
HAL Id: hal-01705431
https://hal.univ-reims.fr/hal-01705431v1

Preprint submitted on 9 Feb 2018 (v1), last revised 5 Feb 2020 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interactive Visualization and On-Demand Processing of
Large Volume Data: A Fully GPU-Based Out-Of-Core

Approach
Jonathan Sarton, Nicolas Courilleau, Yannick Rémion, Laurent Lucas

To cite this version:
Jonathan Sarton, Nicolas Courilleau, Yannick Rémion, Laurent Lucas. Interactive Visualization and
On-Demand Processing of Large Volume Data: A Fully GPU-Based Out-Of-Core Approach. 2018.
�hal-01705431v1�

https://hal.univ-reims.fr/hal-01705431v1
https://hal.archives-ouvertes.fr

Interactive Visualization and On-Demand Processing of Large
Volume Data: A Fully GPU-Based Out-Of-Core Approach

Jonathan Sarton, Nicolas Courilleau, Florent Duguet, Yannick Remion and Laurent Lucas

Abstract—In a wide range of scientific fields, 3D datasets production capabilities have widely evolved in recent years, especially
with the rapid increase in their size. As a result, many large-scale applications, including visualization or processing, have become
challenging to address. A solution to this issue lies in providing out-of-core algorithms specifically designed to handle datasets
significantly larger than memory. In this article, we present a new approach that extends the broad interactive addressing principles
already established in the field of out-of-core volume rendering on GPUs to allow on-demand processing during the visualization stage.
We propose a pipeline designed to manage data as regular 3D grids regardless of the underlying application. It relies on a caching
approach with a virtual memory addressing system coupled to an efficient parallel management on GPU to provide efficient access
to data in interactive time. It allows any visualization or processing application to leverage the flexibility of its structure by managing
multi-modality datasets. Furthermore, we show that our system delivers good performances on a single standard PC with low memory
budget on the GPU.

Index Terms—GPU, Caching system, Out-of-core data management, Large data, Interactive visualisation, On-demand processing

1 INTRODUCTION

The needs for visualizing and/or processing large volume data are com-
mon today in different scientific fields and entertainment. Navigation
inside such high-resolution volumes in real-time involves designing
efficient out-of-core data management algorithms which address entire
massive datasets from high-performance computing devices such as
current GPUs.

The interactive addressing problem of any part of a data volume that
exceeds the amount of GPU memory has been addressed by several
methods. Nonetheless, these approaches have focused on visualization
tools and more particularly volume rendering. To our knowledge, there
are no approaches that allow on-demand processing of data on the GPU
during interactive visualization. In many contexts, however, it can be
crucial to visualize and interact with data during visualization through
processing. This involves providing out-of-core methods adapted to
on-the-fly data modification by image processing algorithms applied
during interactive visualization.

The proposed solution is a complete out-of-core pipeline from disk
to GPU designed to access very large volumes exceeding GPU or CPU
memory in interactive time. We base our work on modern methods
already known in this field, such as the design of output-sensitive
algorithm with on demand-paging and data streaming, bricking and
multi-resolution representation, the use of a brick pool as a cache on
GPU texture memory and virtual address translation mechanism. We
propose a system that allows access to multi-modal volumes output
by any end-user application with a GPU interface connected to our
out-of-core pipeline.

This work aims to propose a solution which takes advantage of the
manycore environment of the GPUs. This environment allows to carry
out as many operations as possible in parallel while preserving enough
GPU resources for an end-user application that could require signifi-

• J. Sarton, N. Courilleau, Y. Remion and L. Lucas are with the Université de
Reims Champagne-Ardenne, 51100 Reims, France. E-mail: jonathan.sarton,
nicolas.courilleau, yannick.remion, laurent.lucas@univ-reims.fr.

• N. Courilleau is also with Neoxia, 75008 Paris, France. E-mail:
nicolas.courilleau@neoxia.com.

• F. Duguet is with Altimesh, 51100 Reims, France. E-mail:
florent.duguet@altimesh.com.

• The first two authors contributed equally to this work.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

cant computing resources (such as volume ray casting or convolution
processing on the volume for instance).

In the following, a state of the art of recent advances in external mem-
ory management is given in section 2. Section 3 gives an overview of
the proposed pipeline. Our solution is presented and discussed regard-
ing the data representation in section 4 and out-of-core management in
Section 5. Section 6 describes the impacts of on-demand processing
during interactive visualization. In section 7, we introduce a compari-
son of our approach with the closest previous ones. Our method will be
evaluated in Section 8 before discussing some specific points in Section
9. Our perspective works are exposed in section 10.

Contributions In this paper, we introduce an efficient out-of-core
data management solution suitable for both interactive visualization and
on-demand processing of large 3D regular grids from GPU. Our method
is based on the principle of virtual memory to address voxels through
a GPU page table (PT) hierarchy introduced in [16]. We improve this
approach by providing an efficient parallel GPU implementation of
the out-of-core addressing data structure. Our method is designed to
limit the communications between the CPU and the GPU to their strict
minimum. In addition, our system is created for a general-purpose con-
text and provides an API available from the GPU for any applications
such as standalone or combined visualization and processing of large
volume data.

2 RELATED WORKS

External memory data management [2, 24, 26] also called out-of-core
data management, defines the class of techniques used to handle data
that are too large to fit entirely into the main memory of the unit in
charge of their processing. There is a vast body of literature on the
use of this kind of methods for visualization on different data types,
other than volume data [7, 15, 21, 25]. The development of out-of-core
methods more specifically for real-time visualization of regular voxel
grids has been motivated by volume ray casting of large datasets on
GPU [18] and has been widely used during the last decade.

In 2008, Gobbetti et al. [14] were the first to offer a complete, out-
of-core, multi-resolution volume renderer on GPU. Crassin et al. [10]
proposed the next year, a more efficient system with Gigavoxel, a
ray-guided streaming of opaque voxelized surfaces for entertainment
purposes. In [11], Engel presented a framework for scientific visualiza-
tion of tera-voxels, improving previous works by optimizing the GPU
to CPU communications.

In all previously mentioned works, a tree structure is used to ad-
dress out-of-core bricked data (an octree or a generalized N3-tree in
Gigavoxel) with a kd-restart algorithm to go through the tree on the
GPU. The basic principle is the use of a brick pool in GPU texture
memory as a cache to store small bricks of voxels with, in the case

Fig. 1. Overall out-of-core pipeline. An end-user application (1) is connected to the GPU interface of the pipeline and can require voxels (2) from
the caching system. This system is entirely managed on the GPU to handle the bricks usage (3) and requests (2.1). When bricks are missing, a
small request list is sent to the CPU (2.2) to load them asynchronously from the CPU cache manager (2.3) or from a mass storage device (2.4)
where a bricked multi-resolution representation of the volume is stored. The bricks are sent back to the GPU (2.5) and the page table hierarchy is
updated (2.6).

of [10, 11], a node pool to store the tree nodes. Cache misses are re-
ported for the bricks that are not present in the video memory. These
pools are updated at each frame to insert requested data by replacing
unused ones if needed; all managed with a simple Least Recently Used
(LRU) mechanism. While Gobbetti et al. used visibility information for
culling, the others introduce a full ray-driven streaming that only loads
visible data. Brix et al. [6] approach relies on concepts described in [10]
and adapts it to the specific needs of multi-channel microscopy on stan-
dard computers. Moreover, several works for storage optimization or
efficient construction have been proposed to improve tree structures in
this area [2, 17, 19].

We can find many approaches based on a tree structure that are used
to address out-of-core data (KD-tree [23], binary space partitioning
(BSP) tree [27] or octree [10, 11, 14]) by linking the data through the
nodes of the tree. However, Hadwiger et al. [16] presented a new
virtual memory approach to address several petabytes of biomedical
data. They focused on electron microscopy volumes with a continuous
stream of data. They compared their approach with tree traversal
and observed that it scales better to extremely large volume sizes.
Their work was extended to the visualization of segmented electron
microscopy volumes [4]. In this extension, the data are segmented
beforehand and then stored in an archive before being sent to the GPU
on demand. The segmentation is not performed during the interactive
visualization stage on the data cached on the GPU.

Lastly, for a detailed analysis of out-of-core ray-guided volume
rendering, one can refer to Fogal et al. [13]. They present a study
about the optimal brick subdivision, I/O disk access with or without
compression and other characteristics analysis. A complete state of the
art can be found in [5]. The above-mentioned works are presented with
a complete description of different methods of data representation and
storage or comparison of address translation approaches. In addition,
some works focused on the use of out-of-core methods on clusters or
supercomputers, to distribute the data on several nodes [12].

Although these different solutions address most of the out-of-core
data management issues, they do not mention all the needs in a versatile
way regardless of the end-user application. For instance, BSP and
octree-based approaches may need intermediate structures to be built
and thus updated for any change in the data stored in leaves. With
animated scenes or scenes where content is unknown in advance, the

whole hierarchy needs to be updated. Previous approaches proposed
cache miss management that is not adapted to algorithms other than
visualization (and sometimes even specific to ray casting only). Had-
wiger and Fogal, for example, use a set of hash tables to report missing
elements organized in the screen space. This does not allow to generate
cache misses for bricks that are not part of the working set required for
visualization.

A natural generalization of octree to larger nodes has been studied
by Cazals et al. [8]. This hierarchy of uniform grids is particularly
well-suited for ray-tracing. The idea of a hierarchy of uniform grids to
operate on mid-size intermediate grids is similar in complexity to the
proposed approach.

In the volume ray casting rendering context, Hadwiger et al. [16]
introduced a data structure different from a tree to avoid maintaining
and traversing it. Their choice was motivated by the major constraint
of a constant flow of data coming from a microscope inducing the
non-prior knowledge of the entire dataset. Moreover, their structure
is interesting outside its application framework and scales better than
octrees for extremely large volumes. The access time to the data is the
same regardless of the level of the resolution, unlike a tree that requires
a depth traversal to access the higher resolution data. Nonetheless,
they use it only for visualization with a specific volume ray-caster.
Our method proposes to extend their approach in a general-purpose
framework allowing to visualize and process volumes interactively on
the GPU. In addition, Hadwiger proposed to manage the content of the
caches present in its structure from the CPU, with per-frame read-back
for bricks usage and requests. To overcome this shortcoming, we take
our inspiration from Cyril Crassin’s work realized in another context
and described in his PhD thesis [9]. We adapt his method used to
maintain an octree to propose a parallel version on the GPU of the
management of the virtual addressing structure proposed by Hadwiger.
Finally, we present our understanding of the implementation proposed
by Hadwiger and give a detailed description of our own.

3 SYSTEM OVERVIEW AND CONTEXT

The system we propose is illustrated in Figure 1. It is composed of:

• Multi-resolution 3D mipmap pyramid subdivided into small
bricks of voxels for each level and stored in a mass storage, ob-

tained in a preprocessing step;

• Large and simple CPU RAM brick cache and a brick loader
interface between the disk/CPU and the GPU;

• Virtual memory architecture: multi-resolution multi-level PT
hierarchy and a brick cache on GPU;

• Cache manager entirely on GPU to manage the maintenance of
caches and offer an efficient management of cache misses.

We propose to implement a multi-level multi-resolution page table
hierarchy to address a full volume using virtual memory scheme. This
hierarchy is composed of several levels of virtualization, with a page
table for each level, to address very large volumes. The levels of page
table (except the root) as well as the bricks of voxels are cached in
the GPU and managed individually by LRUs. We propose a full man-
agement of the GPU caches from the GPU in order to take advantage
of the multi-threaded architecture and to limit communications and
synchronization between CPU and GPU.

Caches management. This management can be summarized in two
main tasks:

1. the updates of the usage information of cached bricks and the
updates of LRU caches;

2. the cache misses report.

Pipeline details. The main feature of our pipeline is to propose a
GPU interface for any application that manipulates very large volumes
represented as a regular grid of voxels. The navigation inside the vol-
ume is performed in a virtual normalized volume. At any time of the
run-time application, a voxel can reside in several memory places (mass
storage, system memory or GPU memory). The voxel addressing is
done as one uniform address space regardless of its physical storage
location. The access to a voxel is determined by a pair (l, p) with l, the
desired level of details (LOD) and p, the 3D normalized floating posi-
tion in the virtual volume (p≡ [x,y,z] ∈ [0,1[3). When the application
requires a voxel (Fig. 1.(1)), the entire pipeline is triggered as follows:
i) (Lookup) The first step is to check in the page table hierarchy if the
brick containing the required voxel is present or not in the GPU data
cache (Sec. 5.1 & Fig. 1.(2)). ii) (Hit) In the case where this brick is
present in the brick cache, the cache manager can directly provide the
required voxel to the application. Then it reports the usage of that brick
(Sec. 5.2). iii) (Miss) In the other case — when a cache miss occurs —
a brick request is reported by the cache manager (Sec. 5.2).

Our implementation targets general usage. The optimal cache update
strategy depends on the application and will surely be different for ray
casting, volume data processing or cut-based volume visualization. We
offer these options by including this function in the API we proposed.
On one hand, this action will trigger an update of the LRUs from
the previous use of bricks (Fig. 1.(3)) and, on the other hand, will
generate a complete request list with all the reported cache misses (Fig.
1.(2.1)). Then a small request list is sent to the CPU (Fig. 1.(2.2)) for
asynchronous processing. An asynchronous thread will request the
bricks to the CPU cache manager (Fig. 1.(2.3)). If needed, the bricks
are read from the mass storage and written into the CPU cache (Fig.
1.(2.4)). Then, the requested bricks will be written-back in a buffer
accessible by the GPU (Sec. 5.3 & Fig. 1.(2.5)). When the bricks can
be written in the GPU data cache, the page table hierarchy is updated
accordingly (Sec. 5.6 & Fig. 1.(2.6)). The application efficiently
manages the voxel requests, by only asking for the necessary bricks, so
as never to load unnecessary ones (for instance, adopting a ray-guided
method for volume ray casting).

This pipeline is relatively similar to that proposed by Hadwiger et
al. [16]. However, its design differs in several aspects because the data
accessed is not a constant stream output by a microscope. Therefore,
we have an a priori knowledge of the dataset, and we store the bricks
directly (e.g. 163−1283 voxels) rather than storing 2D tiles that require
registrations and a step of 3D construction of bricks at run-time.

Fig. 2. Multi-resolution, multi-level page table hierarchy virtualiza-
tion principle. A 2D representation of our 3D addressing structure. In
this example, only one intermediate level of virtualization is used (PT1).
One entry of the MRPD addresses a PT block of 3×3 entries in the PT1
cache and one entry in the PT1 cache addresses a brick of 4×4 voxels
in the data cache.

Communications. In our system, the communications from CPU
to GPU are limited to the strict minimum. They consist of sending the
bricks of voxels and a Boolean flag for each of them (for an empty brick
information). The communications from GPU to CPU are restricted
to a small request list containing (l, p) pairs of each requested bricks.
All other mandatory actions of the out-of-core data management are
performed inside the GPU, taking advantage of its computing power
and limiting costly communications with the host.

4 DATA REPRESENTATION

The input data may come as well from a physical model acquisition
(e.g. biomedical scans, MRI, etc.) as from the voxelization of any data
as long as they can be represented as a regular 3D grid (Sec. 9).

Multi-resolution. Raw data volumes are preprocessed in order to
create a 3D mipmap pyramid which represents the volume at different
LODs. Data anisotropy in sampling, which often occurs in medical
imaging, can be drastically reduced by applying different downsam-
pling ratios along each axis in this multi-resolution representation.

Bricking. Each level of the multi-resolution pyramid is then divided
into small independent blocks of voxels, called “bricks”. All bricks
have the same size, regardless of their level of resolution. This object
space decomposition method allows manipulating small amounts of
data rather than the whole large volume, thus generating the ability
to access data in constant time. The brick shape does not necessarily
have to be cubic; different edge sizes can be used. In any case, when
the volume is not sufficient to complete all bricks, the last bricks are
simply completed with empty voxels. Our approach avoids generating
unnecessary empty bricks like most approaches that manipulate only
power of two volume sizes. In addition, an overlapping area can be
created, between neighbouring bricks, in order to ensure coherence of
future treatments on the voxels (interpolation, convolution, etc).

Our system is designed for the use of volumes whose entire dataset is
already defined and known. It means that treatments could be performed
on the data before using them in the system. As we are dealing with
large volumes of data, both steps mipmapping and bricking take a
substantial time to be done; therefore it is interesting to perform these

(a) (b) (c)

Fig. 3. Parallel cache manager mechanisms on the GPU (a) Cache usage update: a single pass to update LRU with double stream compaction
(Cartesian products) from a shared buffer to report bricks usage. (b) Bricks request list creation: a single stream compaction from a shared request
buffer to create a small request list. (c) Empty bricks management strategy at loading.

steps outside the stream.
Compression. Finally, the bricks are stored on a large storage device

in raw data or compressed format. Using a compressed brick format
has two advantages: the volumes will take less memory space on the
storage; and it will reduce the loading time of the bricks from the mass
storage to the CPU (Sec. 8.4). Nevertheless, we are targeting a real-time
application using scientific images; it means the compression algorithm
needs to be lossless and has to provide a fast time decompression. To
this end, we have opted for an LZ41 compression scheme.

5 OUT-OF-CORE DATA MANAGEMENT

We detail in this section the out-of-core addressing data structure used
to access all the dataset. We present its implementation on GPU and
the parallelization strategy of its associated cache manager. We also
propose our implementation version and technical details for the virtual
hierarchy management and update.

5.1 Memory virtualization
In order to address the bricks of a large multi-resolution volume from
the GPU, we adopt an approach of multi-level multi-resolution page
table hierarchy. This structure is based on the principle of a large
page table organized on several levels, which consists of mapping
the virtual address of each voxel with its physical address. This can
be seen as a pyramidal structure where each level virtualizes a set of
entries (e.g. 163− 643) organized into 3D blocks in the level below
(Fig. 2). The top of the hierarchy is composed of the multi-resolution
page directory (MRPD) which corresponds to the starting point of the
virtual addressing of any voxels, at any resolution level. This is the only
level which is not virtualized and entirely present on the GPU with a
low memory impact (Sec. 8.4). For very large volumes of data, the
MRPD itself is too large to be held in GPU memory. The virtualization
principle can therefore be applied to the page table itself. Hence, below
the MRPD, there may be N intermediate levels of PT with, for each one,
a cache containing PT blocks. Adding intermediate levels increases
the amount of virtualization and reduces the size of the MRPD. Finally,
the data cache containing the bricks is located at the bottom of the
hierarchy. The theoretical complexity of the algorithm to access data,
given its tree-based data structure, is O(log(b)), where b is the number
of bricks at leaf level. However, the constant of this complexity is very
small, and in practice, with two intermediate levels, petabytes of data
can be addressed. In addition, the access time does not increase with
LOD (unlike an octree).

Our implementation of this hierarchy has been planned in a generic
way in order to be able to dynamically create as much intermediate PT
level as necessary to address any volume size. This allows the use of
smaller bricks and therefore a finer data addressing.

1http://lz4.github.io/lz4/

Note, it is important not to confuse the multi-resolution representa-
tion volume and its virtualization used for the address indexing on the
GPU. While, the former refers to the resolution levels l (LODs), the
latter refers to the virtualization levels.

5.2 Implementation

Each level of the hierarchy is implemented with the CUDA surface
API [1] in order to read and write elements into 3D texture memory
with hardware accelerated 3D indexing. In the case of a graphic end-
user application, the spatial coherent access patterns of the surface
memory have a significant benefit. All the caches are managed by an
LRU implemented as a simple device vector with the Thrust parallel
template library [1].

The data cache implementation is templated in order to store any
type of voxels from GRAY8 to RGBA32 and others (Sec. 9). Conversely,
an entry of page table is represented with four 32-bit integers to store
the 3D coordinates c of the block virtualized by this entry in the next
level of the hierarchy and a flag representing the state of this block.
This flag can be either empty, mapped or unmapped (not present on the
GPU).

The MRPD is represented in memory as a buffer containing one
3D subgrid per LOD added next to each other on the x-axis. This
representation is illustrated in figure 4. The size of the MRPD is equal
to the sum of the x-size of each subgrid and the size of the largest
subgrid in the y- and z- axes. This representation implies that a part of
the buffer will not be used.

A cache manager is used to maintain the bricks and page tables usage
as well as to manage the bricks requests. These operations are done
in parallel on the GPU with data parallel primitive stream compaction
operations.

LRU update. Updating the used bricks is necessary for caches
management. This is assured by an LRU algorithm on a list for each
cache. All the GPU threads report the use of elements by marking the
corresponding elements, in a shared 3D buffer (called usage buffer)
on global GPU memory, with a global 32-bit integer timestamp. This
timestamp is incremented after each update, and it is not necessary to
use atomic writes to handle concurrent threads access because each
thread will write the same timestamp integer in the corresponding entry.
There is one such buffer for each cache and it contains as many entries
as elements present in its corresponding cache (one to one 3D mapping).
Then, a mask is created and filled with a Boolean value that indicates if
the corresponding usage buffer entry contains the current timestamp
or a previous one. The stream compaction ensures the sorting of the
lists by moving the most recently used elements to the beginning while
maintaining the order of the others (Fig. 3.(a)).

Cache misses. Figure 3.(b) illustrates the creation of the requested
bricks list. When a requested brick is not present in the GPU (flag

http://lz4.github.io/lz4/

set to unmapped), a cache miss occurs and triggers a request for this
brick. In the same way as the element usage information, the requested
bricks are maintained in a list through a stream compaction operation
from a buffer (called request buffer) shared by all the CUDA threads.
This buffer contains as many entries as bricks in the whole multi-
resolution volume, and each thread will tag the corresponding entries
to the required bricks with the global integer timestamp. The resulted
request list is limited to a small size in order to limit the number of
bricks loading at each update. This list contains the requested bricks
IDs. These IDs are guaranteed to be unique and are constructed from
the spatial position in the volume and the resolution level of the bricks.
The proposed cache miss management strategy is entirely generic. It
makes it possible to request any brick at any resolution level and at any
time without being oriented towards a specific application type.

Comparison with an octree. With an octree approach, the PT
entries of the virtual memory management are the octree nodes them-
selves (stored in a node pool). This implies to transfer these nodes
from the CPU to the GPU memory by raising PT entries requests (node
requests). In the proposed method, the PT entries are updated directly
in the GPU, thus avoiding transfers to the device. The single communi-
cations between the central memory and the GPU texture memory are
data (bricks) transfers. However, our request buffer has to be sized to
the number of total bricks. For instance, let us consider a large volume
of 163843 voxels with a ratio of two between two consecutive LODs
and a brick size of 643 voxels. Since the request buffer is represented
in memory in the same way as the MRPD, it will require ~134MB for
the given volume with nine LODs. With a data cache of 4GB (which
is correct for modern GPUs), it represents less than 3.5% overhead in
memory.

5.3 Data fetch
The brick requests are asynchronously handled by the CPU to fetch
the data. As shown by Crassin [9], it is more efficient to use CUDA
zero-copy [1] in order to load the bricks into GPU memory. It ensures
optimal uses of the hardware rather than transferring those manually
using copy operations triggered by the CPU. To achieve this, we use a
requested buffer allocated in CPU memory with CUDA; this buffer is
pinned on a physical address region for the PCI Express controller to
use directly. A dedicated CPU thread takes care of fetching bricks from
the CPU cache or the mass storage and signals the GPU that bricks are
available in this buffer. The writing of the requested bricks from the
requested buffer to the GPU data cache is performed with a single pass
in a CUDA kernel with one thread per voxel per brick.

Empty bricks. Empty brick information makes possible to distin-
guish the bricks that do not participate in the running algorithm because
they are considered as empty, transparent or without any important
information. It is important to never load such bricks on the GPU to
avoid cluttering the data cache. The access to a brick whose flag is set
to empty in the virtual addressing structure does not generate a cache
miss. However, a brick flagged to unmapped, which generates a cache
miss, may potentially be empty. Figure 3.(c) shows the adopted strat-
egy to efficiently deal with this behaviour. For each request of brick,
we test on the CPU whether it is empty or not (regardless of which
criteria). Only non-empty bricks are added in the requested buffer. A
Boolean vector indicating for each requested brick whether it is empty
or not is transferred to the GPU. With these information, it is possible
for the GPU to identify the bricks to transfer and to write inside the
data cache. Thus, a dual stream compaction operation is used on the
initial brick request list from the empty information mask. This step
generates a sorted list to discriminate non-empty from empty bricks.
The formers will be added to the data cache and referenced as mapped
in the hierarchy. The latters will be referenced with the empty flag.

5.4 Voxel access
This section is a reminder of the method presented by Hadwiger et
al. [16]. For the sake of reproducibility, we adopt a formal way of
presenting the involved concepts. In particular, we present the virtual
volume representation in section 5.5 and the update of the virtualization
hierarchy in section 5.6.

Fig. 4. 2D representation of voxel addressing in the virtual hierar-
chy. (a) Volume used as an example, represented with three LODs cut
in bricks of size of 2× 2 voxels. It contains 8× 4 voxels at the highest
resolution level (L0), 4×2 voxels at the intermediate LOD (L1) and 2×1
voxels at the coarsest LOD (L2) filled with empty voxels (black) to get
one entire brick. (b) Data structure to address the voxels using one
level of virtualization. One entry of the MRPD addresses one brick. (c)
Data structure to address the voxels using two levels of virtualization.
One entry in the MRPD addresses one PT block of 1×2 entries in the
intermediate PT cache. One entry in this PT cache addresses one brick
in the data cache. In both cases (b) and (c), we try to get the value of
the voxel positioned at l = 0 and p = [1

8 ,
1
4 ,0]. In the MRPD and the PT

cache, white means the flag is set to mapped and black means it is set
to unmapped.

Using figure 4, a voxel is addressed from a LOD l and a position
p ∈ [0,1[3, with the following two equations:

PDentry(l, p) = PageDirBase[l]+ bp� v[l]0c ∈ N3 (1)

Centryn(l, p) =Cbasen(l, p)+ bp� v[l]nc mod bn ∈ N3 (2)

with

Cbasen(l, p) =

{
MRPD[PDentry(l, p)].c if n = 1
PTCachen−1[Centryn−1(l, p)].c if n > 1

(3)

Equation (1) returns the 3D address to look at in the MRPD. In
this formula, PageDirBase[l] corresponds to the 3D position of the

beginning of the subgrid for the level of resolution l in the MRPD
and v[l]0 its number of entries (3D size). The operatorb c is the
element-wise vector floor, i.e. b[x,y,z]c = [bxc,byc,bzc]. The op-
erator � is the element-wise vector multiplication, i.e. [x,y,z]�
[a,b,c] = [xa,yb,zc]. The operator modulo is defined on vectors
as [x,y,z] mod [a,b,c] = [x mod a,y mod b,z mod c]. If the flag con-
tained in the entry PDentry(l, p) of the MRPD is set to mapped, we can
continue to equation (2). This second gives the 3D address to look at in
all different caches (PT and data caches). The value n corresponds to
the virtualization level from n = 0 (MRPD) to n = nmax (data volume)
passing through intermediate cache levels (0 < n < nmax). However, in
equations (2) and (3), n begins at n = 1 the first cache after the MRPD
to n = nmax−1 the data cache. Hence, as shown in the equation (3),
Cbasen(l, p) is a vector containing 3D cache coordinates c. It is stored
in the MRPD for n = 1 or in the cache just above otherwise. This vector
will indicate the beginning of the block in the cache below. v[l]n and
bn are respectively: the virtualized volume size of LOD l according to
the level of virtualization n and the size of a PT block, for the PT cache
of level n; or the volume size in voxels and the size of a brick, for the
data cache (Sec. 5.5).

For instance, the access to the highlighted voxel (voluntarily
restricted to the plane z = 0) of figure 4.(a), using the configuration of
figure 4.(b), will be:

PDentry(0,
[

1
8
,

1
4
,

0
1

]
) =


x = 0+ b 1

8 ×4c= 0
y = 0+ b 1

4 ×2c= 0
z = 0+ b 0

1 ×1c= 0

It is important to note that even if p is composed of real values, the
results are given as integer values which is required to match with the
positions in the caches. The entry PDentry(0, [1

8 ,
1
4 ,

0
1]) = [0,0,0] in

the MRPD contains the beginning of the entry in the data cache and a
flag set to mapped. In our case the entry will be [x,y,z] = [2,0,0]. We
can now calculate the coordinate of the voxel in the data cache:

Centry1(0,
[

1
8
,

1
4
,

0
1

]
) =


x = 2+ b 1

8 ×8c mod 2 = 3
y = 0+ b 1

4 ×4c mod 2 = 1
z = 0+ b 0

1 ×1c mod 1 = 0

By accessing the coordinates [x,y,z] = [3,1,0] in the data cache, we
can read the values of the requested voxel. The behaviour will be the
same independently of the number of intermediate caches (Fig. 4.(c))
with equation (1) for the MRPD and equation (2) for all other caches.

5.5 Real vs. virtual volume representations
The hierarchy of virtualization may introduce changes in the size of the
volume. These changes are induced by the successive block sizes bn
between the different levels of virtualization n. Hence, a volume of a
given size may be virtually larger than its real size. To express these
differences we note the size of the real volume r[l]n and the size of the
virtual volume v[l]n.

The processing of the real and the virtual sizes (r[l]n and v[l]n) is
performed in two steps using the following equations:

r[l]n = dr[l]n+1�bne (4)

and

v[l]n =

{
r[l]n if n = 0
v[l]n−1�bn−1 if n≥ 1

(5)

The first step uses equation (4) and computes the real dimensions of
the volume for each level of virtualization. Starting from the dimension
of the volume in voxels r[l]nmax , this allows us to obtain the dimension of
the MRPD r[l]0 according to the block size at each virtualization level
n. The operator � is the element-wise vector division, i.e. [x,y,z]�
[a,b,c] = [x

a ,
y
b ,

z
c]. The operator d e is the element-wise vector ceil,

i.e. d[x,y,z]e = [dxe,dye,dze]. The second step, using equation (5),
computes the virtual sizes v[l]n from the MRPD v[l]0 = r[l]0 to the
volume v[l]nmax in voxels according to the different block size bn.

(a)

n = 2 = nmax n = 1 n = 0 n = 1 n = 2 = nmax
Vol.

voxels
Vol.

bricks MRPD Vol.
bricks

Vol.
voxels

L0 [8,4,0] [4,2,0] [4,2,0] [4,2,0] [8,4,0]
L1 [4,2,0] [2,1,0] [2,1,0] [2,1,0] [4,2,0]
L2 [2,2,0] [1,1,0] [1,1,0] [1,1,0] [2,2,0]
bn – b1 = [2,2,1] b0 = [1,1,1] b1 = [2,2,1] –

r[l]n v[l]n

(b)

n = 3
= nmax

n = 2 n = 1 n = 0 n = 1 n = 2
n = 3
= nmax

Vol.
voxels

Vol.
bricks PT 1 MRPD PT 1 Vol.

bricks
Vol.

voxels
L0 [8,4,0] [4,2,0] [4,1,0] [4,1,0] [4,1,0] [4,2,0] [8,4,0]
L1 [4,2,0] [2,1,0] [2,1,0] [2,1,0] [2,1,0] [2,2,0] [4,4,0]
L2 [2,2,0] [1,1,0] [1,1,0] [1,1,0] [1,1,0] [1,2,0] [2,4,0]
bn – b2 = [2,2,1] b1 = [1,2,1] b0 = [1,1,1] b1 = [1,2,1] b2 = [2,2,1] –

r[l]n v[l]n

Table 1. Real and virtual sizes of the example volume illustrated on
figure 4.(a). Table (a) corresponds to the configuration of figure 4.(b).
Table (b) corresponds to the configuration of figure 4.(c). The r[l]n and
the v[l]n are the virtual representation of the volume at the virtualization
level n. For a level of PT cache, v[l]n corresponds to the set of PT entries
mapped on the volume representation at the virtualization level n.

Tables 1.(a, b) indicate the real and the virtual dimensions of the vol-
ume exemplified in section 5.4 and figure 4. The table 1.(b), especially
for LOD L1 and L2, illustrates the fact that virtual sizes can be larger
than real sizes, due to ceil operator in 4.

Position. The previously mentioned vector p ∈ [0,1[3 represents the
3D normalized coordinates of a voxel in the virtual volume representa-
tion. Thereby, a position p = [0.5,0.5,0.5] will refer to the center of
the virtual volume which is not necessary the center of the real volume.
To correct this, one needs to change its coordinate system as follows:

preal = pvirtual � (r[l]nmax � v[l]nmax)

Block size. The choices of the different bn are at the user’s discretion.
The values bn used in this paper are chosen small in order to simplify
the understanding. In real situations the bn are commonly sized from
163 to 643. The greater these values, the lower the MRPD, however,
larger blocks will require more memory space. A balance must be
struck between the bn, the size of the caches and the size of the MRPD.

5.6 Hierarchy updates
Figure 5 illustrates the update of the PT hierarchy according to the
configuration of figure 4. This update consists to load new bricks into
the data cache and to reference them. It follows three sequential steps:
i) removing the references of the bricks that will be removed from the
GPU data cache (if the cache is already full), ii) writing the new bricks
in the GPU data cache and updating its LRU, and iii) referencing these
new bricks in the PT hierarchy.

For instance, let us suppose we request the brick containing the
values of the voxel positioned at l = 0 and p = [2

8 ,
0
4 ,

0
1] from figure

4.(a). To add this new brick in the data cache illustrated in figure 5.(c),
it will be required to dereference the oldest brick given by the LRU
(the one positioned at coordinates [0,0,0] in the data cache). Using
equation (1) with the coordinates of the oldest brick, it is possible to
set the flag of its corresponding entry in the MRPD to unmapped (Fig.
5.(a)). The brick is then considered as not present in the cache. Once
this first step is done, the new brick is loaded in place of the oldest
one for the second step (Fig. 5.(c)). Finally, knowing the coordinates
of the new brick and using equation (1), we set in the corresponding
MPRD entry the coordinates of this brick in the data cache and its flag
to mapped (Fig. 5.(a)).

Fig. 5. 2D representation of the hierarchy update. Update of the PT hierarchy when adding the brick containing the voxel positioned at l = 0 and
p = [2

8 ,
0
4 ,

0
1] in the configuration of figure 4.(a). The status before the update is shown on the left of the arrows and the status after the update on

their right. (a) The update of the MRPD in the case of one level of virtualization (according to figure 4.(b)). (b) The update of the MRPD and the
intermediate PT cache (and its LRU) in the case of two levels of virtualization (according to figure 4.(c)). (c) The update of the data cache (and its
LRU) in both cases.

In case of intermediate PT caches level (Fig. 5.(b)), the behaviour is
the same. However, if we want to load the brick containing the voxel
l = 0 and p = [2

8 ,
0
4 ,

0
1], it will be necessary to add a new PT block in

the PT cache in order to be able to reference the added brick. To add
a new PT block, we dereference the oldest one (given by the LRU)
from the level just above. Then we generate a new one with all flags
set to unmapped. Finally we replace the oldest one by the new, and we
reference this new PT block in the level just above.

6 ON-DEMAND PROCESSING DURING VISUALIZATION

The proposed approach allows the introduction to on-demand data pro-
cessing algorithms during the visualization stage. A processing stage
is initiated by an action of the user during the interactive visualization.
It can be launched in a different CUDA stream in order to be able to
run in parallel (kernel overlapping) and to be independent of the visual-
ization algorithm. Both algorithms (visualization and processing) can
request bricks at the same time using the shared request buffer without
concurrency problem. Regardless of which step it is generated, these
requests will be handled in the same way by the cache manager.

The processing step can impact the data in different ways. It can pro-
vide global information that do not modify the data itself (e.g. number
or size of an element). It can indirectly modify a voxel by providing
information about it (whether or not a voxel is present in a set, e.g.
classification), which will be then interpreted by the visualization step
to possibly treat this voxel differently (e.g. applying a certain color).
Finally, it can modify the value of a voxel (e.g. filtering). This mod-
ification can be permanent: the new value of the voxel is written in
the cache and then propagated with a CPU read-back to be written on
the disk; or not permanent: the treatment should be reapplied to this
voxel if it is removed and put back later into the cache. If it is necessary
to propagate the modification of the value of a voxel to all the LODs,
it is up to the application to support this behaviour by requesting the
corresponding brick in each LOD present in the multi-resolution vol-
ume representation. It is necessary to build as many addresses (l, p) as
resolution levels l, keeping the same p (the normalized voxel position
in the virtual volume).

Working set. Figure 6 shows the different configurations of the
possible working set. An approach that only allows visualization or
processing is represented by the first configuration (Fig. 6.(a)). The
working set can be defined by one of the other representations in the
context of on-demand processing during visualization. A processing
could operate only on the data that are visualized during its initialization
(Fig. 6.(c)). In that case, the data involved in the processing algorithm
are already present in the GPU data cache (or already requested by
the visualization stage). Conversely, if the processing algorithm sets

(a) (b) (c) (d)

Fig. 6. Working set configurations. The blue set represents the whole
multi-resolution volume data, the green and the red ones represent the
visualization and/or processing working sets. (a) a unique application
(visualization or processing), (b, c, d) on-demand processing during
interactive visualization.

up data that are not part of the visualization-specific working set (Fig.
6.(b, d)), this can lead to new brick requests. This may increase the risk
of having a working set that is too large to be stored in the cache. In
practice, the last configuration would probably be the least frequent.
However, it may be found in a distributed environment with a subset of
the resources dedicated to the visualization and possibly another subset
in charge of processing a part of the volume that is not visualized.

7 COMPARISON WITH OTHER SYSTEMS

By contrast to above-mentioned approaches (Sec. 2), our proposal
is the first system that uses a virtual memory architecture based on
a multi-level multi-resolution page table hierarchy with a complete
management on the GPU. In this way, in addition to taking advan-
tage of its multi-threaded environment, we designed a system with
communications between CPU and GPU that are reduced to their bare
minimum. In the work of Hadwiger et al. and Fogal et al. [13, 16]
the use of the same type of structure could be found but with a cache
management carried out on the CPU. Hadwiger et al. attached a use-bit
to each brick present in the cache to report bricks usages. In a volume
ray casting application where ray casting is performed in parallel, they
hosted on the GPU one hash table per image tile to avoid contention
and synchronization of the cache misses reporting. For an image tile
size of 64×64 with a full HD frame buffer, this sums up to 510 hash
tables with atomic adds to report brick requests. Those hash tables are
then sent back to the CPU to handle the requests. This represents a
set of messages of about 32 MB for an HD viewport and 128 MB for
a 4K viewport at each frame. These values may have to be multiplied
by N in a context of visualization with N views (stereo or multiscopic).
As already mentioned, we draw our inspiration from Crassin [9] for a
comprehensive management of the caches on the GPU. For the brick

(a) (b) (c)

Fig. 7. Datasets used for system validation and performance analysis. (a) A 88GB histological slices stack render with our high-resolution 2D
slices visualizer, (b, c) a 330GB Mandelbulb fractal and a 11GB primate hypocampus from a light sheet microscope, render with our own OptiX-based
DVR solution [20].

usage, we proceed in the same way. However, one notable difference
compared to his work is that he used a tree structure with nodes as
page tables to address the data bricks. In his system, the octree nodes
(equivalent to our page table entries) are requested by the GPU and
induce communications between the central memory and the video
memory. Moreover, in contrast to previous systems that are particularly
focused on volume ray casting, our approach takes place in a more
general purpose context.

8 EVALUATION

In order to test our GPU cache system, we developed two kinds of
visualization applications and a processing stage. The first is a 2D ren-
dering virtual microscope with a navigation through an image stack [22]
that provides easy access to high-resolution images. The second is a
GPU-based volume ray casting [3]. Furthermore, in order to test our
system with on-demand processing, we offer an algorithm of image
processing by convolution.

To illustrate the results, we used three datasets (Fig. 7):

• (a) An 8 histological slices stack of a mouse brain with a resolu-
tion of 61856×46383 RGBA pixels (88GB).

• (b) A 3D Mandelbulb fractal of 43523 RGBA voxels (330GB)
generated with Mandelbulb3D.

• (c) A 2160×2560×1072 volume with grayscale 16 bits voxels
(11GB) of a primate hypocampus from a light sheet microscope.

All the tests were carried out on an NVIDIA GeForce Titan X with
6GB of VRAM, a CPU Intel i7 4790K 4GHz, 32GB of RAM. We used
CUDA 8.0 and OpenGL 4.5 interoperability to render on a 1024×1024
viewport.

8.1 Use case 1 – Virtual microscope
The first developed application allows us to navigate (pan and zoom) in
a stack of images with 2D multi-resolution rendering. The interest is to
simulate the behaviour of a microscope to visualize and navigate into
large slices. Thus, it allows us to graphically validate the coherence,
the reactivity of the navigation and the performance of the entire out-
of-core data management. The principle is to compose a 2D texture
from the bricks intersecting all or part of the plane perpendicular to the
z-axis in the volume considering the 3D position of the camera in the
volume. We opt for a strategy that promotes the quality of the visual
feedback for the user. In this sense, when a request is lifted because a
brick of resolution level l is missing, the cache manager provides to our
renderer a lower resolution brick (if there is one in the cache) until the
brick of level l arrives in the data cache.

8.2 Use case 2 – OptiX™ based volume rendering

In order to maximize the GPU load (cache and end-user application
included), a ray casting volume renderer module based on the NVidia
OptiX [20] engine was developed.

This module works as follows. For each ray intersecting the vol-
ume V , we: i) determine the two intersection points (pin and pout)
correspondingly entering and leaving the volume, ii) sample regularly
the volume data (e.g. density function) between pin and pout and iii)
integrate each sample in the rendering equation, taking into account the
different light interactions. The sample integration scheme implements
a specific rendering mode based on the sample intensities λi =V (pi).
The most common sample integration simulates an emission-absorption
model based on the discretized Boltzmann equation:

I = SN

 S j=∑
j
i=0 Wi (1−Fa(λi))Fc(λi)

Wi=∏
i−1
j=0 Fa(λ j)

where:

S j = S j−1 +W j
(
1−Fa(λ j)

)
Fc(λ j)

Wi+1 =Wi Fa(λi)

with Fc and Fa are the transfer functions for color and opacity and
N, the number of samples. The functions Fc and Fa correspondingly
associate a source intensity value λ (the volume data) to a RGB triplet
and an opacity value. These functions give each sampling point pi
an RGBα value (Fc(λi),Fa(λi)) from its intensity λi and thus enable
computation of the intensity I with Wi = ∏

i−1
j=0 Fa(λ j). All of these

previously described rendering modes are presented in figures 7.(b) and
7.(c).

8.3 On-demand image processing

In order to test the system with on-demand processing, we have de-
veloped a convolution image processing algorithm. This is an edge
detection algorithm that is integrated into the main rendering loop. At
any time, the user can initiate it by interacting with the visualized data.
It is not relevant here to provide details about this algorithm which can
be seen as a black box. This algorithm was used to validate the cor-
rect behaviour of an on-demand processing step during the interactive
visualization phase, especially to test the sharing of out-of-core data
request management of such a process with the rest of the application.

(a) (b) (c) (d) (e)

Fig. 8. GPU usage and bricks loading time. Comparison of the time spent (in ms) for the rendering, the caches management, and the bricks
loading on a 25 seconds exploration sequence inside the Mandelbulb dataset (b), with the following scenario: a zoom-in, a z-axis navigation, a pan
navigation and an edge detection algorithm as image processing. This timeline was obtained with the 2D visualizer described in section 8.1. The five
images (a) to (e) are key snapshots of the previously described scenario.

Dataset Histological Mandelbulb LightSheet
Vol. resolution 8×61856×46383 43523 2160×2560×1072
Vol. size (GB) 88 330 11
MRPD (kB) 359 < 1 762
LRU(s) (kB) 694 87 214

Usage buffer(s) (kB) 99 12 30
Request buffer (kB) 89380 2550 190

Total (MB) 90.5 2.6 1.2
FPS volume ray casting – 45 47

Table 2. Volumes description, memory occupancy and ray casting
frame rates. This table lists the characteristics of the 3 datasets used.
We detail the GPU memory footprint for all the resources needed for the
out-of-core data management. The last row gives the frame rates for the
volume ray casting rendering. The FPS measurement environment is
described in section 8.4 and the virtualization parameters used to mea-
sure the amount of memory, depending on the datasets, are described
in section 8.5.

8.4 Performance analysis

Figure 8, obtained by benchmarking the application described in section
8.1, presents the comparison of the time spent on three operations: the
rendering and the caches management, both performed on the GPU,
and the bricks loading processed asynchronously on the CPU. The
caches management operations cover: the LRUs updates and the data
request management done at each iteration, the writing of the bricks
in the data cache and the hierarchy updates done when new bricks
are sent to the GPU. These times are calculated on the datasets (b) by
performing the following navigation scenario: a zoom from the lowest
to the highest resolution level, a navigation through the slices of the
image stack along the z-axis, a pan navigation within a slice (x-,y-axes),
and an edge detection convolutional algorithm for image processing. A
low amount of time without any interaction is deliberately maintained

between each step in order to illustrate the null bricks loading time
during these periods.

Throughout the entire scenario, the rendering time is constant and
very low (~0.2ms). Moreover, we note that our application allows the
rendering to be carried out with a rate of about several hundreds of
frames per second. Such high frame-rates can be achieved because the
proposed application does not require significant resources at the scale
of the data management. In addition, this time is constant because the
loading of bricks is performed asynchronously and does not interfere
with rendering. The caches update times are less than 2ms with addi-
tional picks according to the bricks loading. These update times are
reasonable and allow interactive navigation in the scene. Furthermore,
in the case of an application that requires more computational resources,
they become negligible.

This scenario allows us to validate an on-demand image processing
step within an interactive visualization application. Thus, we can see
in figure 8 some of the brick loading peaks that emanate from requests
caused by this processing step. Once again, we can note that the
rendering time is not affected by this step. As a consequence, these two
steps can cohabit by using our out-of-core management system, both at
the same time.

Despite the fact that the entire management of the caches and the
hierarchy of virtualization are realized on the GPU, its occupancy is
around 5%. The bottleneck is on the data loading, on the mass storage
and CPU side. The computation footprint on the GPU is small enough
to allow heavy rendering workloads.

Ray casting performance. The last row of table 2 shows the aver-
age frame rates of the volume rendering using the application described
in section 8.2. These measurements were performed on a full HD
viewport (1920× 1080) with a linear transfer function. We focused
these measurements on the dataset (b) and (c) because there is no in-
terest to visualize the dataset (a) in this way. These frame rates can be
considered at least as efficient as the previous approaches similar to
ours. Therefore, we do not lose in rendering performance by volume

ray casting while proposing a more general method allowing different
types of visualization and/or processing.

8.5 Memory occupancy
Table 2 shows the required memory on the GPU for all the elements of
our structure and its management (without the caches themselves). The
memory occupancy is about 90.5MB for the first dataset (a) with two
levels of virtualization, using a brick and a PT block size of 323 voxels;
2.6MB for the second (b) with two levels of virtualization, using a
brick and a PT block size of 643 voxels; 1.2MB for the last (c) with
only one level of virtualization and a brick size of 643 voxels. The
low costs of these values maintain a limited pressure rate between the
memory allocated for the caches management and those necessary for
a well-functioning state of the end-user application.

9 DISCUSSION

The proposed approach offers benefits for a wide range of applications,
but suffers a few limitations detailed here.

9.1 Limitations
Race conditions. This system implies some limitations regarding race
conditions. Indeed, the thread in charge of loading and preparing the
bricks cannot load them in the cache and update the virtual hierar-
chy without inducing possible collision with the GPU rendering (or
processing) thread.

Page table hierarchy updates. There are two main limitations
related to the update of the PT hierarchy. The first occurs when an entry
is removed from a PT cache. In figure 5.(b) when the new PT block
overwrites the oldest one, we lose the link to all the bricks that the last
one was referencing. In essence, some data may still be present in the
caches but not referenced (garbage that is not taken out). However,
these orphan blocks/bricks will converge to the oldest part of the LRUs
and will be replaced in future iterations. The second limitation is related
to the way to reference, in the PT, the bricks recently added to the data
cache. Although we propose an implementation of this step on the
GPU, it is done sequentially for each brick. For instance, let us assume
we want to add, at the same time, two spatially close bricks, both being
referenced by a single PT block. A parallel system would add two PT
blocks in the cache that would both reference a single brick while only
one block may be required to reference these two new bricks. To avoid
such scenario, each brick needs to be referenced one by one.

Loss of virtual pages. The proposed approach of virtual memory
architecture does not guarantee the perenity of the meta-information of
pages inside the page table. For the possible intermediate levels of vir-
tualization (PT caches), there is a problem of information preservation.
The pages are created on-the-fly on the GPU as needed and then cached.
When a page is removed from the cache, all its contained information
are lost. A typical example is the empty brick state indicated by the
empty flag which will not be preserved. In contrast, this problem does
not occur with the use of tree structures (like octrees) since the nodes
of the three are actually used as pages. These nodes are written and
saved and then transferred to the GPU if necessary.

Processing. Our system can support any data processing if it is used
alone. However, if it is initiated during an interactive visualization stage,
it needs to be restricted. Indeed, an algorithm manipulating the whole
volume will generate many cache flush, which may severely impact
the possibility to maintain the interactive visualization working set
stored in the data cache. Thus, we must limit the processing to a lower
working set size corresponding to a set of smaller local treatments.

9.2 Strengths
With this data structure, the system gets access to the data in O(log(b))
where b is the number of bricks. However, the complexity constant is
such that in practice it dwarves the access time to a very small value
(two or three levels in practice), as detailed in section 5.1.

Communications. The communications between the CPU and the
GPU are restricted in order to reduce to data flow. The information
transferred are simply the coordinates of the requestd bricks for the
GPU to CPU communications and the voxels themselves, organized in

bricks, for the CPU to GPU communications. Restricting the communi-
cations with these two kinds of data avoids bottlenecks.

Data Type. With the proposed approach, it is possible to virtualize
any kind of data as long as these data can be represented via a regular
3D grid. Our approach uses the CUDA texture memory that can store up
to 4 channels with a maximum of 32 bits each. However the approach
also applies to general data configuration with the use of global memory
instead of CUDA surfaces to extend to a more general purpose context;
the same algorithms and the logic still apply.

Scalability. This system may be easily scaled in a high performance
computing environment: cache managers deployed on each node are
independent, each one handling a subworking set. The main difference
would lie in the cache misses, where the nodes could communicate
together in order to speed up the bricks loading time.

10 CONCLUSION & PERSPECTIVES

We propose an out-of-core caching system fully managed on GPU to
address very large volumes of data. Our pipeline can be used by any
type of application that requires manipulating volumes represented via
a regular grid of voxels, with the ability to manipulate multi-modal data.
In particular, this allows us to introduce the possibility of on-demand
processing during an interactive visualization stage with a direct feed-
back on the latter. We demonstrate the validity of our implementation
using a 2D high-resolution slice visualization tool with interactive nav-
igation in volumes exceeding the amount of GPU and CPU memory
with a very high rendering frame-rate and a low memory footprint on
the GPU. We also show that our method performs at least as effective
as the previous ones in a context of volume ray casting application.

Hierarchy updates. In the current approach, the PT hierarchy up-
dates are performed on the GPU but in a sequential context (a one
thread kernel). It prevents duplications in the load of bricks or race
conditions in the PT entry updates but it does not take advantages of the
parallelism of the GPUs. It could be interesting to consider a parallel
strategy to improve performance of this update step.

Transfer times. The main bottleneck in the system is the bricks
loading time from the storage device to the GPU. Data compression
addresses part of this problem, but it could be more interesting to be
able to decompress the bricks directly on the GPU. This could take
advantage of the multi-threaded environment to implement an efficient
decompression algorithm and reduce the amount of transferred data to
the GPU. As many bricks are loaded, there is a natural parallelism that
can be exploited. Another solution would be to bring this system to
a high performance computing environment. By properly sharing the
work, the different nodes of such an environment could then distribute
the transfers and thus reduce this bottleneck.

Cache misses. We could consider a strategy to improve the cache
miss management system by prioritizing requests. For instance, with a
counter we could determine which bricks have been the most requested.
Such bricks would have a higher priority for the loading step. This
could potentially improve visual quality of the rendering for the same
overall performance level of the system.

ACKNOWLEDGMENTS

This work is supported by the French national funds (PIA2’program
“Intensive Computing and Numerical Simulation” call) under contract
No. P112331-3422142 (3DNeuroSecure project). The purpose of this
project is to propose a collaborative solution to process and interac-
tively visualize massive multi-scale data from ultra-high resolution
3D imaging. This secure solution also aims at breaking therapeutic
innovation by allowing the exploitation of 3D images and complex data
of large dimensions as part of applications framework linked to the
neurodegenerative diseases like Alzheimer. We would like to thank all
the partners of the consortium led by Neoxia, the three French clusters
(Cap Digital, Systematic and Medicen), Thierry Delzescaux and the
Mircen team (CEA, France) for the datasets (a) & (c) Fig. 7 as well as
NVidia for all their advice.

REFERENCES

[1] Nvidia CUDA programming guide 8.0. https://docs.nvidia.com/
cuda/index.html. [Online; accessed 2017-December-06].

[2] J. Baert, A. Lagae, and P. Dutr. Out-of-Core Construction of Sparse Voxel
Octrees. Computer Graphics Forum, 33(6):220–227, 2014.

[3] B. Battin, G. Valette, J. Lehuraux, Y. Remion, and L. Lucas. A Premixed
autostereoscopic OptiX-based Volume Rendering. In 2015 International
Conference on 3D Imaging (IC3D), pp. 1–5, 2015.

[4] J. Beyer, M. Hadwiger, A. Al-Awami, W. K. Jeong, N. Kasthuri, J. W.
Lichtman, and H. Pfister. Exploring the Connectome: Petascale Volume
Visualization of Microscopy Data Streams. IEEE Computer Graphics and
Applications, 33(4):50–61, 2013.

[5] J. Beyer, M. Hadwiger, and H. Pfister. State-of-the-Art in GPU-Based
Large-Scale Volume Visualization. Computer Graphics Forum, 34(8):13–
37, 2015.

[6] T. Brix, J.-S. Praßni, and K. H. Hinrichs. Visualization of large volu-
metric multi-channel microscopy data streams on standard PCs. CoRR,
abs/1407.2074, 2014.

[7] B. Budge, T. Bernardin, J. A. Stuart, S. Sengupta, K. I. Joy, and J. D.
Owens. Out-of-core Data Management for Path Tracing on Hybrid Re-
sources. In Computer Graphics Forum, vol. 28, pp. 385–396, 2009.

[8] F. Cazals, G. Drettakis, and C. Puech. Filtering, Clustering and Hierarchy
Construction: a New Solution for Ray-Tracing Complex Scenes. Computer
Graphics Forum, 14(3):371–382, 1995.

[9] C. Crassin. GigaVoxels: A Voxel-Based Rendering Pipeline For Effi-
cient Exploration Of Large And Detailed Scenes. phdthesis, Universit de
Grenoble, 2011.

[10] C. Crassin, F. Neyret, S. Lefebvre, and E. Eisemann. Gigavoxels: Ray-
guided streaming for efficient and detailed voxel rendering. In Symposium
on Interactive 3D Graphics and Games, pp. 15–22. ACM, 2009.

[11] K. Engel. CERA-TVR: A framework for interactive high-quality teravoxel
volume visualization on standard PCs. In 2011 IEEE Symposium on Large
Data Analysis and Visualization (LDAV), pp. 123–124, 2011.

[12] T. Fogal, H. Childs, S. Shankar, J. Krüger, R. D. Bergeron, and P. Hatcher.
Large Data Visualization on Distributed Memory multi-GPU Clusters. In
Proceedings of the Conference on High Performance Graphics, HPG’10,
pp. 57–66. Eurographics Association, 2010.

[13] T. Fogal, A. Schiewe, and J. Kruger. An analysis of scalable GPU-based
ray-guided volume rendering. In 2013 IEEE Symposium on Large-Scale
Data Analysis and Visualization (LDAV), pp. 43–51, 2013.

[14] E. Gobbetti, F. Marton, and J. A. I. Guitin. A single-pass GPU ray casting
framework for interactive out-of-core rendering of massive volumetric
datasets. The Visual Computer, 24(7-9):797–806, 2008.

[15] P. Goswami, M. Makhinya, J. Bsch, and R. Pajarola. Scalable Parallel
Out-of-core Terrain Rendering. In EGPGV, pp. 63–71, 2010.

[16] M. Hadwiger, J. Beyer, W.-K. Jeong, and H. Pfister. Interactive volume
exploration of petascale microscopy data streams using a visualization-
driven virtual memory approach. IEEE Transactions on Visualization and
Computer Graphics, 18(12):2285–2294, 2012.

[17] V. Kämpe, E. Sintorn, and U. Assarsson. High Resolution Sparse Voxel
DAGs. ACM Trans. Graph., 32(4):101:1–101:13, 2013.

[18] J. Kruger and R. Westermann. Acceleration Techniques for GPU-based
Volume Rendering. In Proceedings of the 14th IEEE Visualization 2003
(VIS’03), VIS ’03, pp. 38–. IEEE Computer Society, Washington, DC,
USA, 2003.

[19] S. Laine and T. Karras. Efficient sparse voxel octrees. Visualization and
Computer Graphics, IEEE Transactions on, 17(8):1048–1059, 2011.

[20] S. G. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hoberock, D. Luebke,
D. McAllister, M. McGuire, K. Morley, A. Robison, and M. Stich. OptiX:
A General Purpose Ray Tracing Engine. In ACM SIGGRAPH 2010 Papers,
SIGGRAPH ’10, pp. 66:1–66:13. ACM, New York, NY, USA, 2010.

[21] R. Richter and J. Dllner. Out-of-core real-time visualization of massive
3d point clouds. In Proceedings of the 7th International Conference
on Computer Graphics, Virtual Reality, Visualisation and Interaction in
Africa, pp. 121–128. ACM, 2010.

[22] J. Sarton, N. Courilleau, A.-S. Hérard, T. Delzescaux, Y. Remion, and
L. Lucas. Virtual Review of Large Scale Image Stack on 3D Display. In
2017 International Conference on Image Processing (ICIP), 2017.

[23] M. Shih, Y. Zhang, K.-L. Ma, J. Sitaraman, and D. Mavriplis. Out-of-core
visualization of time-varying hybrid-grid volume data. In Large Data
Analysis and Visualization (LDAV), 2014 IEEE 4th Symposium on, pp.
93–100. IEEE, 2014.

[24] C. Silva, Y.-j. Chiang, W. Corrła, J. El-sana, and P. Lindstrom. Out-of-
core algorithms for scientific visualization and computer graphics. In In
Visualization02 Course Notes, 2002.

[25] J. E. Stone, K. L. Vandivort, and K. Schulten. Immersive Out-of-Core
Visualization of Large-Size and Long-Timescale Molecular Dynamics
Trajectories. In Advances in Visual Computing, pp. 1–12. Springer, Berlin,
Heidelberg, 2011.

[26] J. S. Vitter. Algorithms and data structures for external memory. Found.
Trends Theor. Comput. Sci., 2(4):305–474, 2008.

[27] J. Xue, J. Yao, K. Lu, L. Shao, and M. M. Rahman. Efficient volume
rendering methods for out-of-Core datasets by semi-adaptive partitioning.
Information Sciences, 370:463–475, 2016.

https://docs.nvidia.com/cuda/index.html
https://docs.nvidia.com/cuda/index.html

	Introduction
	Related Works
	System overview and context
	Data representation
	Out-of-core data management
	Memory virtualization
	Implementation
	Data fetch
	Voxel access
	Real vs. virtual volume representations
	Hierarchy updates

	On-demand processing during visualization
	Comparison with other systems
	Evaluation
	Use case 1 – Virtual microscope
	Use case 2 – OptiX™ based volume rendering
	On-demand image processing
	Performance analysis
	Memory occupancy

	Discussion
	Limitations
	Strengths

	Conclusion & Perspectives

