H. G. Akcay and S. Aksoy, Automatic Detection of Geospatial Objects Using Multiple Hierarchical Segmentations, IEEE Transactions on Geoscience and Remote Sensing, vol.46, issue.7, pp.2097-2111, 2008.
DOI : 10.1109/TGRS.2008.916644

URL : http://www.cs.bilkent.edu.tr/%7Esaksoy/papers/tgars_segmentation.pdf

L. Andres, W. Salas, and D. Skole, Fourier analysis of multi-temporal AVHRR data applied to a land cover classification, International Journal of Remote Sensing, vol.15, issue.5, pp.1115-1121, 1994.
DOI : 10.1007/BF02546511

K. Bahirat, F. Bovolo, L. Bruzzone, and S. Chaudhuri, A novel domain adaptation bayesian classifier for 505 updating land-cover maps with class differences in source and target domains, IEEE Transactions on Geoscience 506 and Remote Sensing, pp.367-374, 2012.

O. Hagolle, M. Huc, D. V. Pascual, and G. Dedieu, A multi-temporal method for cloud detection, applied to 535 FORMOSAT-2, VENµS, LANDSAT and SENTINEL-2 images, Remote Sensing of Environment, issue.8, pp.114-1747, 2010.

O. Hall and G. J. Hay, A Multiscale Object-Specific Approach to Digital Change Detection, International Journal of Applied Earth Observation and Geoinformation, vol.4, issue.4, pp.311-327, 2003.
DOI : 10.1016/S0303-2434(03)00010-2

M. Herold, X. Liu, and K. Clarke, Spatial metrics and image texture for mapping urban land use. Photogram- 540 metric Engineering and Remote Sensing, pp.991-1001, 2003.
DOI : 10.14358/pers.69.9.991

P. Hofmann, P. Lohmann, and S. Müller, Concepts of an object-based change detection process chain for 542 GIS update: IntArchPhRS, 21 st International Society for Photogrammetry and Remote Sensing Congress, pp.543-305, 2008.

P. Howarth, J. Piwowar, and A. Millward, Time-series analysis of medium-resolution, multisensor satellite data 545 for identifying landscape change, Photogrammetric Engineering and Remote Sensing, issue.6, pp.72-653, 2006.

X. Huang and L. Zhang, An adaptive mean-shift analysis approach for object extraction and classification from 547 urban hyperspectral imagery, IEEE Transactions on Geoscience and Remote Sensing, issue.12, pp.46-4173, 2008.
DOI : 10.1109/tgrs.2008.2002577

S. Idbraim, D. Ducrot, D. Mammass, and D. Aboutajdine, An unsupervised classification using a novel ICM 549 method with constraints for land cover mapping from remote sensing imagery, International Review on Computers 550 and Software, vol.4, issue.2, pp.165-176, 2009.

J. R. Jensen, Urban change detection mapping using Landsat digital data. Cartography and Geographic 552 Information Science, pp.127-147, 1981.
DOI : 10.1559/152304081784447318

R. Johnson and E. Kasischke, Change vector analysis: A technique for the multispectral monitoring of land cover and condition, International Journal of Remote Sensing, vol.19, issue.3, pp.411-426, 1998.
DOI : 10.1080/014311698216062

P. Jönsson and L. Eklundh, TIMESAT???a program for analyzing time-series of satellite sensor data, Computers 556 & Geosciences, pp.833-845, 2004.
DOI : 10.1016/j.cageo.2004.05.006

R. Kennedy, Z. Yang, and W. Cohen, Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr ??? Temporal segmentation algorithms, Remote Sensing of Environment, vol.114, issue.12, pp.2897-559, 2010.
DOI : 10.1016/j.rse.2010.07.008

R. E. Kennedy, W. B. Cohen, and T. A. Schroeder, Trajectory-based change detection for automated characterization of forest disturbance dynamics, Remote Sensing of Environment, vol.110, issue.3, pp.370-386, 2007.
DOI : 10.1016/j.rse.2007.03.010

C. Kurtz, N. Passat, P. Gançarski, and A. Puissant, Multiresolution region-based clustering for urban analysis. 563, International Journal of Remote Sensing, issue.22, pp.31-5941, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01694411

C. Kurtz, N. Passat, P. Gançarski, and A. Puissant, Extraction of complex patterns from multiresolution remote sensing images: A hierarchical top-down methodology, Pattern Recognition, vol.45, issue.2, pp.685-706, 2012.
DOI : 10.1016/j.patcog.2011.07.017

URL : https://hal.archives-ouvertes.fr/hal-01694409

C. Kurtz, N. Passat, A. Puissant, and P. Gançarski, Hierarchical Segmentation of Multiresolution Remote Sensing Images, Proceedings of the International Symposium 568 on Mathematical Morphology, pp.343-354, 2011.
DOI : 10.1109/TIP.2008.2002841

URL : https://hal.archives-ouvertes.fr/hal-01718349

C. Kurtz, A. Puissant, N. Passat, and P. Gançarski, An interactive approach for extraction of urban patterns 570 from multisource images, Proceedings of the IEEE Joint Urban Remote Sensing Event, pp.321-324, 2011.

D. Lu, P. Mausel, E. Brondizio, and E. Moran, Change detection techniques, International Journal of Remote Sensing, vol.66, issue.12, pp.25-2365, 2004.
DOI : 10.1659/0276-4741(2001)021[0175:LCCATA]2.0.CO;2

D. Lui and S. Cai, A spatial-temporal modeling approach to reconstructing land-cover change trajectories from 574 multi-temporal satellite imagery, Annals of the Association of American Geographers, 2011.

J. Macqueen, Some methods for classification and analysis of multivariate observations, Berkeley Sympo- 576 sium on Mathematical Statistics and Probability, pp.281-297, 1967.

F. Melgani and S. B. Serpico, A statistical approach to the fusion of spectral and spatio-temporal contextual information for the classification of remote-sensing images, Pattern Recognition Letters, vol.23, issue.9, pp.1053-1061, 2002.
DOI : 10.1016/S0167-8655(02)00052-1

F. Moscheni, S. Bhattacharjee, and M. Kunt, Spatio-temporal segmentation based on region merging, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.20, issue.9, pp.897-915, 1998.
DOI : 10.1109/34.713358

I. Niemeyer, P. Marpu, and S. Nussbaum, Change detection using object features, Object-Based Image 582, 2008.
DOI : 10.1007/978-3-540-77058-9_10

Y. O. Ouma, S. Josaphat, and R. Tateishi, Multiscale remote sensing data segmentation and post-segmentation 584, 2008.

B. Aksoy, S. Eckert, S. Pesaresi, M. Ehrlich, and D. , Performance measures for object detection 587 evaluation, Pattern Recognition Letters, issue.10, pp.31-1128, 2010.

M. Pesaresi and J. A. Benediktsson, A new approach for the morphological segmentation of high-resolution satellite imagery, IEEE Transactions on Geoscience and Remote Sensing, vol.39, issue.2, pp.309-320, 2001.
DOI : 10.1109/36.905239

F. Petitjean, J. Inglada, and P. Gançarski, Clustering of satellite image time series under Time Warping, 2011 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (Multi-Temp), pp.592-69, 2011.
DOI : 10.1109/Multi-Temp.2011.6005050

F. Petitjean, J. Inglada, and P. Gançarski, Satellite image time series analysis under time warping, IEEE 594 Transactions on Geoscience and Remote Sensing, issue.8, p.50, 2012.
DOI : 10.1109/tgrs.2011.2179050

URL : https://hal.archives-ouvertes.fr/hal-00940767

F. Petitjean, A. Ketterlin, and P. Gançarski, A global averaging method for dynamic time warping, with applications to clustering, Pattern Recognition, vol.44, issue.3, pp.678-693, 2011.
DOI : 10.1016/j.patcog.2010.09.013

F. Petitjean, F. Masseglia, P. Gançarski, and G. Forestier, DISCOVERING SIGNIFICANT EVOLUTION PATTERNS FROM SATELLITE IMAGE TIME SERIES, International Journal of Neural Systems, vol.72, issue.06, pp.475-489, 2011.
DOI : 10.1007/s10115-003-0133-6

E. Schopfer, S. Lang, and F. Albrecht, Object-fate analysis - spatial relationships for the assessment of object transition and correspondence, Object-Based Image Analysis, Lecture Notes in Geoinformation and Cartography 601 chapter, pp.785-801, 2008.
DOI : 10.1007/978-3-540-77058-9_43

D. Tiede, S. Lang, P. Füreder, D. Hölbling, C. Hoffmann et al., Automated damage indication for rapid 603 geospatial reporting, Photogrammetric Engineering and Remote Sensing, issue.9, pp.77-933, 2011.
DOI : 10.14358/pers.77.9.933

D. M. Tsai and W. Y. Chiu, Motion detection using Fourier image reconstruction, Pattern Recognition Letters, vol.29, issue.16, pp.29-2145, 2008.
DOI : 10.1016/j.patrec.2008.08.005

V. S. Tseng, C. H. Chen, P. C. Huang, and T. P. Hong, Cluster-based genetic segmentation of time series with 607 DWT, Pattern Recognition Letters, issue.13, pp.30-1190, 2009.

J. Verbesselt, R. Hyndman, G. Newnham, and D. Culvenor, Detecting trend and seasonal changes in satellite image time series, Remote Sensing of Environment, vol.114, issue.1, pp.106-115, 2010.
DOI : 10.1016/j.rse.2009.08.014

Q. Z. Wu, H. Y. Cheng, and B. S. Jeng, Motion detection via change-point detection for cumulative histograms 611, p.27, 2005.
DOI : 10.1016/j.patrec.2004.09.010