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Abstract6

Satellite Image Time Series (SITS) analysis is an important domain with various applications in
land study. In the coming years, both high temporal and high spatial resolution SITS will be-
come available. In the classical methodologies, SITS are studied by analyzing the radiometric
evolution of the pixels with time. When dealing with high spatial resolution images, object-based
approaches are generally used in order to exploit the spatial relationships of the data. However,
these approaches require a segmentation step to provide contextual information about the pixels.
Even if the segmentation of single images is widely studied, its generalization to series of images
remains an open-issue. This article aims at providing both temporal and spatial analysis of SITS.
We propose first segmenting each image of the series, and then using these segmentations in order
to characterize each pixel of the data with a spatial dimension (i.e., with contextual information).
Providing spatially characterized pixels, pixel-based temporal analysis can be performed. Experi-
ments carried out with this methodology show the relevance of this approach and the significance
of the resulting extracted patterns in the context of the analysis of SITS.

Key words: Multi-temporal Analysis, Satellite Image Time Series, Data Mining, Segmentation,7

Information Extraction8

1. Introduction9

Satellite Image Time Series (SITS) constitute a major resource for Earth monitoring. For the10

last decades, these image series have been either sensed with a high temporal resolution (daily11

coverage at a kilometer spatial resolution) or with a high spatial resolution (weekly coverage at12

a meter spatial resolution). However, for a few years, satellites such as the Taiwanese Formosat-13

2 are providing both high temporal and High Spatial Resolution SITS (HSR SITS), but with a14

limited coverage of the Earth surface and with only four spectral bands. In the coming years, these15

kinds of data will become widely available thanks to the ESA’s Sentinel program. The growing16

availability of such images, periodically acquired by satellite sensors on the same geographical17
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area, will make it possible to produce and regularly update accurate temporal land-cover maps of18

a given investigated site.19

In order to efficiently handle the huge amount of data that will be produced by these new20

sensors, adapted methods for SITS analysis have to be developed. Such methods should allow the21

end-user to obtain satisfactory results, e.g., relevant and accurate temporal evolution behaviors,22

with minimal time (by automating the tasks which do not require human expertise), and minimal23

effort (by reducing the parameters).24

In the current standard methods, these data are studied by analyzing the radiometric evolution25

of the pixels through the time series. The underlying idea is to gather sensed areas that undergo26

similar radiometric evolutions. This structuring of the data makes it possible to extract both abrupt27

and long-term changes. In this context, there is actually no difference between a “real” change28

and a gradual one: both are described by evolution behaviors. In this way, if an sensed area (x, y)29

undergoes an abrupt change (e.g., a clear cut or the building of a house), it will be treated as a30

particular temporal behavior, i.e., this behavior will emerge in the classification if it is sufficiently31

represented in the dataset.32

Due to the high spatial resolution of the future images, the geometrical information of the scene33

could also be considered in the classification process by using object-based approaches. To this34

end, a segmentation process is required to extract segments based on radiometric homogeneity.35

Once these segments are extracted, it is possible to characterize them using spatial/geometrical36

properties, to enhance the classification process. However, the integration of a segmentation step37

in a temporal classification framework remains an open-issue, since neither the mapping between38

mono-temporal segmentations, nor the temporal segmentation are resolved. A review of the avail-39

able literature on SITS analysis shows a lack of existing methods responding to this need. This40

article aims at addressing this issue by characterizing a pixel with spatial properties in order to41

improve the analysis of SITS.42

This article is organized as follows. Section 2 gives an overview of existing methods for SITS43

analysis. Section 3 introduces our generic methodology for spatio-temporal analysis of SITS.44

Section 4 describes the experimental validation carried out with this methodology. Section 545

presents the results obtained using the proposed methodology. Conclusions and perspectives will46

be found in Section 6.47

2. State of the art48

SITS allow the analysis, through observations of land phenomena, of a broad range of applica-49

tions such as the study of land-cover or the mapping of damage following a natural disaster. These50

changes may be of different types, origins and durations. For a detailed survey of these methods,51

the reader can refer to (Coppin et al., 2004; Lu et al., 2004).52

In the literature, we find three main families of methods. Bi-temporal analysis, i.e., the study of53

transitions, can locate and study abrupt changes occurring between two observations. Bi-temporal54

methods include image differencing (Bruzzone & Prieto, 2000), image ratioing (Jensen, 1981; Wu55

et al., 2005), image composition (Ouma et al., 2008) or change vector analysis (CVA) (Johnson56

& Kasischke, 1998; Bovolo, 2009; Bahirat et al., 2012). A second family of mixed methods,57
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mainly statistical methods, applies to two or more images. They include methods such as post-58

classification comparison (Foody, 2001), linear data transformation (PCA and MAF) (Howarth59

et al., 2006), image regression or interpolation (Kennedy et al., 2007) and frequency analysis (e.g.,60

Fourier, wavelets) (Andres et al., 1994; Tsai & Chiu, 2008). Then, we find methods dedicated61

to image time series and based on radiometric trajectory analysis (Jönsson & Eklundh, 2004;62

Verbesselt et al., 2010; Petitjean et al., 2011c; Kennedy et al., 2010; Lui & Cai, 2011).63

Regardless of methods used in order to analyze satellite image time series, there is a gap64

between the amount of data composing these time series, and the ability of algorithms to ana-65

lyze them. Firstly, these algorithms are often dedicated to the study of a change in a scene from66

bi-temporal representation. Secondly, and this point is even more difficult to deal with, the geo-67

metrical/spatial properties of the data are rarely taken into account, except for the use of the pixel68

coordinates. Finally, High Spatial Resolution SITS have given rise to the need for spatially and69

temporally dedicated methods.70

To improve the analyzing process by using the spatial relationships of the data, object-based71

methods have been recently proposed (Blaschke, 2010). In a first step, the images are seg-72

mented/partitioned into sets of connected regions. Then for each region, geometric features73

(Carleer & Wolff, 2006) (e.g., area, elongation, smoothness) or even contextual ones (Gaetano74

et al., 2009; Bruzzone & Carlin, 2006; Kurtz et al., 2010) (e.g., spatial context, multi-scale/multi-75

resolution attributes) are computed in order to characterize the regions. Finally, the regions are76

classified using these features (Herold et al., 2003).77

Object-based methods have shown promising results in the context of single-image analysis.78

However, their extension/adaptation to SITS in order to exploit both the spatial and temporal79

information contained in these data remains an open-issue. Indeed, although several methods have80

been proposed in order to map segments from one image to another (Gueguen et al., 2006; Bovolo,81

2009), to directly build spatio-temporal segments (Fan et al., 1996; Moscheni et al., 1998; Tseng82

et al., 2009), or even to consider object-based features (Hall & Hay, 2003; Niemeyer et al., 2008;83

Hofmann et al., 2008; Schopfer et al., 2008; Tiede et al., 2011), their scalability to wide sensed84

areas and their robustness to local disturbance (temporally and spatially) remain problematic. The85

use of 3D-dedicated methods indeed requires a high temporal continuity; this constraint is however86

rarely fulfilled by SITS, where the average time-delay between two images is usually too high. As87

a consequence, the temporal continuity of the observed phenomena can not be assumed between88

samples. In addition, the irregular temporal sampling of the image series (due to operational89

constraints of remote sensing), would create a disparity of the spatio-temporal regions in terms of90

their informativity. For instance, a region spreading over four months should not have the same91

importance in the analysis, than a region spreading over a single sample (i.e., built over a single92

image). Thus, this article focuses on mono-temporal spatial enrichment of the pixels, in order to93

loosen the constraint on the pseudo-continuity.94

We therefore suggest to classify SITS as the radiometric evolution of sensed areas with time.95

Then, in order to take into account the spatial properties of the data, we propose to characterize96

each pixel with spatial and geometrical attributes obtained using a pre-segmentation step. This97

formulation allows the study of spatial characteristics over time while abstracting from the cor-98

respondence between segments since the data remains the pixel. Moreover, this formulation is99

aimed at obtaining accurate and reliable evolution behavior maps both by preserving the geomet-100
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rical details in the images and by properly considering the spatial context information.101

This paradigm, using spatially characterized pixels, was previously introduced and studied for102

contextual analysis (Melgani & Serpico, 2002), multi-level segmentation of a single image (Bruz-103

zone & Carlin, 2006) and change detection in bi-temporal images (Bovolo, 2009). In all these104

application domains, such a paradigm has shown promising results. We propose, in this article, to105

extend it to the analysis of large SITS.106

3. Spatio-temporal analysis methodology107

In this section, we present the proposed approach, which is composed of five main steps that108

are sequentially applied:109

A. Segmentation of the images;110

B. Characterization of the regions;111

C. Construction of the vector images;112

D. Construction of the time series;113

E. Classification of the time series.114

These steps are fully described in the remainder of this section. The reader may also refer to115

Figure 1 for a visual outline of the workflow of the proposed approach. Let us first establish the116

terminology used in the remainder of this article. The term “sensed area” will be rather used than117

the term “pixel”, since the notion of “pixel” usually refers to a mono-temporal value, while we use118

in this work the (x, y) coordinates to locate a geographic area. Contrary to the mono-image case,119

these notions are not mixed up in the temporal case. Consequently, the term “sensed area” will be120

used to designate the evolution of the (x, y) geographic area with time, while the term “pixel” will121

be used to designate a sensed value in a particular image.122

Input/Output123

Let us briefly define the input and the output of the proposed method.124

Input. The method takes as input a series Simage = 〈I1, . . . , IN〉 of N ortho-rectified images of125

width W and height H. Let E = [[1,W]] × [[1,H]] where [[a, b]] denote the interval on Z, bounded126

by a, b. The set E corresponds to the discretization of the continuous space (i.e., the part of R2)127

which will be visualized in the images. Let B be the number of bands of the images composing128

the series. Each multivalued (i.e., with multiple bands) image In (n ∈ [[1,N]]) can be seen as a129

function:130

In : E → ZB
(x, y) 7→ In

1(x, y) , · · · , In
B

(x, y) (1)

Note that the radiometric levels of the images do not have to be comparable from one image131

to another. Thus, images can be acquired by different sensors but must be of the same spatial132

resolution.133
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of images
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Figure 1: Workflow of the proposed approach that takes as input N images and provides as output a classification map
of the sensed scene. Different symbols have been used to exemplify the steps of the proposed approach (R refers to
regions, p refers to pixels, v refers to vectors of pixels built through time). For instance, the symbol R1

4(e = 0.2, s =

0.4, a = 0.3) means that the region R1
4 is characterized by 3 feature values (e = elongation, s = smoothness, a = area).
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Output. The method provides as output a classification of the sensed scene, where areas that134

have evolved in a similar way are clustered. Such classification can be modeled by a label image135

IC : E → [[1,C]], which associates to each sensed area (x, y) a class value IC(x, y) among the C136

possible ones.137

Each class of the classification is also modeled by a centroid sequence, which provides a138

concise representation of the underlying evolution behavior. This extra information is however not139

studied in this article.140

3.1. Segmentation of images141

A segmentation of a multivalued image In is a partition Sn = {Rn
i }
Rn

i=1 of [[1,W]] × [[1,H]];142

broadly speaking, the scene visualized in In is “decomposed” into Rn distinct parts Rn
i , which are143

supposed to present specific radiometric properties. We will denote Rn
i as a region of the image In.144

To any segmented image In, we then associate a region image145

In
R : E → [[1,Rn]]

(x, y) 7→ In
R(x, y) (2)

Such region image is a function that associates to each sensed area (x, y) a region label In
R(x, y)146

among the Rn possible ones.147

Once the N images have been segmented (producing N region images In
R, (n ∈ [[1,N]])), it is148

then possible to characterize each region of each segmentation by following the next step.149

3.2. Regions characterization150

Numerous features (spectral, geometrical, topological, etc.) can be computed for the regions of151

a segmentation in order to characterize them. Each feature can be seen as a function F associating152

to each region Rn
i (i ∈ [[1,Rn]]) of a segmentation Sn a corresponding feature value F(Rn

i ) ∈ Rα.153

Although the classical case corresponds to mono-dimensional features in R, certain features can154

be seen as multi-dimensional ones in Rα (e.g., correlated textural features, multi-scale features).155

F : [[1,R]] → Rα

Rn
i 7→ F(Rn

i ) (3)

Once a region is characterized by a (multidimensional) feature value, it is then possible to affect156

this value to all the pixels composing the region. Let Z be the number of region-features chosen157

to describe every sensed area (x, y) of every image.158

3.3. Construction of vector images159

At this step, each pixel of a multivalued image In can be characterized by two types of information:160

- directly sensed values (i.e., B values, denoted In
b with b ∈ [[1,B]];161

- region-associated values (i.e., Z values, denoted Fa with a ∈ [[1,Z]]).162
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All these values are normalized over the image time series by using the extrema values of the163

attributes in the dataset. It is then possible to combine these features to build “enriched” pixels in164

order to better characterize them. To process, a vector of features is created and associated to each165

one of the pixels contained in the image In. Finally, by applying this step to each image of the166

series, we build N vector images defined as:167

Vn : E → [0, 1]B+Z

(x, y) 7→
(
In
1(x, y) , · · · , In

B
(x, y) , F1(In

R(x, y)) , · · · , FZ(In
R(x, y))

) (4)

3.4. Construction of time series168

Let S be the dataset built from the image time series. S is the set of sequences defined as:169

S =
{
〈V1(x, y), · · · ,VN(x, y) 〉 | x ∈ [[1,W]] , y ∈ [[1,H]]

}
(5)

In these sequences, each element is (B +Z)-dimensional. Since high-dimensional spaces do not170

often provide the best solutions, we will study different subspaces of this (B + Z)-dimensional171

space in the experiment part (e.g., time series where each pixel is characterized by a 5-tuple com-172

posed of three directly sensed values and two region-associated values).173

3.5. Classification of the time series174

The extraction of relevant temporal behaviors from satellite image time series can be realized175

using a classification algorithm. Once these time series have been built, it becomes possible to176

classify them into different clusters/classes of interest. To this end, the proposed methodology177

makes it possible to use either supervised or unsupervised classification algorithms.178

A classification of a set of sequencesS is a partition C = {Ci}
C

i=1 of E; broadly speaking, as each179

temporal sequence is associated to a sensed area (x, y), the whole scene can be “decomposed” into180

C distinct parts Ci, which are supposed to represent similar temporal evolution behaviors. We will181

denote Ci as a cluster/class. The classification can be modeled by a label image IC : E → [[1,C]],182

which associates to each sensed area (x, y) a class value IC(x, y) among the C possible ones183

IC : E → [[1,C]]
(x, y) 7→ IC(x, y) (6)

4. Material and experimental settings184

To assess the relevance of the proposed generic spatio-temporal analysis methodology, we have185

applied it to the classification of agronomical areas. Starting from the different issues raised by186

this applicative context, we show in this section how the proposed methodology can be used as a187

potential solution to address them.188

4.1. Applicative context: Crop monitoring189

The analysis of agronomical areas is important for the monitoring of physical variables, in190

order to give information to the experts about pollution, vegetation health, crop rotation, etc. This191

monitoring is usually achieved through remote sensing. Indeed, by using classification processes,192
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satellite image time series actually provide an efficient way to monitor the evolution of the Earth’s193

surface. Moreover, when the classes of interest are temporal (e.g., wheat crop, maize crop), the194

time dimension of the data has to be taken into account by the classification algorithms. For195

instance, the reflectance levels of the maize crop and of the wheat crop are very similar while their196

temporal behaviors are quite different (i.e., wheat grows earlier in the year than maize).197

Thus, the usual strategy for land-cover mapping consists of classifying the temporal radiomet-198

ric profiles of the sensed areas (x, y). With the arrival of SITS with high spatial resolution (HSR),199

it becomes necessary to use the spatial information held in these series, in order to either study200

the evolution of spatial features, or to help characterizing the different land-cover classes. Our201

experiments focus on the second point. The underlying idea is that several spatially-built features202

can be used in the classification process. For example, some crops are usually cultivated in smaller203

parcels than others, while having the same radiometric temporal behavior (e.g., sunflower crop vs.204

wheat crop). Another (non restrictive) example could be the use of the smoothness of the regions,205

which could help, for instance, to distinguish between tree-crop and forest.206

In the remainder of this section, we experimentally demonstrate how the proposed generic207

spatio-temporal analysis methodology can be instantiated to enable the use of such spatially-built208

features.209

4.2. Dataset description210

We detail hereafter the main information concerning the images used for this work. The area of211

study is located near the town of Toulouse in the South West of France. 15 cloud-free Formosat-2212

images sensed over the 2007 cultural year are analyzed. These images cover an area of 64 km2
213

(1, 000 × 1, 000 pixels). The considered SITS is illustrated in Figure 2. One image of the series is214

given in Figure 3(a) while the temporal distribution of the sensed images is given in Figure 3(b).215

From these images, we use the multi-spectral product at a spatial resolution of 8 m with the216

four bands Near-Infrared, Red, Green and Blue. Before being used in this work, the Formosat-2217

products have been ortho-rectified (guaranteeing that a pixel (x, y) covers the same geographic218

area throughout the image series). All images also undergo processes in order to make the radio-219

metric pixel values comparable from one image to another. These processes consist of converting220

the digital counts provided by the sensor into a physical magnitude and in restoring their own221

contribution to the surface by correcting for atmospheric effects.222

From the instrument radiometric model, digital numbers are first converted into reflectances223

(normalized physical quantities of solar irradiance). The absolute calibration coefficients used224

in this step come from the monitoring of Formosat-2 sensors conducted by the French Space225

Agency (CNES). The inversion of the surface reflectance is then made by comparing the measured226

reflectance in simulations at the top of the atmosphere, carried out for atmospheric and geometric227

conditions of measurement. The elevation is taken into account by carrying out simulations for228

various altitudes, including a weighting of the atmospheric pressure and the amounts of aerosols229

and water vapor. The state of the atmosphere at the time of the sensing is in turn characterized230

using meteorological sources (National Centers for Environmental Prediction for the pressure and231

the humidity), using ozone data sources (e.g., Total Ozone Mapping Spectrometer) and using232

aerosol data (e.g., Sea-viewing Wide Field-of-view Sensor). Otherwise, climatological values are233

used. This procedure is detailed in (Hagolle et al., 2010).234
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Figure 2: SITS considered in these experiments. The sensing distribution of these images is presented in Figure 3(b).

4.3. Experimental settings235

This section aims at describing how the proposed generic approach has been instantiated to236

deal with the presented crop monitoring issue. However, we recall that the presented approach237

is not limited to this instantiation. The five steps described in Section 3 have been performed as238

follows.239

Segmentation of images. The segmentation of HSR satellite images is not a trivial task since the240

different objects of interest (and thematic ground areas) which are sensed by these images, cannot241

be necessarily segmented at the same scale (i.e., scale issue). For instance, the main environments,242

such as urban areas, rural zones, or forests, can be identified at coarsest scales, while more detailed243

structures, such as buildings and roads, will emerge at the finest ones (Blaschke, 2010). It is then244

difficult to correctly segment all these thematic ground areas by using only one segmentation result.245

For the last decade, it has been shown that hierarchical segmentation algorithms provide accu-246

rate results adapted to process HSR images (Pesaresi & Benediktsson, 2001; Gaetano et al., 2009).247

In particular, their combinations can provide an efficient way to deal with the scale issue (Akcay248

& Aksoy, 2008; Kurtz et al., 2011a,b). However, the parameters of such algorithms have to be249

tuned according to the characteristics of the image modality (used as input) and the features of the250

objects to be segmented. To avoid this parametrization problem (which falls outside the scope of251

this article), we have chosen to use the Mean-Shift segmentation algorithm (Comaniciu & Meer,252

2002) to segment each image of the series. Indeed, this algorithm is intuitive to configure and has253

shown satisfactory results in the context of the segmentation of remote sensing images (Huang &254
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(a)

day of year

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

(b)

Figure 3: Presentation of the dataset. (a) One image from the series (August, 4th 2007). (b) Sensing distribution of
images sensed over 2007. Each spot represents a sensed image (see Figure 2).

Zhang, 2008). Although we know that considering a single segmentation map for each image is,255

in most of the cases, a sub-optimal approach (since the spatial arrangement of the objects in the256

image is intrinsically hierarchical), we assume that when dealing with agricultural territories, the257

fields could be efficiently extracted at similar scales and thus, by using only one segmentation map258

per image. We plan to address this aspect in a future development of the work as stated in the259

conclusions.260

The Mean-Shift segmentation algorithm performs as follows. For a given pixel, this algo-261

rithm builds a set of neighboring pixels within a given spatial radius and color range. The spa-262

tial and color center of this set is then computed and the algorithm iterates with this new spatial263

and color center. There are three main parameters: the spatial radius (denoted by hs) used for264

defining the neighborhood, the range radius (denoted by hr) used for defining the interval in the265

color space and the minimum size M for the regions to be kept after segmentation. We have266

used the OTB implementation of the Mean-Shift algorithm. ORFEO Toolbox (OTB) is an open267

source library of image processing algorithms developed by the French Space Agency (CNES).268
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In order to assess the robustness of the proposed approach with regard to the segmentation270

step, the influence of the segmentation parameters has been studied. Since the level of geometrical271

information extracted by the segmentation algorithm depends on its parametrization, we have run272

the algorithm using different configurations of the parameters. In practice, the minimum size273

M of the regions has been fixed to M = 25, corresponding to the minimum expected size of274

the studied objects of interest. The ranges of the possible values for the other parameters hs275

and hr have been scanned exhaustively with a quite low step (hs ∈ {1, 3, 5, · · · , 28, 30} and hr ∈276

{1, 5, 10, · · · , 55, 60}).277

The underlying idea of this experiment is to study the influence of the segmentation parameters278

on the classification results. To this end, only the radiometric mean of the regions has been used279

to characterize the pixels for the classification (during the construction of the time series).280

Region characterization. Several characteristics can be useful for the classification of agronomical281

scene. For instance, the size of the regions could be used to discriminate small/large fields, while282

the smoothness could be used to separate forest regions from fields. In this way, the following283

region-associated features have been computed:284

- the mean of the infra-red band of the region (FNIR);285

- the mean of the red band of the region (FR);286

- the mean of the green band of the region (FG);287

- the mean of the blue band of the region (FB);288

- the area of the region (FArea);289

- the elongation of the region (FElong.);290

- the smoothness of the region (FS mooth.);291

- the compactness of the region (FComp.).292

The elongation is computed as the highest ratio between the width and the length of several bound-293

ing boxes (computed for different directions, i.e., each π/8). The smoothness is computed as the294

ratio between the perimeter of the morphologically opened region and the original region. To this295

end, we use a square-shaped opening structuring element invariant to the scale (i.e., with a size de-296

pending on the area of the original region). The size of the structuring element was set to
√

FArea.297

The compactness is computed as the square root of the area of the region multiplied by the length298

of the perimeter of the region.299

Construction of vector images. As explained previously, each pixel composing the SITS can be300

characterized by two types of information: directly sensed values (denoted as INIR, IR, IG, IB), and301

region-associated values (denoted as FNIR, . . . , FS mooth.). All the values are normalized in [0, 1],302

attribute by attribute over the series. This allows each attribute to be of comparable weight for the303

classification step.304

Construction of time series. In order to find the best separation of thematic classes and to assess305

(globally and independently) the interest of the different contextual attributes, we tested several306
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Figure 4: Convergence of the K-means algorithm over 15 iterations corresponding to Experiment 16.

combinations of twelve attributes over the time series. All the possible combinations of the spa-307

tial attributes (FArea, FElong., FS mooth., FComp.) were tested with either the pixel radiometric values308

(INIR, IR, IG, IB), or the mean region ones (FNIR, FR, FG, FB). The resulting 32 combinations are309

presented in Table 1. In particular, the combination ? (only the pixel radiometric values without310

any region-associated feature) represents the “classical” combination for pixel-based classification311

of SITS.312

Classification of time series. Classification problems are usually addressed using supervised or313

unsupervised algorithms. Supervised classification algorithms require training examples to learn314

the classification model. In our case, as we want to demonstrate the relevance of the proposed315

data representation, the choice and the suitability of the examples would create a bias, which316

would make difficult to identify the benefits provided by the spatial features. In this way, choos-317

ing an unsupervised classification step allows us to highlight the consistency of the proposed318

approach, without being influenced by several issues linked to the evaluation of supervised ap-319

proaches (choice of the algorithm, cross-validation, building and sampling of the training set,320

etc.). We have then applied the classical K-means clustering algorithm (MacQueen, 1967) to clas-321

sify the time series previously constructed. The distance used to compare the time series of S322

is the Euclidean distance. Note that other distances (and more relevant temporal ones (Petitjean323

et al., 2011b,a, 2012)) could also be used.324

The K-means algorithm has been used with as many classes (see Table 2) as in the reference325

map (i.e., 25 seeds), and with 15 iterations. Figure 4 shows that the process has converged after-326

wards. Note that any clustering algorithm dealing with numerical data could also be used.327

4.4. Validation328

To assess the quality and the accuracy of the results, the classification maps obtained have been329

compared to:330
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(a) (b)

Figure 5: Land cover reference maps of the 2007 cultural year. (a) Ground truth (covering a partial part of the studied
area) related to a field survey produced by the European Common Agricultural Agency. (b) Land cover reference map
(covering the totality of the studied area) produced by the method described in (Idbraim et al., 2009).

1. a field survey (i.e., ground-truth) of the 2007 cultural year (produced by the European En-331

vironment Agency; see http://ec.europa.eu/agriculture/index_en.htm for more332

details about the Common Agricultural Policy.) covering a partial part of the studied area333

(Figure 5(a));334

2. a land cover reference map (produced by a supervised classification method described in (Id-335

braim et al., 2009)) covering the totality of the studied area (Figure 5(b)).336

Note that these two reference maps reflect the temporal behavior of the considered crops over the337

2007 cultural year and do not reflect a static land cover state (i.e., representing a single snapshot338

of the scene at a particular date). Such property is necessary since we want to assess the accuracy339

of temporal classification results. We also want to underline that, through the year, the land cover340

types do not change (i.e., no crop rotation). This fact justifies why the considered classes are341

designated by static terms (e.g., corn, wheat, meadow) instead of being described by dynamic342

ones (e.g., the class “ bare soil→ growth of corn→ harvest”).343

The classification maps obtained have been compared to these maps using several evaluation344

indexes. To assess the global accuracy of the obtained classification results, we have computed345

respectively:346

- the average F-measure F ;347

- the Kappa index K ;348

- the overall classification accuracyA.349
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The average F-measure F corresponds to the mean, for each class, of the F-measures obtained.
To this end, for each thematic class, the best corresponding clusters (in terms of partitions) were
extracted. Then, we have computed: the percentage of false positives (denoted by f (p)), the per-
centage of false negatives (denoted by f (n)) and the percentage of true positives (denoted by t(p)).
These measures are used to estimate the precision P and the recall R of the results obtained by
using the proposed method:

P =
t(p)

t(p) + f (p) and R =
t(p)

t(p) + f (n) (7)

For each experiment, we have then computed the geometrical mean P of the precisions obtained350

and the geometrical mean R of the recalls obtained. Finally, we have computed the mean F-351

measure F which is the harmonic mean of the mean precision and the mean recall:352

F = 2 ·
P ·R

P + R
(8)

The computation of these class-specific indexes requires the matching of classes of interest with353

clusters extracted by the unsupervised classification approach. To this end, we have used an au-354

tomatic strategy, which consists of selecting the clusters that maximize the overlapping with the355

corresponding class.356

To assess the global relevance of the results, we have also computed the Kappa index (Congal-357

ton, 1991) K , which is a measure of global classification accuracy:358

K =
Pr(a) − Pr(e)

1 − Pr(e)
(9)

where Pr(a) is the relative agreement among the observers, and Pr(e) is the hypothetical probabil-359

ity of chance agreement. The Kappa index takes values in [0, 1] and decreases as the classification360

is in disagreement with the ground-truth map. We have computed this index as follows. The361

approach consists of considering all point couples (x1, x2) = ((x1, y1), (x2, y2)) and seeing the con-362

figuration of these two points in each partition (the clustering result and the ground-truth). There363

are four possible configurations; for each one, a counter is associated and incremented each time364

a configuration appears:365

1. x1 and x2 belong to the same partition both in the clustering and in the reference map (counter366

ss);367

2. x1 and x2 belong to the same partition in the clustering but not in the reference map (counter368

sd);369

3. x1 and x2 belong to the same partition in the reference map but not in the clustering (counter370

ds);371

4. x1 and x2 belong to the same partition neither in the reference map nor in the clustering (counter372

dd).373

14



Thus, the Kappa index is computed with:374

Pr(a) =
ss + dd

ss + sd + ds + dd
(10)

and375

Pr(e) =
(ss + sd) · (ss + ds) + (sd + dd) · (ds + dd)

(ss + sd + ds + dd)2 (11)

Note that the Kappa index is an agreement measure between two partitions and thus does not376

require to “align” the clusters with the reference classes.377

To assess separately the accuracy of each thematic class, we also provide (for each one of these378

classes) the precision P, the recall R and their averages.379

5. Results380

This section presents the results obtained with the proposed contextual approach in the context381

of the multi-temporal analysis of agronomical areas. The first sub-section describes the study382

of the influence of the segmentation step on the obtained classification results. The second sub-383

section proposes an exhaustive analysis of the interest of the different contextual attributes for384

multi-temporal analysis. Finally, the third sub-section presents an experimental study about the385

time complexity.386

5.1. Influence of the segmentation step387

The graph represented in Figure 6 summarizes the accuracy scores (mean F-measure F values)388

of the classification results obtained as a function of the parameters of the segmentation algorithm389

(the spatial radius hs and the range radius hr). For each series of resulting segmentations, the classi-390

fication is obtained by using the radiometric mean of the regions to characterize the pixels through391
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Figure 6: Influence of the parameters of segmentation (the spatial radius hs and the range radius hr) on the classifi-
cation results. The accuracy of the classification results obtained is assessed using the mean F-measure F computed
with the land-cover reference map presented in Figure 5(b).

time. The best scores obtained (and thus, the best configurations of parameters) correspond to392

the orange-red area while the worst ones correspond to the green-blue area. The large size of393

the orange-red area allows us to assess the robustness of the approach to the segmentation step.394

As reference, the base-experiment ? obtained a F-measure score of 51.3% (corresponding to the395

green area), which is lower than most of the scores obtained by using the radiometric mean of the396

regions. For the remainder of this experimental study, the configuration (hs = 10, hr = 15,M = 25)397

has then been kept.398

In order to visually confirm the choice of this configuration, Figure ?? illustrates different seg-399

mentation results obtained on an extract of an image. One can note that the parameters configura-400

tion (hs = 3, hr = 3,M = 25) provides over-segmented results while the parameters configuration401

(hs = 10, hr = 15,M = 25) provides satisfactory results for the extraction of agricultural areas.402

5.2. Results analysis403

Table 1 summarizes the F-measure values, the Kappa values and the overall classification404

accuracy values obtained for the experiments with several subsets of attributes. Experiment ?405

gives the reference score obtained by a pixel-based classification of the SITS. From this table, one406

can first note that these baseline scores are quite high, demonstrating the relevance of the temporal407

dimension for land-cover classification.408

These experiments show that the radiometrical mean values of the regions (FNIR, FR, FG, FB),409

as well as the smoothness and the compactness of the regions (FS mooth, FComp), are the more rel-410

evant features for the classification of this studied area. On the contrary, the area feature FArea411
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Table 1: Results of the experiments.

Ground truth Reference map

Experiment F K A F K A

? INIR, IR, IG, IB 69.6 61.9 74.2 51.3 44.2 56.0
1 INIR, IR, IG, IB, FComp. 70.5 60.9 73.7 50.8 43.7 55.3
2 INIR, IR, IG, IB, FS mooth. 69.1 59.7 72.5 51.5 45.2 56.1
3 INIR, IR, IG, IB, FS mooth., FComp. 72.0 59.1 73.6 51.1 44.8 54.4
4 INIR, IR, IG, IB, FElong. 63.2 52.0 68.6 45.7 37.4 51.1
5 INIR, IR, IG, IB, FElong., FComp. 63.2 49.5 67.0 46.0 36.3 50.9
6 INIR, IR, IG, IB, FElong., FS mooth. 62.9 49.5 67.5 46.3 36.2 50.7
7 INIR, IR, IG, IB, FElong., FS mooth., FComp. 64.6 49.3 68.3 46.4 36.1 50.6
8 INIR, IR, IG, IB, FArea 67.9 56.2 71.2 50.5 44.2 53.7
9 INIR, IR, IG, IB, FArea, FComp. 68.0 55.3 70.7 50.4 44.6 53.7
10 INIR, IR, IG, IB, FArea, FS mooth. 67.2 56.3 71.1 50.8 43.3 53.4
11 INIR, IR, IG, IB, FArea, FS mooth., FComp. 67.3 56.1 71.3 50.3 43.2 53.3
12 INIR, IR, IG, IB, FArea, FElong. 65.1 52.1 69.1 47.4 38.3 52.0
13 INIR, IR, IG, IB, FArea, FElong., FComp. 64.3 51.2 68.9 46.5 39.0 52.0
14 INIR, IR, IG, IB, FArea, FElong., FS mooth. 64.8 51.7 69.0 46.9 38.1 51.5
15 INIR, IR, IG, IB, FArea, FElong., FS mooth., FComp. 64.4 50.0 69.0 46.6 38.8 51.7
16 FNIR, FR, FG, FB 72.7 63.0 75.7 52.1 44.5 56.0
17 FNIR, FR, FG, FB, FComp. 70.1 58.2 73.4 50.8 45.6 55.7
18 FNIR, FR, FG, FB, FS mooth. 72.8 66.1 77.2 52.4 45.2 55.9
19 FNIR, FR, FG, FB, FS mooth., FComp. 71.1 60.9 72.8 50.2 45.2 55.7
20 FNIR, FR, FG, FB, FElong. 64.6 52.6 69.1 45.3 37.0 50.3
21 FNIR, FR, FG, FB, FElong., FComp. 65.0 52.5 68.9 45.3 37.0 50.4
22 FNIR, FR, FG, FB, FElong., FS mooth. 65.1 50.8 68.7 46.0 36.6 50.0
23 FNIR, FR, FG, FB, FElong., FS mooth., FComp. 65.0 48.4 67.8 45.4 36.1 49.6
24 FNIR, FR, FG, FB, FArea 67.9 53.9 69.5 50.6 44.0 54.7
25 FNIR, FR, FG, FB, FArea, FComp. 66.3 52.4 68.8 49.9 43.0 53.8
26 FNIR, FR, FG, FB, FArea, FS mooth. 66.7 52.3 69.4 50.3 43.8 54.0
27 FNIR, FR, FG, FB, FArea, FS mooth., FComp. 65.8 52.5 69.3 49.7 43.6 54.0
28 FNIR, FR, FG, FB, FArea, FElong. 65.1 52.8 68.7 47.8 39.1 52.4
29 FNIR, FR, FG, FB, FArea, FElong., FComp. 64.8 53.0 68.7 47.8 38.9 52.6
30 FNIR, FR, FG, FB, FArea, FElong., FS mooth. 64.6 51.8 67.9 47.2 38.3 51.8
31 FNIR, FR, FG, FB, FArea, FElong., FS mooth., FComp. 63.7 49.6 67.7 47.0 38.1 51.8

The scores that outperform the ones obtained with Experiment ? (i.e., the reference scores obtained by a pixel-based
classification of the SITS) are shown in boldface.
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Table 2: Detailed results for Experiment 18.

Ground truth Reference map

Class Colour # (×103) P R F # (×103) P R F

corn 25 89,5 94,3 91,8 192 91,5 83,8 87,5
wheat 35 78,3 91,4 84,3 179 67,2 86,5 75,6
temp. meadow 6 28,3 59,3 38,3 104 34,7 64,9 45,2
fallow land 13 61,5 78,1 68,8 104 28,9 48,3 36,2
meadow 3 12,8 63,4 21,3 81 22,7 72,6 34,6
broad-leaved tree 1 79,4 91,2 84,9 77 58,8 95,0 72,6
wild land < 0.5 2,4 59,8 4,6 46 26,4 37,4 31,0
sunflower 5 54,4 63,6 58,6 45 48,7 58,4 53,1
dense housing < 0.5 0,9 12,5 1,7 36 31,3 58,7 40,8
housing n/a 33 15,2 56,1 23,9
barley 2 9,2 57,5 15,9 27 10,4 50,5 17,3
soybean 9 77,6 69,1 73,1 23 46,5 65,6 54,4
rape 3 15,4 68,8 25,2 21 18,9 91,1 31,4
corn for silage 7 83,6 99,1 90,7 9 30,6 95,0 46,2
lake 6 100,0 98,9 99,5 9 86,5 96,0 91,0
non-irrigated corn n/a 6 3,1 18,0 5,2
pea n/a 2 1,9 43,4 3,6
sorghum II n/a 2 5,0 79,4 9,4
eucalyptus < 0.5 18,2 99,5 30,8 1 1,7 9,8 2,9
conifer n/a 1 1,3 9,8 2,3
sorghum < 0.5 4,1 70,2 7,7 1 1,4 33,7 2,6
specific surface n/a < 0.5 1,4 39,2 2,6
water n/a < 0.5 2,1 81,5 4,1
mineral surface n/a < 0.5 0,9 88,8 1,9
gravel pit n/a < 0.5 1,1 99,1 2,1
poplar tree < 0.5 8,3 100,0 15,3 < 0.5 0,4 25,0 0,8

Average n/a 64,5 83,6 72,8 n/a 42,1 69,2 52,4

The symbol n/a means that the considered value is either not available or not relevant. The symbol # corresponds to
the cardinal (number of pixels) of the thematic class (we recall that each image is composed of 1, 000 × 1, 000

pixels).
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(a) (b)

Figure 8: Clustering maps obtained on the satellite image time series. (a) Result obtained with a naive fusion approach.
(b) Result obtained with the proposed method (Experiment 18). Note that these maps have been recolored according
to the corresponding land cover reference map (Figure 5(b)).

seems not relevant for this dataset; a possible reason could be that each crop class contains dif-412

ferent sizes of fields. A similar observation can be made for the elongation feature FElong. This413

being so, these observations are not questioning the interest of the approach, since these spatial414

characteristics (and others) could be used in other application cases. In our case, the best result has415

been obtained with the use of the radiometric mean of the regions combined with the smoothness416

feature (Experiment 18).417

In order to visually assess the results provided by the proposed method, Figure 8(b) shows418

the best clustering result obtained on sequences from 2007. We also provide in Figure 8(a) the419

result provided by a naive fusion classification approach. This approach performs by fusing (with420

a majority vote) the different clustering maps obtained independently for each image of the se-421

ries. A visual comparison between these two results directly emphasizes the potential of using422

a pixel-enriched temporal classification approach instead of a naive temporal fusion one. Actu-423

ally, considering the temporal dimension of the data makes it possible to obtain more accurate424

classification results.425

To separately assess the accuracy of each thematic class, we also provide for the best clustering426

result obtained (Experiment 18), the precision P, the recall R, the F-measure F as well as their427

averages (see Table 2). For comparison purpose, the confusion matrix obtained by comparing this428

result to the considered land cover reference map is provided in Table 3. From these two tables,429

one can note that most of the major considered temporal classes have been correctly extracted by430

the proposed approach. Table 2 highlights that the proposed approach provides results with high431

values of precision, recall, and F-measure for most of the extracted classes. For instance these432
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Table 3: Confusion matrix obtained by comparing the result of Experiment 18 to the considered land-cover reference
map (Figure 5(b)).

Class c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 card

corn 7 84 4 4 - 1 - - - - 19 %
wheat - - 2 1 2 1 6 2 87 - 18 %
temporary meadow - - 15 - 3 3 53 12 14 - 10 %
fallow land - - 18 2 10 4 34 17 14 - 10 %
meadow - - 35 - 2 23 31 6 2 - 8 %
broad-leaved tree - - 4 - - 96 - - - - 8 %
wild land - - 29 - - 42 13 14 1 - 5 %
sunflower 7 7 11 58 10 1 1 1 3 - 4 %
dense housing - - 15 15 53 2 6 4 3 2 4 %
housing - - 29 2 32 11 17 6 3 - 3 %
barley - - 2 9 4 - 8 - 75 - 3 %
soybean 66 23 6 3 2 - - - - - 2 %
rape - - 1 - 1 - 3 - 95 - 2 %
corn for sillage - 47 2 49 - - - - - - 1 %
lake - - 3 - 1 - - - - 96 1 %
non-irrigated corn 13 20 28 3 5 13 1 17 - - 1 %

The thematic classes covering less than one percent of the sensed surface are not represented in the matrix.

values reach approximatively 85% for the corn and wheat classes which are the most represented433

ones. Furthermore, the confusion matrix obtained shows that these two temporal classes are mainly434

regrouped in two clusters by the K-means algorithm. The same observation can be given for the435

broad-leaved tree class. Such comparisons enable to assess the accuracy of the classification results436

provided by the proposed pixel-enriched approach. Note that, as the proposed approach provides437

a clustering of the sensed area, no one-to-one mapping between thematic classes and clusters is438

guaranteed. In this way, it is not possible to provide statistical accuracies from this matrix. For439

instance, cluster 8 is predominantly representing the wheat class, but also represents the barley440

and rape classes. In fact, this cluster represents the broader class of winter crops (i.e., of higher441

semantic level), precisely composed of these three classes.442

Moreover, Figure 9 focuses on a restricted area in order to visualize the differences between443

the pixel-based approach and the proposed pixel-enriched approach. One can see that, in the444

details, the land-cover map obtained with the proposed pixel-enriched approach is spatially more445

consistent and regular than the result obtained with the pixel-based approach. Furthermore, one446

can note that the orange and yellow classes, corresponding respectively to corn and wheat crop447

fields, as well as the dark green class corresponding to hardwoods, are well separated. More448

generally, these results demonstrate visually the relevance of the proposed pixel-enriched approach449

compared to the pixel-based analysis.450

Finally, in order to statistically study the correlation of the considered features, a correlation451
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(a) (b)

(c) (d)

Figure 9: Extract of the results provided by the proposed method carried out on the satellite image time series. (a)
Zoom on the considered ground surface in one image of the series. (b) Zoom on the land cover reference map
(Figure 5(b)). (c) Zoom on the clustering map obtained with Experiment ?. (d) Zoom on the clustering map obtained
with Experiment 18.

matrix between these features has been computed (Table 4). To this end, all pixels of all images452

were characterized by the spatial features (computed on the segmentation (hs = 10, hr = 15,M =453

25)). Not surprisingly, the radiometric features FR, FG and FB are highly correlated (due to the454

similar reflectances of usual sensed objects in these radiometric bands). This matrix also shows455

that the spatial features are generally not correlated, except for the couple (FElong., FComp.).456

5.3. Computation time study457

As it is quite difficult to provide a relevant theoretical complexity study of the proposed458

methodology, we present hereafter an experimental evaluation of the complexity.459

Table 5 provides the run-time and the memory usages for the processing of the images con-460

tained in the studied dataset sensed over the 2007 cultural year. Experiments have been run on an461

Intel® Core™2 Quad running at 2.4 GHz with 8 GB of RAM. The algorithms have been imple-462

mented using the Java programming language and different threading strategies. From Table 5,463
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Table 4: Correlation matrix of the features corresponding to the segmentation parameters (hs = 10, hr = 15,M = 25)).

Feature FNIR FR FG FB FArea FElong. FS mooth. FComp.

FNIR 1 -0.21 -0.05 -0.15 -0.04 -0.2 -0.07 -0.21
FR 1 0.96 0.93 -0.06 0.24 -0.05 0.11
FG 1 0.96 -0.04 0.23 -0.04 0.12
FB 1 -0.04 0.23 -0.04 0.12
FArea 1 -0.52 0.34 -0.33
FElong. 1 -0.12 0.83
FS mooth. 1 0.02
FComp. 1

Table 5: Run-time and memory usage for the processing of the considered dataset.

Step Runtime Memory (RAM)

A. Segmentation of the images 9 min 21 s 1.1 GB
B. Characterisation of the regions 2 min 18 s 2.3 GB
C. Construction of the vector images n/a 2.3 GB
D. Construction of the time series n/a 2.3 GB
E. Classification of the time series 1 min 3 s 1.6 GB

Total ≈ 13 min ≈ 2.3 GB

The symbol n/a means that the considered run-time is not significant.

one can note that the proposed approach makes it possible to classify a whole HSR SITS in less464

than 15 minutes. Furthermore the memory consumption remains tractable since it does not exceed465

2.3 GB when processing a dataset composed of 15 images of 1, 000 × 1, 000 pixels. For compar-466

ison purpose, the classification of the same HSR SITS, without considering the spatial context of467

the pixels (Experiment ?), requires less than 2 minutes.468

6. Conclusion469

This article has introduced a novel approach for the analysis of satellite image time series. The470

originality of this approach lies in its consideration of spatial relationships between pixels in each471

remotely sensed image. We have seen that characterizing pixels with contextual features computed472

on segments, allows us to enhance the classification process. This methodology has been carried473

out on a SITS composed of 15 HSR images. The different classification results obtained have474

shown the relevance of this approach in the context of the analysis of agronomical areas.475
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This hybrid paradigm combines the possibilities offered by the (per-pixel) multi-temporal anal-476

ysis and the relevance of the (single-image) object-based frameworks for spatio-temporal analysis.477

The coming pair of Sentinel-2 satellites will provide at the same time images with different spatial478

and radiometric resolutions (four bands at 10 m, six bands at 20 m and three bands at 60 m) at a479

high temporal frequency. In this context, the methodology proposed in this article provides a first480

trend to deal with such data.481

We believe this work opens up a number of research directions. Firstly, the choice of the con-482

sidered spatial features in the classification process has to be deeply studied. For instance, textural483

and topological features could be used. Secondly, we also plan to validate the proposed method-484

ology by using other segmentation strategies. For instance, it has been proposed in (Kurtz et al.,485

2012) a new segmentation approach enabling to decompose the scene at different semantic levels.486

Such an approach could be extended to SITS to analyze the scene in a multi-temporal/multi-level487

fashion. We also plan to automate the choice of the parameters of segmentation. Indeed, different488

approaches (supervised or unsupervised) have been proposed to evaluate the quality of a segmen-489

tation (Clinton et al., 2010; Özdemir et al., 2010) and thus to select the “best” segmentation result490

relatively to a particular partitioning task. Finally, the higher the spatial and temporal resolution,491

the more relevant our approach will be. In this way, the next step of this study could consists of492

applying this paradigm to a series of Multi-Spectral/Panchromatic images couples. The spatial493

accuracy of Panchromatic images will help to preserve the fine details and structures.494

Acknowledgments495

The authors would like to thank the French Space Agency (CNES) and Thales Alenia Space496

for supporting this work under research contract n°1520011594 and the researchers from CESBIO497

(Danielle Ducrot, Claire Marais-Sicre, Olivier Hagolle and Mireille Huc) for providing the land-498

cover maps and the geometrically and radiometrically corrected Formosat-2 images.499

References500

Akcay, H. G., & Aksoy, S., 2008. Automatic detection of geospatial objects using multiple hierarchical segmentations.501

IEEE Transactions on Geoscience and Remote Sensing, 46(7), 2097–2111.502

Andres, L., Salas, W., & Skole, D., 1994. Fourier analysis of multi-temporal AVHRR data applied to a land cover503

classification. International Journal of Remote Sensing, 15(5), 1115–1121.504

Bahirat, K., Bovolo, F., Bruzzone, L., & Chaudhuri, S., 2012. A novel domain adaptation bayesian classifier for505

updating land-cover maps with class differences in source and target domains. IEEE Transactions on Geoscience506

and Remote Sensing, (In press). 10.1109/TGRS.2011.2174154.507

23



Blaschke, T., 2010. Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote508

Sensing, 65(1), 2–16.509

Bovolo, F., 2009. A multilevel parcel-based approach to change detection in very high resolution multitemporal510

images. IEEE Geoscience and Remote Sensing Letters, 6(1), 33–37.511

Bruzzone, L., & Carlin, L., 2006. A multilevel context-based system for classification of very high spatial resolution512

images. IEEE Transactions on Geoscience and Remote Sensing, 44(9), 2587–2600.513

Bruzzone, L., & Prieto, D., 2000. Automatic analysis of the difference image for unsupervised change detection.514

IEEE Transactions on Geoscience and Remote Sensing, 38(3), 1171–1182.515

Carleer, A., & Wolff, E., 2006. Urban land cover multilevel region-based classification of VHR data by selecting516

relevant features. International Journal of Remote Sensing, 27(6), 1035–1051.517

Clinton, N., Holt, A., Scarborough, J., Yan, L., & Gong, P., 2010. Accuracy assessment measures for object-based518

image segmentation goodness. Photogrammetric Engineering and Remote Sensing, 76(3), 289–299.519

Comaniciu, D., & Meer, P., 2002. Mean shift: A robust approach toward feature space analysis. IEEE Transactions520

on Pattern Analysis and Machine Intelligence, 24(5), 603–619.521

Congalton, R., 1991. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing522

of Environment, 37(1), 35–46.523

Coppin, P., Jonckheere, I., Nackaerts, K., Muys, B., & Lambin, E., 2004. Digital change detection methods in524

ecosystem monitoring: A review. International Journal of Remote Sensing, 25(5), 1565–1596.525

Fan, J., Wang, R., Zhang, L., Xing, D., & Gan, F., 1996. Image sequence segmentation based on 2D temporal entropic526

thresholding. Pattern Recognition Letters, 17(10), 1101–1107.527

Foody, G., 2001. Monitoring the magnitude of land-cover change around the southern limits of the Sahara. Pho-528

togrammetric Engineering and Remote Sensing, 67(7), 841–848.529

Gaetano, R., Scarpa, G., & Poggi, G., 2009. Hierarchical texture-based segmentation of multiresolution remote-530

sensing images. IEEE Transactions on Geoscience and Remote Sensing, 47(7), 2129–2141.531

Gueguen, L., Le Men, C., & Datcu, M., 2006. Analysis of satellite image time series based on information bottleneck.532

In Proceeedings of the 27th workshop on Bayesian Inference and Maximum Entropy Methods In Science and533

24



Engineering, pp. 367–374. volume 872.534

Hagolle, O., Huc, M., Pascual, D. V., & Dedieu, G., 2010. A multi-temporal method for cloud detection, applied to535

FORMOSAT-2, VENµS, LANDSAT and SENTINEL-2 images. Remote Sensing of Environment, 114(8), 1747–536

1755.537

Hall, O., & Hay, G. J., 2003. A multiscale object-specific approach to digital change detection. International Journal538

of Applied Earth Observation and Geoinformation, 4(4), 311–327.539

Herold, M., Liu, X., & Clarke, K., 2003. Spatial metrics and image texture for mapping urban land use. Photogram-540

metric Engineering and Remote Sensing, 69(9), 991–1001.541

Hofmann, P., Lohmann, P., & Müller, S., 2008. Concepts of an object-based change detection process chain for542

GIS update: IntArchPhRS. In 21st International Society for Photogrammetry and Remote Sensing Congress, pp.543

305–312. volume XXXVII.544

Howarth, P., Piwowar, J., & Millward, A., 2006. Time-series analysis of medium-resolution, multisensor satellite data545

for identifying landscape change. Photogrammetric Engineering and Remote Sensing, 72(6), 653–663.546

Huang, X., & Zhang, L., 2008. An adaptive mean-shift analysis approach for object extraction and classification from547

urban hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 46(12), 4173–4185.548

Idbraim, S., Ducrot, D., Mammass, D., & Aboutajdine, D., 2009. An unsupervised classification using a novel ICM549

method with constraints for land cover mapping from remote sensing imagery. International Review on Computers550

and Software, 4(2), 165–176.551

Jensen, J. R., 1981. Urban change detection mapping using Landsat digital data. Cartography and Geographic552

Information Science, 8(21), 127–147.553

Johnson, R., & Kasischke, E., 1998. Change vector analysis: A technique for the multispectral monitoring of land554

cover and condition. International Journal of Remote Sensing, 19(16), 411–426.555

Jönsson, P., & Eklundh, L., 2004. TIMESAT – A program for analyzing time-series of satellite sensor data. Computers556

& Geosciences, 30(8), 833–845.557

Kennedy, R., Yang, Z., & Cohen, W., 2010. Detecting trends in forest disturbance and recovery using yearly Landsat558

time series: 1. LandTrendr – Temporal segmentation algorithms. Remote Sensing of Environment, 114(12), 2897–559

25



2910.560

Kennedy, R. E., Cohen, W. B., & Schroeder, T. A., 2007. Trajectory-based change detection for automated character-561

ization of forest disturbance dynamics. Remote Sensing of Environment, 110(3), 370–386.562
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Kurtz, C., Passat, N., Gançarski, P., & Puissant, A., 2012. Extraction of complex patterns from multiresolution remote565

sensing images: A hierarchical top-down methodology. Pattern Recognition, 45(2), 685–706.566
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