselves hierarchically organ-

ized [46], the induced data structure, namely a compo-

nent-graph, is no longer a tree, but a DAG. The anti-

extensive framework proposed for component-tree fil-

tering remains valid in theory, but algorithmic issues

have to be dealt with, both for node selection and im-

age reconstruction [47,48].

2.2 Hierarchical approaches for multivalued image

processing

Connected operators are effective image processing tools

in the framework of mathematical morphology. They

were intensively studied for the last twenty years [1,

49,26,50]. In this context, operators based on hierarch-

ical image models, i.e. trees, have been the object of

several structural, algorithmic and methodological de-

velopments [51] in order to tackle issues associated to

specific application fields.

When dealing with the extension of connected oper-

ators based on hierarchical image models to multivalued

images, two major approaches are generally considered:

hierarchies of segmentations and morphological trees.

The first rely on hierarchical clustering. Indeed, hier-

archical segmentation trees aim at either growing and

merging regions in a bottom-up fashion, or splitting

regions in a top-down fashion. (see [52] for a recent sur-

vey on hierarchical segmentations in the graph frame-

work, as used in image processing.) The advantage of

these methods when dealing with multivalued images

is that they do not directly consider image levels but

a simplifying metric during their construction process.

In other words, they rely on a distance function / norm

between image values: e.g., a saliency measure for hier-

archical watersheds [53]; a merging order (region adja-

cency graph merging using techniques such as the ir-

regular pyramid [54], constrained connectivity [55]) for

partition trees (binary partition trees [56], α-trees [57],

quadtrees [58]); or via hyperconnections [59]. The use

of these intermediate functions hides the complexity of

the space, but necessarily induces a bias in the con-

structed data structure.

Alternatively, morphological trees focus on the in-

clusion relationship between components. These com-

ponents result from thresholding operations on the im-

age at every levels. A total order on the image values

ensures the inclusion of the level sets. Such total or-

dering is then required to compute these trees. Unfor-

tunately, and contrary to grey-level images, the spaces

in which multivalued images take their values are not

canonically equipped with total orders. Then, an order-

ing on intensities that has to be decided upon. Hence,

morphological trees consist of simplifying the multival-

ued space of images a priori, to retrieve tractable totally

ordered values, e.g. by marginal or vectorial policies [5].

This strategy makes it possible to reuse morphological

trees specifically designed for grey-level images, such as

the component-tree [26] and its self-dual version, the

tree of shapes [60,61]. However, this simplification of

multivalued spaces induces a loss of information.



4

To cope with this problem, efforts have been con-

ducted to extend these data structures to more com-

plex spaces. Nevertheless, preserving a tree structure

still requires restrictive constraints on the value space

[46], or a final simplification. More specifically, for the

extension of the tree of shapes to multivalued image, it

was proposed to marginally compute the tree of shapes

for each colour channel, and merge them into a single

tree [62]. But then, the merging decision does not rely

on values anymore but on properties computed in a

shape-space [63].

Since a natural total order on multivariate data is

usually not obvious, some approaches try to deal with

the inherent natural partial order. Consequently, a true

extension of such hierarchies to multivalued spaces leads

to a data structure that is no longer a tree, but a DAG.

This is the case for the notion of component-graph

[45], that extends the component-tree. This approach

uses directly the partial ordering of values and manip-

ulates the underlying graph structure. The higher rich-

ness and structural complexity of the component-graph,

with respect to the component-tree, induces algorithmic

issues when considering the classical anti-extensive fil-

tering process developed in [26,32]. This is in particular

the case for handling spatial complexity [47], pruning

policies and image reconstruction [48].

Recently, a new notion of shaping [64] was intro-

duced as an efficient way to improve the framework of

anti-extensive filtering of [26,32], by considering a two-

layer component-tree for grey-level image processing

[64,65]. In [17], we proposed to associate both notions

of component-graphs and shaping for the effective pro-

cessing of multivalued images, opening the way to new

paradigms for connected filtering based on hierarchical

representations.

3 Background notions

This article is set in the framework of vertex-valued

graphs. We recall some basic notions and notations on

graphs. They will allow us to describe the component-

tree and the component-graph in a simple and unified

formalism, and to discuss, in Secs. 4 and 5, how to carry

out shaping on component-graphs to handle multival-

ued images. For the sake of clarity, Sec. 3 is written in

a self-contained way.

3.1 Order relations

Let Γ be a finite set of elements. Let ≤ be a (binary)

relation on Γ . We say that ≤ is an order relation, and

that (Γ,≤) is an ordered set, if ∀x, y, z, the relation ≤
satisfies the following conditions:

(i) x ≤ x (reflexivity);

(ii) (x ≤ y ∧ y ≤ z)⇒ (x ≤ z) (transitivity); and

(iii) (x ≤ y ∧ y ≤ x)⇒ (x = y) (antisymmetry).

Moreover, we say that ≤ is a total (resp. partial) order

relation, and that (Γ,≤) is a totally (resp. partially)

ordered set, if ≤ is total (resp. partial), i.e. if ∀x, y ∈
Γ, (x ≤ y ∨ y ≤ x) (resp. if ∃x, y ∈ Γ, (x 6≤ y ∧ y 6≤ x)).

The word “partial” indicates that there is no guarantee

that two elements can be compared

An ordered set can be modelled via its Hasse dia-

gram, which depicts the covering relation. More pre-

cisely, the Hasse diagram of an ordered set (Γ,≤) is its

transitive reduction, i.e. the strictly ordered set (Γ,≺)

such that for all x, y ∈ Γ , we have x ≺ y iff y covers x,

i.e. x < y and there is no z ∈ Γ such that x < z < y. (In

the sequel, illustrations are drawn so that elements are

placed above the elements they cover.) The resulting

diagram provides a compact and lossless description of

the order relation ≤.

3.2 Vertex-valued graphs

We define a graph G as a couple (Γ,a), where Γ is a

nonempty finite set, and a is a binary relation on Γ .

The elements of Γ are called vertices or points. If two

vertices x, y of Γ satisfy x a y, we say that they are

adjacent; any such couple (x, y) is called an edge. A

subgraph G′ of G is a graph (Γ ′,a) such that Γ ′ is a

subset of Γ , equipped with the restriction of a to Γ ′.

In this work, we consider irreflexive graphs, i.e. we

never have x a x. These irreflexive graphs are further-

more non-directed graphs, i.e. x a y ⇔ y a x; the

edges (x, y) and (y, x) are then the same.

In G, a path between two vertices x and y is defined

as a sequence of distinct vertices of G from x to y such

that any two successive vertices are adjacent. In this

case, we say that x and y are connected in G. If this

path exists and is unique for any two vertices of the

graph, then the graph is a tree.

We say that G is connected if any two vertices of G

are connected. The connected components of G are the

maximal sets of vertices that can be linked by a path.

The set of all these connected components is noted C[G];

it is a partition of Γ (i.e. a set P of nonempty disjoint

subsets of Γ whose union is Γ ).

Let F : Γ → V be a function such that V is a

nonempty set canonically equipped with an order re-

lation ≤. The triple (G,V,F) is called a vertex-valued

graph (or valued graph, for brief). We now define the
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notions of component-tree and component-graph, based

on this notion of valued graph.

3.3 Component-tree

Let (G,V,F) be a valued graph. In the sequel of this

section, we assume that ≤ is a total order on V, and

that G is connected, i.e. C[G] = {Γ} contains a unique

connected component. Since Γ is finite, so is the set

F(Γ ) = {F(x) | x ∈ Γ} ⊆ V. Without loss of general-

ity, we can assume that V = F(Γ ) and is then finite. In

particular, (V,≤) admits a minimum, noted ⊥.

For any v ∈ V, we define the threshold set Γv by

Γv = {x ∈ Γ | v ≤ F(x)} (1)

Any such threshold set Γv induces a subgraph Gv =

(Γv,a) of G. For any v, v′ ∈ V we have v ≤ v′ ⇔ Γv′ ⊆
Γv. In addition, for any connected component Xv′ of

C[Gv′ ], there exists a unique connected component Xv

of C[Gv] such that Xv′ ⊆ Xv.

We note Ψ the set of all the connected components

of the subgraphs Gv obtained by successive threshold-

ings of G

Ψ =
⋃
v∈V
C[Gv] (2)

The component-tree [26] of (G,V,F), noted CT, is

the Hasse diagram of the partially ordered set (Ψ,⊆).

We can observe that X ∈ Ψ can correspond to several

connected components in distinct threshold sets Γv ⊆
Γ for successive values v ∈ V. Then, each X ∈ Ψ is

intrinsically associated in CT to a value l(X), defined as

the maximal value of V which generates this connected

component by thresholding of F .

As suggested by its denomination, the component-

tree has a tree structure. Its vertices are also called

nodes. Among them, the largest component is the max-

imum for the Hasse diagram, namely the set Γ , ob-

tained as the unique connected component of G = G⊥;

it is the root of the tree.

On the opposite side, the leaves are the minimal

elements of the Hasse diagram, i.e. the nodes of Ψ that

do not strictly include any other nodes (see Fig. 1). The

order relation ≤ between nodes defines a parenthood

relationship: a node X1 ∈ Ψ is the parent of a node

X2 ∈ Ψ if X2 ⊂ X1 and if there is no other node X3 ∈ Ψ
such that X2 ⊂ X3 ⊂ X1. In that case, we also say that

X2 is a child of X1.

For image processing purposes, each node of CT

generally stores a value: either an energy (for global

optimization) or an attribute (for local selection); this

value is most often real. In both cases, this valuation

(a) (G,V,F)

A

B

C D,E

K

L M N

F,G H,I,J

O,P

(b) CT

A

(c) Γ0

D

H

B

D

(d) Γ1

D

I

C

F

E

(e) Γ2

J

C

G K

O

(f) Γ3

N

C

L M

P

(g) Γ4

Fig. 1 (a) A grey-level image, viewed as a valued graph
(G,V,F), where V = [[0, 4]] ⊂ Z (from 0 in black; to 4 in
white) equipped with the canonical order relation ≤. (c–g)
Thresholded sets Γv ⊆ Γ (in white) for v varying from 0 to 4.
(b) The component-tree CT associated to (G,V,F). The let-
ters (A–P) in nodes correspond to the associated connected
components in (c–g).

is modelled by a function V : Ψ → R. In other words,

such enriched component-tree can be itself interpreted

as a valued graph (CT,R,V).

3.4 Component-graph

Let (G,V,F) be a valued graph. We still assume that

V = F(Γ ) is finite and that (V,≤) admits a minimum

⊥. The graph G also remains connected, but from now

on the order relation ≤ on V need not be total.

We extend the notion of connected component in

the following way. Let X ∈ C[Gv] be a connected com-

ponent of the threshold set Γv inducing Gv at value v.

(Contrary to totally ordered sets, there may exist sev-

eral values vi ≤ v (i ∈ N) such that X ⊆ Xi ∈ C[Gvi]
while vi is a maximal value lower than v.) We define the

couple K = (X, v) as a valued connected component.

We note Θ the set of all the valued connected com-

ponents of G, with respect to its successive thresholds,

defined as

Θ =
⋃
v∈V
C[Gv]× {v} (3)

From the order relation ≤ defined on V, and the

inclusion relation ⊆, we define the order relation E on

the valued connected components of Θ as

(X1, v1) E (X2, v2)⇔ (X1 ⊂ X2)∨(X1 = X2∧v2 ≤ v1)

(4)
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This order1, which intuitively mixes the inclusion and

the value orders between connected components in a

lexicographic way, can be considered as an extension of

the inclusion relation to valued connected components.

The component-graph [45] CG associated to the val-

ued graph (G,V,F) is the Hasse diagram of the par-

tially ordered set (Θ,E). It does not necessarily have a

tree structure; indeed several paths may exist between

two nodes. This derives from the fact that a node can

be the child of several parents (and not only one, as in

a tree). When a node is the child of two parent nodes

that are not comparable in values, either these parent

nodes meet without inclusion, i.e. they are not mutually

included, or one of them is included in the other.

The component-graph still has a unique greatest

node that is the maximum for the Hasse diagram, namely

(Γ,⊥); it is the root of the graph. Similarly to the

component-tree, the component-graph still has leaves,

that are the minimal elements of the Hasse diagram.

Three variants of the component-graph exist, rely-

ing on different subsets of valued connected compon-

ents:

1. Θ represents all the valued connected components

induced by G;

2. Θ̇ corresponds to the set of the valued connected

components of maximal values considering all con-

nected components. The set of nodes Θ̇ provides

at least one occurrence of a valued connected com-

ponent for each possible support X induced by the

image, while removing those that are hidden as the

value v is lower; and

3. Θ̈ gathers the valued connected components which

are generators of F , i.e. those that actually contrib-

ute to the definition of the image support.

Θ̇ = {(X, v) ∈ Θ | ∀(X, v′) ∈ Θ, v 6< v′} (5)

Θ̈ = {(X, v) ∈ Θ | ∃x ∈ X, v = F(x)} (6)

Based on these definitions, we observe that

Θ̈ ⊆ Θ̇ ⊆ Θ (7)

The Θ- (resp. Θ̇-, resp. Θ̈-) component-graph of F
is the Hasse diagram of the partially ordered set (Θ,E)

(resp. (Θ̇,E), resp. (Θ̈,E)).

1 Practically, when ≤ is a total order, the component-graph
and the component-tree are isomorphic [45]. Consequently, it
would make sense to also consider the valued connected com-
ponents and the order E for building the component-tree, as
the threshold value that leads to the generation of a connected
component is useful for image modelling and reconstruction;
see Eq. (10).

The three variants of component-graphs present in-

verse relationships between computational cost and in-

formation richness. The set Θ, that models all the val-

ued connected components in the image, is the most

informative but also the most costly. The set Θ̇, which

gathers the valued connected components with max-

imal level, is intermediate in terms of both cost and

information. Finally the set Θ̈, that is reduced to the

minimal set of valued connected components needed to

define the image support, is the least costly and inform-

ative. The relevance of each component-graph directly

depends on the targeted image processing application.

For instance, when (V,≤) is a hierarchy of concepts, e.g.

an ontology, it is mandatory to compute all the nodes

for a complete description of the semantics of the image

[46]; then the Θ-component-graph is relevant. By con-

trast, when performing anti-extensive filtering on col-

our images, it is important to avoid the appearance, in

the result, of colours non-present in the input data [47];

then the Θ̈-component-graph is relevant.

An example of multivalued image F and its asso-

ciated value set V are provided in Fig. 2(a) and (b).

Fig. 2(c–p) depicts the various valued connected com-

ponents obtained from this image. More precisely, the

support X of a valued connected component is repres-

ented in white in each subfigure, while v is given by the

value at which the image has been thresholded in the

subfigure. The three variants of component-graphs are

illustrated in Fig. 2(q–s).

The component-graph is a relevant extension of the

component-tree, as (i) both data structures are com-

pliant for totally ordered sets (V,≤), hence compatible

for grey-level images, and (ii) the component-graph sat-

isfies the image (de)composition model associated to

component-tree, defined later in Eq. (10). In addition,

similarly to component-trees, an attribute value can be

stored in each node of the component-graph to char-

acterize the corresponding component. The local node

selection based on attributes can lead to filtering or

segmentation strategies. This valuation can also be in-

terpreted as a function A : Θ → R. Then, such enriched

component-graph is also interpreted as a valued graph

(CG,R,A).

4 Shape-space analysis of multivalued images:

Theory

A (discrete) image I is a mapping from a finite spatial

domain Ω (the image support, i.e. the set of its pixels

/ voxels) to a value space V possibly equipped with an

order relation ≤. For any x ∈ Ω, I(x) ∈ V is the value
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(a) (G,V,F)

(0,3)

(1,3) (2,2)

(1,2) (2,1)

(1,1)

(1,0)

(0,2)

(2,3) (3,2)

(3,1)

(3,0)

(2,0)

(0,1)

(0,0)

(b) (V,≺)

B

F

(c) Γ(0,1)

C

E

(d) Γ(1,0)

D

K

(e) Γ(0,2)

I

L

(f) Γ(1,1)

J

P

R

(g) Γ(2,0)

X

H

Q

(h) Γ(0,3)

N

O

(i) Γ(1,2)

M

U

W

(j) Γ(2,1)

G

(k) Γ(3,1)

X

S

V

(l) Γ(1,3)

T

Y

Z

(m) Γ(2,2)

AA

(n) Γ(3,1)

X

X

AB

(o) Γ(2,3)

AC

(p) Γ(3,2)

(q) Θ-CG (r) Θ̇-CG (s) Θ̈-CG

Fig. 2 (a) A multivalued image, viewed as a valued graph (G,V,F), where F : Γ → V and V = {(0, 1), (1, 0), (0, 2),
(1, 1), (2, 0), (0, 3), (1, 2), (2, 1), (3, 0), (1, 3), (2, 2), (3, 1), (2, 3), (3, 2)}. (b) The Hasse diagram of the ordered set (V,≤). For
the sake of readability, each value of V is associated to an arbitrary colour. (c–p) Threshold sets Γv for v ∈ V. (q–s) The Θ, Θ̇,
Θ̈-component-graphs of F . The letters (A–AC) in nodes correspond to the associated connected components in (c–p). We can
distinguish different types of valued connected components: they are either “completely visible” (e.g. the salmon X of value
(2, 3)), or “partially visible” (e.g. the green G of value (3, 1)), or “totally hidden” (e.g. the brown B of value (0, 1)). Those that
are either partially or totally visible participate to the formation of the image support and then belong to Θ, Θ̇, Θ̈. Those that
are invisible cannot belong to Θ̈ but do belong to Θ. Among this set, the valued connected components that also belong to Θ̇
are those that present a maximal value v for a given support X.
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of I at x:∣∣∣∣I : Ω → V
x 7→ I(x) = v

(8)

Various choices are available for V, such as V = Rn or

V = Zn. The case of n > 1 corresponds to images with

several bands of values; we then have V = V1×. . .×Vn,

and this Cartesian product induces a complete lattice.

Each mapping Ii : Ω → Vi is called a band of the

multivalued image, and v is a n-dimensional vector.

In order to develop morphological hierarchies, such

as component-trees or component-graphs, it is required

to know the order ≤ on V. If (V,≤) is a totally (resp.

partially) ordered set, we say that I is a grey-level (resp.

multivalued) image.

For any X ⊆ Ω and any v ∈ V, we define the cylin-

der function C(X,v) of support X and value v, as:∣∣∣∣∣∣
C(X,v) : Ω → V

x 7→
{
v if x ∈ X
⊥ otherwise

(9)

In addition, to develop connected operators, it is

necessary to handle the structure of Ω, i.e. to know the

adjacency between its points, leading to a graph S. An

image is then modelled as a valued graph (S,V, I).

4.1 Anti-extensive filtering with the component-tree

The component-tree and the component-graph are im-

age lossless models. Indeed, if we consider the image I
in its functional form, i.e. as a mapping I : Ω → V,

then I can be fully recovered from the (de)composition

formula of Eq. (10). More precisely, the image can be

expressed as the point-wise supremum of the nodes of

its associated component-tree (Ψ) or component-graph

(Θ):

I =
∨

(X,v)∈Θ

C(X,v) =
∨
X∈Ψ

C(X,l(X)) (10)

In the framework of component-trees (i.e. for grey-

level images, i.e. when ≤ is a total order), this formula

leads to a well defined image for Ψ but also for any

subset of nodes Ψ̂ ⊆ Ψ . Then, it is possible to filter the

image I by discarding some of the nodes of its hier-

archical representation, and reconstructing a resulting

image from the preserved nodes. Each point x ∈ Ω

in the filtered image presents a value that is lower or

equal to the initial image; the induced operators are

then anti-extensive. This anti-extensive filtering scheme

was formalized for grey-level images in [26,32]. It ba-

sically consists of three successive steps:

(i) construction of the component-tree CT associated

to the image I;

(ii) reduction of the component-tree by selection of nodes

Ψ̂ ⊆ Ψ ; and

(iii) reconstruction of the result image Î ≤ I from the

reduced component-tree ĈT.

(S,V, I)
(i)−−−−→ (CT,R,V)y y(ii)

(S,V, Î)
(iii)←−−−− (ĈT,R,V|Ψ̂ )

(11)

Step (i) is carried out from a wide range of available

component-tree construction methods [30], while Step

(iii) is straightforward from Eq. (10).

The core of the process is Step (ii). It implies to

choose a subset of nodes Ψ̂ ⊆ Ψ . This choice is based on

(i) a selection criterion, i.e. a Boolean predicate related

to the valuation V : Ψ → R that indicates if a node sat-

isfies a required property; and (ii) a reduction policy to

determine which parts of the component-tree should be

kept or removed. The nature of the valuation V guides

the decision of preserving or discarding a node. If V
models an increasing attribute, the removal of a node

implies that of all its descendants. Contrary, if V mod-

els a non-increasing attribute, some rejected nodes can

have preserved descendants. In other words, the valid-

ity of the predicate for a given node does not imply

its validity for the rest of the branch. Several classical

policies have been defined for handling such situation,

including in particular the Min, Direct and Max ones

[26,32]:

– Min: a node is removed if it does not fulfill the cri-

terion, or at least one of its parent node has been

removed;

– Max: a node is removed if it does not fulfill the cri-

terion, and all of its children nodes have been re-

moved;

– Direct: a node is removed if it does not fulfill the

criterion.

The Min and Max policies have a (sub)linear computa-

tional cost but might lack coherence in regards to the

criterion. Indeed, they might discard/preserve nodes

that meet/do not meet the criterion, depending on their

position in the tree. The Direct policy preserves exactly

the nodes fulfilling the criterion, but it relies on an ex-

haustive scanning of all the nodes in the tree. Its com-

putational cost is then equal to the tree size.

4.2 Coupling shaping and component-graphs

In this section, we describe how component-graphs (that

extend the component-tree from a spectral point of
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view) and shaping (that extends the component-tree

from a conceptual point of view) can be associated for

the effective processing of multivalued images.

4.2.1 Extension of the anti-extensive filtering to

component-graphs

The component-graph also satisfies the (de)composition

formula classically associated to the component-tree;

see Eq. (10). Indeed, an image I can be represented via

the cylinder functions induced by the nodes Θ of its

component-graph. In principle, we can then extend the

above anti-extensive filtering to images taking their val-

ues in any value space V, without the assumption that

≤ is a total order. We have to consider a component-

graph instead of a component-tree. This allows us to

process any image in the same framework as initially

proposed in [26,32]:

(S,V, I)
(i)−−−−→ (CG,R,A)y y(ii)

(S,V, Î)
(iii)←−−−− (ĈG,R,A|Θ̂)

(12)

However, due to the more complex structure of mul-

tivalued images and component-graphs, extending this

framework is not straightforward. In particular, it raises

two difficulties. First, as the data structure is no longer

a tree, Step (ii) is now more complex. Indeed, even

if pruning policies, defined for component-trees, remain

consistent for component-graphs, they have to be adap-

ted for dealing with non-linear bottom-up or top-down

node parsing. Second, Step (iii) becomes an ill-posed

problem, depending on the nature of the order ≤ and

the organization of the preserved nodes Θ̂. This issue is

inherent to the component-graph structure. Indeed, if

a node with several non-comparable parents is removed

during the selection, the reconstruction becomes sub-

ject to arbitrary decisions, due to non-determinism at

the parent nodes intersection. In addition, structural

stability may be lost as the result image can corres-

pond to a set of nodes that are different from those of

the initial image.

4.2.2 Shaping: anti-extensive filtering in the

shape-space

The paradigm of shaping [64] proposes to extend the

framework of anti-extensive filtering to non-monotonic

attributes, for grey-level image processing. It consists of

performing the filtering on a double layer of component-

trees, i.e. on the component-tree of the component-tree

of the image, that transforms any attribute into a mono-

tonic one.

The first (inner) layer corresponds to the compo-

nent-tree CT of the image. The paradigm of shaping

is to consider this component-tree CT itself as an im-

age, and to build a second (outer) layer of component-

tree from it. Indeed, from a functional point of view,

a component-tree can be defined as a mapping CT :

Ψ → V, where points are replaced by nodes, while in-

tensities correspond to attribute values. Two nodes of

the component-tree are adjacent if one of them is the

parent of the other. This approach is tractable only if

the space of attribute values V is equipped with a total

order relation, i.e. can be modelled as (a subset of) R
or Z. This is the case for most attributes, in particular

numerical ones. In this case, it is then possible to build

a component-tree of this first tree CT.

This “tree of tree” CT′ is processed as any other

component-tree and we can perform anti-extensive fil-

tering with it. It is then possible to process any grey-

level image in the framework initially proposed in [26,

32], by performing node selection in a data structure

that is no longer defined at the image level, but at a

higher semantic level. The virtue of this new tree is that

the attributes computed from the nodes of CT are now

increasing in CT′. This allows us to perform real-time

threshold-based node selection. The overall procedure

remains quasi-linear in time and space, since we only

duplicate the standard component-tree anti-extensive

filtering process.

(S,V, I)
(i)−−−−→ (CT,R,V)

(i′)−−−−→ (CT′,R,V)y y(ii)

(S,V, Î)
(iii)←−−−− (ĈT,R,V|Ψ̂ )

(iii′)←−−−− (ĈT
′
,R,V|Ψ̂ ′)

(13)

The main limitation of this framework is that it con-

siders a tree as intermediate data structure, thus limit-

ing its use to grey-level images.

4.2.3 From “a tree on a tree” to “a tree on a graph”

The notion of valued graphs sheds light on the common

structure of images, component-trees and component-

graphs. In particular, it allows us to describe them with

a simple and unified formalism. As a side effect, it em-

phasises the fact that shape-space filtering does not ne-

cessarily require a tree as inner layer; it can also accept

a graph. The cornerstone of this work is the generaliza-

tion of the initial shaping paradigm. It can be used not

only do build a “tree on a tree” but also a “tree on a

graph”. This simple idea, summarized by Diagram (14),
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allows us, in theory, to process any image via a shape-

based filtering.

(S,V, I)
(i)−−−−→ (CG,R,A)

(i′)−−−−→ (CT,R,A)y y(ii)

(S,V, Î)
(iii)←−−−− (ĈG,R,A|Θ̂)

(iii′)←−−−− (ĈT,R,A|Ψ̂ )

(14)

Based on the above remarks, this approach has the

following virtues:

– it avoids the complex selection of nodes directly in

the component-graph, since this task is indirectly

carried out on the outer-layer component-tree;

– it extends the initial shaping approach beyond grey-

level images to multivalued images;

– it inherits the good properties of shape-space filter-

ing from increasing criteria, among which real time

and interactive node selection at higher semantic

level.

Nevertheless, behind this simple idea, and its intrinsic

advantages, some algorithmic issues have to be tackled,

in particular for the two reconstruction steps (iii), from

the component-tree to the component-graph and then

to the image. In Sec. 5, we propose some algorithmic

solutions to these issues.

5 Shape-space analysis of multivalued images:

Algorithmics

We now provide an algorithmic discussion about each

step of the filtering framework depicted in Diagram (14),

for handling multivalued images in the shape-space.

This algorithmic discussion is provided under the as-

sumption that the considered multivalued images are

multiband data, i.e. the set of values V is composed of k

spectral bands Vi, each equipped with a total order. In

particular, we consider the canonical partial order ≤ on

V defined by (vi)
k
i=1 ≤ (wi)

k
i=1 ⇔ ∀i ∈ [[1, k]], vi ≤ wi.

This hypothesis is motivated by the high frequency of

such images in current image processing applications,

which justifies to study them in priority.

5.1 Component-graph construction

Three variants of component-graphs were introduced

in [45] (see Sec. 3.4), in particular to simplify CG by

considering smaller subsets of Θ. In Step (i) of our

framework, that builds the first layer component-graph

CG from the multivalued image (S,V, I), we will often

choose to consider the lightest version (Θ̈) of component-

graph (Fig. 2(s)), i.e. the one that represents only the

nodes which actually contribute to the construction of

the image according to Eq. (10). In the case of Θ̈, we use

the component-graph construction algorithm proposed

in [47]. (However, an algorithm was recently proposed

in [66,67] for building, more generally, the component-

graphs Θ; then, the proposed framework is, of course,

also tractable for such “complete” component-graphs.)

For the sake of readability, we will now note Θ̈ as Θ.

The choice of working with the Θ̈-component-graphs

motivated by several facts. First, we are considering

multiband images, that generally correspond to “real”

images, where values at each point have a physical mean-

ing (by contrast with semantic-content images considered

for instance in [46]). The Θ̈-component-graph is the

only which guarantees that no new value will be intro-

duced via a node initially hidden in the graph; this is

a reasonable property in this context. Experimentally,

it was observed in [47] that such component-graph was

indeed relevant for filtering (denoising, simplification)

purposes.

Second, from a space complexity point of view, this

component-graph is more efficient than the other two.

Indeed, by construction, each node is visible in the mod-

elled image. This means that at least one point of the

image is directly and uniquely modelled by one node

of the component-graph. A corollary of this property

is that the number of nodes within Θ̈ is bounded by

the number of points of the image; in other words, the

space complexity of the graph is (in the worst case) lin-

ear with respect to the image size. Since no intermediate

superlinear data structure is required for its construc-

tion, which may lead to extra computational cost, the

building of this component-graph also presents a linear

time complexity.

5.2 Component-graph valuation

At this stage, an attribute can be associated to each

node of Θ, in the component-graph CG, to retrieve a

structure of valued graph, namely (CG,R,A) in Dia-

gram (14).

We consider here an attribute taking its values in

R, namely a set where all values are comparable. While

alternative choices are possible (see Sec. 7), we assume

that a valuation A : Θ → R contains enough inform-

ation to accurately filter the nodes, while leading to

a valued graph that authorizes the building of a tree

structure as second layer.

The criteria possibly modelled by A for each node

K = (X, v) ∈ Θ can depend on:
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(1) spectral properties, relying on image intensities, tex-

ture, etc. (i.e. the information stored in the v part,

e.g. intensity mean, extrema): then, we generally

have A : V→ R;

(2) geometric properties, relying on spatial information

of the image (i.e. the information stored in the X

part, e.g. compacity, flatness): then, we generally

have A : 2Ω → R;

(3) structural properties, relying on the relationship be-

tween the node and its neighbourhood within the

component-graph. By contrast with spectral and geo-

metric properties, that describe the node locally (i.e.

on its own support), structural properties describe

the node with respect to its environment. For in-

stance, relevant information can be related to branch

length, position within the graph, number of chil-

dren / parent nodes, etc. The definition of such

properties then requires to observe the component-

graph in a local or semi-global way (generally around

the node of interest);

or any combination of some of these three classes. In

the case of multiple criteria, standard linear combin-

ations can be considered (mean, weighed functions),

but also nonlinear combinations (min, max, median).

The main difficulty then consists of making the criteria

values relevantly comparable; this generally requires a

normalization step.

Contrary to the other kinds of component-graphs,

the chosen version of CG is relatively light. As a con-

sequence, a criterion of type (3) would be weakly relev-

ant, as all “internal” nodes of the graph are not mod-

elled, thus making the graph structurally sparse. In-

deed, the elimination of nodes from the richer variants

of CG may hide information and introduce a bias in

the graph structure, with respect to this specific type

of attributes.

Then, only geometric criteria (type (2)) are con-

sidered here, for building the component-tree of the

second layer. In particular, this choice is coherent with

the paradigm of shaping —initially designed to focus

on higher level semantics— and also motivated by the

fact that the spectral handling (criteria of type (1)) of

the image is intrinsically carried out at the first layer

of the structure. Indeed, the component-graph already

models the order between values in V via its structure.

The spectral handling then occurs both before (during

the component-graph construction) or after the shaping

stage (during the image reconstruction).

Another possibility is to define on this outer compo-

nent-tree a second attribute V from which will be pro-

cessed the tree pruning. In order to preserve the good

properties of such filtering, it is essential that this new

attribute V keep the same behaviour as the first attrib-

ute A, i.e. an increasing or decreasing evolution along

the tree. An example can be given by considering as

attribute V the gap between the attribute value Ak
of the node K and the values Al of the leaves of its

branch. Such criterion remains increasing, thus author-

izing a (relative) thresholding approach, similar to the

first strategy but with a fine behaviour.

5.3 Component-tree construction and pruning

From the valued graph (CG,R,A) associated to the

component-graph, a shape-based component-tree can

now be defined. This tree is the data structure that

will be considered for the pruning process (Step (ii)).

In practice, the structures of interest can be of two

kinds, depending on the adopted processing paradigm:

they are either structures to be preserved in the im-

age (for segmentation) or structures to be removed (for

filtering or denoising).

Two basic policies can be considered to build the

component-tree CT, guided by the nature of the attrib-

ute A, and more specifically by the correlation between

the extremal values of A and the structures of interest.

When these structures of interest correspond to the low-

est values of A, a min-tree (Fig. 3(b)) is chosen, i.e. the

root has the highest value, while the leaves have the

lowest; when the structures of interest correspond to

the highest values of A, a dual max-tree (Fig. 3(c)) is

adopted. The inversion of the attribute allows one to

switch from a representation to the other.

Once the min-/max-tree has been built, the prun-

ing process is carried out in a way that depends on

the kind of processing paradigm. In the first case (seg-

mentation), i.e. when structures of interest have to be

preserved, relevant nodes are selected by preserving the

distal parts, i.e. the branches of the tree (Fig. 3(d)). In

the second case (filtering), i.e. when structures of in-

terest have to be eliminated, the pruning consists of

removing those distal parts of the tree, and preserving

the proximal part (Fig. 3(e)). In each case, the principle

is to compute the most discriminative cut in the tree,

and to preserve nodes located either below or above this

cut, according to the chosen paradigm.

Practically, each node Y ∈ Ψ of the component-

tree CT is a connected component gathering nodes of

a subgraph of CG, for a given threshold value with re-

spect to A. This threshold value then constitutes the

valuation of this node. Following the above classifica-

tion of properties (spectral, geometric, structural, see

Sec. 5.2), this new valuation A —that was obtained

from a valuation based on geometric properties— is

now a valuation based on spectral properties in the con-
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Fig. 3 Component-tree construction and pruning. (a) The component-graph valued with attribute A. (b,c) The min-tree
Ψmin and max-tree Ψmax built from Θ. In these representations, a node of the component-tree may correspond to a node of
the component-graph (e.g. leaves such as G in Ψmin) or a set of nodes of the component-graph (e.g. {A} gathers all the nodes
of {A,G,H,M,N,X,AB,AC} in a same node in Ψmin). The red line represents a cut in the tree. Depending on the policy, the
nodes to be preserved are either located below (d) or above the cut (e).
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text of shaping, since the attribute of the component-

graph becomes the valuation of the component-tree, in

the shape-space. In addition, it defines a monotonic cri-

terion, allowing for an easy selection by thresholding,

and avoiding the use of any specific (e.g. Min, Max)

pruning policies.

5.4 Component-graph filtering

A “standard” component-tree —defined from a grey-

level image— contains nodes which represent connec-

ted components of points of the image, obtained at a

given threshold value. By contrast, the component-tree

CT, defined at the outer layer of the shape-space model

—computed from the valued graph (CG,R,A)— con-

tains nodes that are connected components of Θ, which

are themselves connected components of Ω. Such nodes

Y ∈ Ψ are thus defined as {Ki = (Xi, vi)}ki=1 ⊆ Θ, with

k ≥ 1.

Once the pruning of the component-tree has reduced

the number of nodes Y preserved in Ψ̂ , two main ways

can be considered to determine which nodes Ki ∈ Y

have to be preserved in the resulting pruned component-

graph ĈG, i.e. which nodes should form Θ̂; see Fig. 4.

A first way is to keep all the Ki contributing to the

preserved Y , since they all provide spectral information

in the image.

But since spectral information is already taken into

consideration within the inner layer component-graph,

a second way is to exclusively consider spatial inform-

ation carried by the preserved nodes Y . Indeed, each

node Ki ∈ Y is either included in another node Kj ∈ Y ,
or is a maximal element in Y with respect to the E (and

the ⊆) relation. When dealing with geometric criteria,

only these latter —maximal— nodes, that contribute to

define the support
⋃k
i=1Xi of Y in Ω, are of interest.

In other words, if Y is preserved in Ψ̂ , only the nodes

Ki = (Xi, vi) of Y such that Xi is a maximal subset

of Ω within Y may be preserved (both spatially and

spectrally) in the filtered image. We note Ŷ ⊆ Y the

subset of Y formed by such nodes.

Then, the other nodes of Y are not taken into ac-

count and are lost in the representation. Practically,

this is not a problem in general. Indeed, most2 of the

2 Erratum: In [17, p. 453], it was written that “any node

K ∈ Θ belongs to Ŷ for at least one Y ∈ Ψ”. This is not
always true. A trivial counter-example is the case where Θ
has at least 2 nodes, while the same value is given by A to
each K ∈ Θ, thus leading to a degenerated component-tree
CT composed by a single node. However, for “reasonable”
valuation functions A, and in particular those taking their
values in R, it is quite probable that most nodes K ∈ Θ
belong to Ŷ for at least one Y ∈ Ψ .

A C B

A C B AUB

(a)

(b) (c)

co
n
tr
ib
u
ti
o
n

sp
a
ti
a
l

Fig. 4 Component-graph filtering. (a) A node Y from the

outer layer component-tree preserved in Ψ̂ after tree pruning.
This node Y is composed of three nodes of the component-
graph CG: A, B and C such that C ⊂ A and C ⊂ B. Two
choices can be made for the filtering of Y : either (b) all nodes

(A, B and C) are preserved in Ŷ as they all contribute to
the spectral values of the component; or (c) only A and B are

kept in Ŷ when C is eliminated, since A∪B defines the spatial
support of Y while C does not participate to the definition of
the boundaries of Y .

nodes K ∈ Θ belong to Ŷ for at least one Y ∈ Ψ .

In other words, even by preserving a strict part of the

nodes within the elected Y , each node K still has a

chance to be finally preserved, thus minimizing the risks

of erroneous removals.

The main difference between the initially proposed

shaping paradigm (“a tree on a tree”) and the present

one (“a tree on a graph”) is that the first defines the

support of any Y ∈ Ψ from a single node K ∈ Θ, while

the second can require several nodes of Θ since values

of V may be non-comparable.

5.5 Image filtering

Our data structure considered for processing an image

is composed of two layers of component-graph / tree.

Then, the final filtering of the image has to go success-

ively through these two layers, leading to two filtering

steps.

(1) The first step is a temporary reconstruction at the

component-tree level. It consists of reconstructing

regions of the image corresponding to each reduced

node Ŷ , associated to each node Y ∈ Ψ̂ .

(2) A given node K ∈ Θ may belong to Ŷj , for several

nodes Yj ∈ Ψ̂ . Then, the second step —which leads

to the final reconstruction of the image— handles

the conflicting intersections between those regions

Yj .
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We recall that we deal with multivalued images, and

we assume that the value space (V,≤) is structured as a

complete lattice. As a consequence, any subset of values

admits an infimum and a supremum; this assumption

is used hereafter for reconstruction purpose.

For the first step, various approaches can be con-

sidered to reconstruct image regions associated to the

nodes Ŷ of the reduced component-tree. The first, strai-

ghtforward possibility is to preserve all values vi asso-

ciated to each node Ki of the reduced node Ŷ ; and

delegate the real image valuation to the second step.

We do not describe how to do that in the sequel of the

paper. Instead, we focus on the second possibility that

consists of assigning a unique value v to the whole re-

duced node Ŷ , thus creating a flat zone of value v, over

the whole set of nodes (Ki, vi) ∈ Ŷ . In this case, we

mainly have two options for defining v:

– v can be set as the supremum of all the vi of each

node Ki = (Xi, vi) ∈ Ŷ . This policy leads to the

loss of the anti-extensivity property of the designed

filters. Indeed, the choice of the supremum creates

connected components possibly presenting a high

value that did not exist in the initial set of con-

nected components of the original image; or

– v can be defined as the infimum of all the vi of each

node Ki ∈ Ŷ . This policy ensures to preserve the

property of anti-extensivity of the subsequent filters.

This strategy is justified by the fact that the node

Y has been preserved with respect to a geometrical

attribute, computed for the union of all supports

Xi of the Ki. In such conditions, the least common

value associated to all these nodes can be relevantly

considered. However, this strategy tends to “flatten”

the intensities in the image and create connected

components valued with intensities that are lower

or equal to that of the existing support.

The second step consists of handling the conflicts

between the values assigned to nodes K belonging to

several nodes Yj ∈ Ψ̂ .

(i) In the case where v was defined by a supremum

paradigm:

– the value finally assigned to the node K can be

defined as the supremum of all the conflicted val-

ues of K. This may create connected compon-

ents valued with intensities higher than in the

original image, due to the composition of two

successive supremum operators. The reconstruc-

tion of the filtered image can then be formalized

as:

Î∨∨ =
∨
Y ∈Ψ̂

C(
⋃

(X,v)∈Ŷ X,
∨

(X,v)∈Ŷ v) (15)

– alternatively, the value finally assigned to the

node K can be defined as the infimum of all the

values in conflict. This policy tends to attenuate

the effects of the initial supremum operator. In

particular, the result will be closer to the initial

image than with the above policy. However, it

does not ensure to retrieve anti-extensivity. The

reconstruction of the filtered image can be form-

alized as:

Î∧∨ =
∧
Y ∈Ψ̂

C(
⋃

(X,v)∈Ŷ X,
∨

(X,v)∈Ŷ v) (16)

(ii) In the case where v was defined by an infimum

paradigm:

– the value finally assigned to the node K can be

defined as the supremum of all the values in con-

flict. This policy is justified by the fact that a

node Y ∈ Ψ , defined as the union of several

nodes of Θ, should not lose its geometry in the

filtered image. It allows us to offset the flatten-

ing of intensities (due to the infimum policy at

step one) and to come up with intensities closer

to those of the original support. The reconstruc-

tion of the filtered image can be formalized as:

Î∨∧ =
∨
Y ∈Ψ̂

C(
⋃

(X,v)∈Ŷ X,
∧

(X,v)∈Ŷ v) (17)

– alternatively, the value assigned to the node K

can be defined as the infimum of the values in

conflict. This policy will tend to completely flat-

ten the intensity in the image; the resulting sup-

port may be spectrally far from the real intensit-

ies. Besides, the choice of the infimum may result

in the loss of the geometry of individual nodes

Y due to the building of large flat components.

The reconstruction of the filtered image can be

formalized as:

Î∧∧ =
∧
Y ∈Ψ̂

C(
⋃

(X,v)∈Ŷ X,
∧

(X,v)∈Ŷ v) (18)

In practice, there is no universally good strategy,

within the four proposed above; the relevance of an ap-

proach actually depends on the purpose. However, it

is important to notice that the first two, based on an

initial supremum operator do guarantee neither extens-

ivity nor anti-extensivity. Indeed, we have:

Î∨∨ ≥ Î∧∨ (19)

but we can neither ensure Î∨∨, Î∧∨ ≥ I nor ≤ I.

By contrast, the last two strategies do guarantee anti-

extensivity:

I ≥ Î∨∧ ≥ Î∧∧ (20)
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(a) (b) (c)

Fig. 5 Coupled CT (a) and PET (b) images. (b) Ground-truth of the lesions, in purple. (c) Multivalued shape-based processing
from (a+b), visualized in the PET value space. (a,b) Courtesy M. Meignan, Hôpitaux Universitaires Henri-Mondor, Lymphoma
Academic Research Organization, Créteil, France.

In particular, Î∨∧ is the closer result image that re-

mains below I.

These various strategies, although presented in the

general case of handling all bands of a multivalued im-

age, can be restricted to a subset of bands. In the case

where only one band is considered, the reconstructed

image is a grey-level one, and the supremum and in-

fimum on V considered above are simply replaced by

the maximum and minimum in the considered band.

6 Illustrations

We now present two application cases involving shape-

space analysis on component-graphs. Both deal with

image segmentation, but each in a different way. The

first application case deals with segmentation of mul-

timodal images, and the component-graph is then used

for modeling these modalities in a unified way. The

second application case deals with segmentation fusion,

and the component-graph is then used for modeling the

various segmentation results as a richer alternative to

fuzzy paradigms.

In both experiments, the Θ̈-component-graph is used.

On the one hand, it was shown in [45] that the space

cost of this component-graph is O(|Ω|), i.e. linear (and

possibly sublinear) with respect to the size of the im-

age support. On the other hand, it was observed in [47]

that the construction of this component-graph has a

computational cost O(|Ω|2), experimentally corrected

to O(|Ω|1,5).

6.1 Multimodal medical image segmentation

We consider a first application example in the con-
text of multimodal medical imaging. (This application

example was initially provided in [17]; it is presented

here with more details.) The image is a function tak-

ing its values in Z × N with two bands correspond-

ing each to a given imaging modality, namely morpho-

logical X-ray Computed Tomography (CT) and func-

tional Positron Emission Tomography (PET). The seg-

mentation of such images is designed to emphasise tu-

mours based on their shape and metabolic activity.

Our purpose is not to prove that our results reach

the state of the art for PET-CT segmentation (see [68,

69] for recent surveys on this active research topic). We

aim to qualitatively emphasise that the proposed frame-

work is versatile enough for encompassing a wide range

of applications. In particular, we aim to show that it

opens the way to alternative possibilities of image pro-

cessing of multivalued images via connected operators.

Positron Emission Tomography visualizes metabolic

activity characterized by the intensity of an injected ra-

diotracer (here, 18F-FDG). It is routinely used in can-
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cer imaging for diagnosis and characterization of ma-

lignant tissues, corresponding to FDG hyperfixations

(black regions surimposed in purple in Fig. 5(b)). PET

images are classically associated to X-ray computed

tomography images (Fig. 5(a)), for visualizing the ana-

tomy.

The interpretation of PET images requires a thor-

ough knowledge of the normal patterns of the FDG

uptake. Indeed, FDG uptake reflects glucose metabol-

ism. In particular, FDG uptakes are seen in cancerous

lesions, but also in various organs such as the brain,

the heart, the liver, the bladder. Then, CT images can

provide complementary information by localizing FDG

uptakes corresponding to physiological sites. Conseque-

ntly, it is relevant to process them as a unique bivalued

image in order to more accurately extract the lesions

and their activity. The idea is to highlight tumours, i.e.

maximal intensities in the PET image (represented as

black regions) and discriminate those corresponding to

physiological uptakes, using the CT information.

In contrast to PET images, where the canonical or-

der ≤ on N = VPET captures the semantics of meta-

bolic activity, this order is partly meaningless on Z with

respect to the Hounsfield scale in CT. Consequently,

we apply a non-injective mapping mH : Z → N on

CT to the regions known as physiological uptakes on

the PET. More precisely, we associate the lowest val-

ues of VCT = N to tissues of extremal Hounsfield in-

tensities. Such mapping can be defined by mH(v) =

max{M − |v −K|, 0} with M > 0 and K ∈ [100, 300],

thus providing the highest signal M for soft tissues

(with Hounsfield values around [100, 300]), and lowest

values for non-relevant tissues (for instance fat and wa-

ter, around [−100, 0] or bones around [700, 1 000]). The

order ≤ on VCT for the resulting image associates the

least values in the CT data to tissues which are more

likely to induce false positives in PET. The value space

is subsampled to 256 values for both PET and CT, lead-

ing to a space of V = VCT × VPET of 2562 = 65 536

distinct values.

In the case of adults lymphomas, lymphatic lesions

in the thorax are characterized as compact masses. Con-

sequently, the criterion A : Θ → R chosen for lesions

filtering is the compactness factor [65]. The outer layer

component-tree is then built as a max-tree with respect

to the value set R of A. Our purpose is here to select

the nodes of highest values, i.e. in the distal parts of the

branches, in a segmentation paradigm. The processed

image is finally reconstructed following the policy pro-

posed in Eq. (17).

For visualization purposes, the results are only de-

picted in the VPET value band (VCT does not present

any interest in this context), see Fig. 5(c). We observe

a satisfactory spatial accuracy between the detection of

lesions (Fig. 5(c)) and the ground-truth (purple areas

in Fig. 5(b)). In particular, all lymphatic lesions are de-

tected, whereas potential false positives were discarded

(e.g. the bladder physiological uptake).

6.2 Extended fuzzy framework for segmentation fusion

We now consider a second application case, still in the

context of segmentation. However, it differs from the

previous as the notion of component-graph is no longer

used for modeling the structure of the value space, but

for handling the fusion of many segmentation results

from a spatial point of view.

Let us suppose that, for a given image I defined

on a support Ω, we have k ≥ 2 segmentation results

for a same structure of interest. These k segmentation

results are binary sets Si ⊆ Ω such that for any i ∈
[[1, k]], x ∈ Si means that the point x belongs to the

i-th segmentation result.

Our purpose is to fuse these k segmentation results.

We define the function∣∣∣∣S : Ω → {0, 1}k
x 7→ (xi)

k
i=1

(21)

where xi = 1 (resp. 0) if x ∈ Si (resp. x /∈ Si). In other

words, S provides, for each point of the image support,

a k-uple of binary values that express the result of the

k segmentation results at this point.

A classical way to carry out segmentation fusion is

to define a fuzzy function F : Ω → [0, 1] such that for

any x ∈ Ω, we have F (x) = 1
k‖S(x)‖1, where ‖.‖1 is

the `1 norm. In other words, we compute the probabil-

ity that x belongs to the fused segmentation result, by

assuming that all the k segmentation results are equi-

probable. This function F is a grey-level image, and it is

possible to build a standard component-tree for allow-

ing the user to relevantly carry out local thresholding

on this fuzzy fusion map. However, the function F “flat-

tens” the vectorial information carried by the k-uples

of binary values.

For improving this fuzzy framework for segmenta-

tion fusion, we consider the set {0, 1}k as the value set

V, with a partial order ≤ defined as

(xi)
k
i=1 ≤ (yi)

k
i=1 ⇔ ∀i ∈ [[1, k]], xi ≤ yi (22)

Then, (V,≤) is isomorphic to the power-set of a set

of k elements endowed with the inclusion relation. In

particular, (V,≤) is a complete lattice.

We can then build the component-graph G associ-

ated to the “image” S. Each node K = (X, (vi)
k
i=1) ∈ Θ

of this component-graph, with ‖S(x)‖1 = v ∈ [[0, k]],
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(a) (b) (c) (d)

Fig. 6 (a) Original image. (b–d) Manual segmentations, from the segmentation evaluation database [72].

corresponds to a maximal connected region X ⊆ Ω

such that there exist (at least) v segmentation results

Si ∈ Ω that satisfy X ⊆ Si. In particular, the node

(Ω, (0)ki=1) is the root of G.

This component-graph of S is much richer than the

component-tree of F . Indeed, it carries not only inform-

ation related to the `1 norm of the k-uples, but also ad-

ditional information on their composition with respect

to the k segmentation results Si.

We build a second-layer component-tree on G, for

actually handling it. To this end, we need a valuation

function A on the nodes K = (X, (vi)
k
i=1) of Θ. A relev-

ant way consists of considering the mean gradient value

along the border of X. Indeed, the higher this value,

the most probable X is a significant standalone region

within the image I. This valuation A : Θ → R is a

mixed spectral/geometric attribute on Θ, as it depends

on the support X of the nodes, but also on the value of

the border points of X in I.

The second-layer to be built is a max-tree, and the

nodes to be preserved are located on the distal part of

the tree. In other words, we build a tree CTroot
max. The

pruning can then be carried out by a simple threshold-

ing process along the branches of the tree. Finally, since

our purpose is to carry out segmentation, reconstruc-

tion policies are trivial here, and only consist of the

union of the node supports.

To illustrate this strategy, we consider an image

extracted from the segmentation evaluation database3

[72] consisting of grey-level (natural) images along with

their manual delineations (ground-truths) from three

humans. The chosen example image is provided in Fig. 6.

The three manual segmentations are fused using the

function S given in Eq. (21). Then, each point of S has

a value v ∈ {0, 1}3 = V. Since V is endowed with the

(partial) component-wise ordering ≤, extremal value of

S are (0, 0, 0) (the point does not belong to any seg-

mentation) and (1, 1, 1) (the point belongs to all seg-

mentations).

3 http://www.wisdom.weizmann.ac.il/~vision/Seg_

Evaluation_DB/index.html

-1:((0,0,0)  a=67500 g=0)

0:((0,0,0)  a=67500 g=0)

1:((0,0,1)  a=23642 g=29) 4:((0,1,0)  a=21159 g=56) 7:((1,0,0)  a=17922 g=63)

2:((0,1,1)  a=20951 g=55) 5:((1,0,1)  a=17847 g=62) 6:((1,1,0)  a=17662 g=64)

3:((1,1,1)  a=17632 g=62)

Fig. 7 Component-graph G of the segmentation fusion image
S. Each node represents a connected component of intersect-
ing segmentations. In each node, the first number represents
the node identifier (−1 denotes a fictitious root); then the at-
tributes are: the value of the node, the area of the node and
the mean gradient value of the node.

The component-graph G constructed from the im-

age S is represented in Fig. 7. From G, we build the

component-tree (max-tree) CT (Fig. 8). This component-

tree is based on the successive thresholdings of the mean

gradient attribute. The leaves represent the set of ex-

tremal regions of G according to the mean gradient cri-

terion. For instance, in Fig. 8, the leaf node at level h =

64 represents the isolated node of G at level v = (1, 1, 0).

Therefore, this node represents the connected compon-

ent with the highest mean gradient on its contour, res-

ulting from the intersection between the manual seg-

mentations (see Fig. 6(b,c)). It can be interpreted as

the optimal fusion of segmentations according to the

chosen criterion. This result is illustrated by Fig. 9.

7 Conclusion

By coupling the two recently introduced notions of shap-

ing and component-graph, we opened the way to the de-

velopment of new connected operators based on mor-

phological hierarchies, to process multivalued images.

This work constitutes a first algorithmic contribution

to such an approach, in the field of multivalued math-

ematical morphology. Beyond encouraging results ob-

http://www.wisdom.weizmann.ac.il/~vision/Seg_Evaluation_DB/index.html
http://www.wisdom.weizmann.ac.il/~vision/Seg_Evaluation_DB/index.html
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0: h=0  a=8 c=64

1: h=29  a=7 c=35

2: h=55  a=6 c=9

3: h=56  a=5 c=8

6: h=62  a=4 c=2

5: h=63  a=2 c=1

4: h=64  a=1 c=0

Fig. 8 Component-tree on the component-graph G of Fig. 7.
Each node at level h represents a connected component of G
obtained by thresholding the mean gradient attribute g in G

at value h. Attributes a and c in the component-tree represent
respectively the area and contrast (or height) of the node.

Fig. 9 Left: original image. Right: best fusion of segmenta-
tions according to the given criterion (mean gradient of the
contour).

tained on application examples, this work raises various

algorithmic, methodological and applicative perspect-

ives.

From an algorithmic point of view, we have only

considered here the case of multiband images, that take

their values in well structured ordered sets, namely com-

plete lattices. This allowed us to “easily” reconstruct

filtered images from pruned component-trees / graphs.

Indeed, the existence of suprema / infima provides non-

ambiguous valuation policies at each point. In order

to go a step further, and also process more complex

value spaces, it will be necessary to provide efficient

(with respect to computational cost) and relevant (with

respect to image processing) solutions for reconstruct-

ing filtered images when various non-comparable values

without suprema / infima coexist spatially after graph

pruning. As well, we have only considered the simplest

version of component-graph, that models only the val-

ues / nodes that are “visible” in the image. This as-

sumption is fulfilled in many cases, including those of

the proposed application examples. However, there ex-

ist situations where the image processing issues require

to handle more complex component-graphs, that expli-

citly model “non-visible” nodes. Such graphs are more

complex to compute, but also much larger and then

non-obvious to process. We will investigate algorithmic

solutions to handle these richer component-graphs, and

to involve them in our proposed framework.

From a methodological point of view, we have con-

sidered scalar attributes as valuation for the inner layer

of component-graph. Such scalar attributes are gen-

erally defined on integers or real numbers, and then

equipped with a canonical total order. The outer layer

of the proposed data structure is therefore a component-

tree. More generally, the explicit handling of vectorial

attributes [70,71] at the inner layer of the structure

would lead to the construction of a component-graph

at the outer layer also. To handle that case, it would

be mandatory to develop new strategies to perform

the shaping operator for “graphs on graphs” instead of

“trees on trees” in previous works, or “trees on graphs”

as proposed here. The main difficulty will hinge on the

handling of the space cost (and, by side effect, the com-

putational complexity), for instance by using simplified

data structures, e.g. as investigated for the definition of

multivalued trees of shapes [62,63].

From an applicative point of view, the proposed

framework has already been used in medical imaging,

for the segmentation of 3D images from multimodal ac-

quisition devices (in our case, positron emission tomo-

graphy coupled with X-ray computed tomography) [65,

17]. The main issues raised by these applications are dir-

ectly related, on the one hand, to the design of a com-

mon spatial framework for images generally acquired

at different resolutions; and on the other hand, to the

definition of orderings that actually model relevant in-

formation in each band. This can involve combining

different modalities, which is often complicated. In this

context, coupling component-trees / graphs with other

kinds of hierarchies (trees of shapes, binary partition

trees, or watershed hierarchies) may constitute an prom-

ising perspective.

Resources In the spirit of reproducible research, the code
used for the experiments of this paper is freely available at:
https://github.com/bnaegel/component-graph.git.
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28. Berger, C., Géraud, T., Levillain, R., Widynski, N., Bail-
lard, A., Bertin, E.: Effective component tree computa-
tion with application to pattern recognition in astronom-
ical imaging. In: ICIP, International Conference on Image
Processing, Proceedings, pp. 41–44 (2007)

29. Wilkinson, M.H.F., Gao, H., Hesselink, W.H., Jonker,
J.E., Meijster, A.: Concurrent computation of attribute
filters on shared memory parallel machines. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence
30(10), 1800–1813 (2008)
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