P. Ngo, Y. Kenmochi, N. Passat, and H. Talbot, Topology-Preserving Conditions for 2D Digital Images Under Rigid Transformations, Journal of Mathematical Imaging and Vision, vol.8, issue.2, pp.418-433, 2014.
DOI : 10.1023/A:1008273227913

URL : https://hal.archives-ouvertes.fr/hal-00838183

P. Ngo, N. Passat, Y. Kenmochi, and H. Talbot, Topology-Preserving Rigid Transformation of 2D Digital Images, IEEE Transactions on Image Processing, vol.23, issue.2, pp.885-897, 2014.
DOI : 10.1109/TIP.2013.2295751

URL : https://hal.archives-ouvertes.fr/hal-00795054

P. Ngo, Y. Kenmochi, I. Debled-rennesson, and N. Passat, Convexitypreserving rigid motions of 2D digital objects, Proceedings of DGCI, ser. LNCS, pp.69-81, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01565028

R. Klette and A. Rosenfeld, Digital geometry: Geometric Methods for Digital Picture Analysis, 2004.

P. Stelldinger and U. Köthe, Towards a general sampling theory for shape preservation, Image and Vision Computing, vol.23, issue.2, pp.237-248, 2005.
DOI : 10.1016/j.imavis.2004.06.003

P. Stelldinger, L. J. Latecki, and M. Siqueira, Topological Equivalence between a 3D Object and the Reconstruction of Its Digital Image, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.29, issue.1, pp.126-140, 2007.
DOI : 10.1109/TPAMI.2007.250604

T. Pavlidis, Algorithms for Graphics and Image Processing, 1982.
DOI : 10.1007/978-3-642-93208-3

J. Serra, Image Analysis and Mathematical Morphology, 1983.

C. E. Kim, On the Cellular Convexity of Complexes, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.3, issue.6, pp.617-625, 1981.
DOI : 10.1109/TPAMI.1981.4767162

U. Eckhardt, Digital Lines and Digital Convexity, Digital and Image Geometry: Advanced Lectures, pp.209-228, 2001.
DOI : 10.1007/3-540-45576-0_13

G. Cristescu and L. Lupsa, Non-Connected Convexities and Applications, 2002.
DOI : 10.1007/978-1-4615-0003-2

P. Mcmullen and G. C. Shephard, On the upper-bound conjecture for convex polytopes, Journal of Combinatorial Theory, Series B, vol.10, issue.3, 1971.
DOI : 10.1016/0095-8956(71)90042-6

C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, The quickhull algorithm for convex hulls, ACM Transactions on Mathematical Software, vol.22, issue.4, pp.469-483, 1996.
DOI : 10.1145/235815.235821

K. Mehlhorn, S. Näher, T. Schilz, S. Schirra, M. Seel et al., Checking geometric programs or verification of geometric structures, Proceedings of SCG, pp.159-165, 1996.

H. Heijmans and C. Ronse, The algebraic basis of mathematical morphology. I Dilations and erosions, Computer Vision, Graphics, and Image Processing, pp.245-295, 1990.

C. Ronse and H. Heijmans, The algebraic basis of mathematical morphology, CVGIP: Image Understanding, vol.54, issue.1, pp.74-97, 1991.
DOI : 10.1016/1049-9660(91)90076-2

K. Mamou and F. Ghorbel, A simple and efficient approach for 3D mesh approximate convex decomposition, 2009 16th IEEE International Conference on Image Processing (ICIP), pp.3465-3468, 2009.
DOI : 10.1109/ICIP.2009.5414068

J. Sklansky, Measuring Concavity on a Rectangular Mosaic, IEEE Transactions on Computers, vol.21, issue.12, pp.1355-1364, 1972.
DOI : 10.1109/T-C.1972.223507