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Interactive Visualization and On-Demand Processing of Large
Volume Data: A Fully GPU-Based Out-Of-Core Approach

Jonathan Sarton, Nicolas Courilleau, Yannick Remion and Laurent Lucas

Abstract—In a wide range of scientific fields, 3D datasets production capabilities have widely evolved in recent years, especially
with the rapid increase in their size. As a result, many large-scale applications, including visualization or processing, have become
challenging to address. A solution to this issue lies in providing out-of-core algorithms specifically designed to handle datasets
significantly larger than memory. In this article, we present a new approach that extends the broad interactive addressing principles
already established in the field of out-of-core volume rendering on GPUs to allow on-demand processing during the visualization stage.
We propose a pipeline designed to manage data as regular 3D grids regardless of the underlying application. It relies on a caching
approach with a virtual memory addressing system coupled to an efficient parallel management on GPU to provide efficient access
to data in interactive time. It allows any visualization or processing application to leverage the flexibility of its structure by managing
multi-modality datasets. Furthermore, we show that our system delivers good performance on a single standard PC with low memory
budget on the GPU.

Index Terms—GPU, Caching system, Out-of-core data management, Large data, Interactive visualisation, On-demand processing

1 INTRODUCTION

The needs for visualizing and/or processing large volume data are com-
mon today in different scientific fields and entertainment. Navigation
inside such high-resolution volumes in real-time involves designing
efficient out-of-core data management algorithms which address entire
massive datasets from high-performance computing devices such as
current GPUs.

The interactive addressing problem of any part of a data volume that
exceeds the amount of GPU memory has been addressed by several
methods. Nonetheless, these approaches have focused on visualization
tools and more particularly volume rendering. Recent out-of-core pro-
posed methods integrated into a fully visualization-driven pipeline are
not adapted to manage efficiently on-demand processing of non-visible
data during the visualisation stage. In many contexts, however, it can be
crucial to visualize and interact with data during visualization through
processing. This involves providing out-of-core methods adapted to
on-the-fly data modification by image processing algorithms applied
during interactive visualization.

The proposed solution is a complete out-of-core pipeline from disk
to GPU designed to access very large volumes exceeding GPU or CPU
memory in interactive time. We base our work on modern methods
already known in this field, such as the design of an output-sensitive
algorithm with on-demand paging and data streaming, bricking and
multi-resolution representation, the use of a brick pool as a cache on
GPU texture memory and a virtual address translation mechanism.

This work aims to propose a solution which takes advantage of the
many-core environment of the GPUs. This environment allows to carry
out as many operations as possible in parallel while preserving enough
GPU resources for an end-user application that could require signifi-
cant computing resources (such as volume ray casting or convolution
processing on the volume for instance).

In the following, a state of the art of recent advances in external mem-
ory management is given in section 2. Section 3 gives an overview of
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the proposed pipeline. Our solution is presented and discussed regard-
ing the data representation in section 4 and out-of-core management
in section 5. Section 6 describes the impacts of on-demand processing
during interactive visualization. In section 7, we introduce a compari-
son of our approach with the closest previous ones. Our method will be
evaluated in section 8 before discussing some specific points in section
9. Our perspective works are exposed in section 10.

Contributions. In this paper, we introduce an efficient out-of-core
data management solution suitable for both interactive visualization
and on-demand processing on visible or non-visible data of large 3D
regular grids from GPU. Our method is based on the principle of virtual
memory to address voxels through a GPU page table (PT) hierarchy
introduced in [17]. In previous approaches, the cache miss management
methods for accessing any part of a large volume were organized in the
screen space and therefore directly bounded to the displayed data. This
does not allow to handle efficiently data requests for non-visible or not
currently visualized data. Moreover, these cache miss reports imply
large memory transfers between the device and the host. They can
become a very strong constraint in a context of visualisation on very
high-definition displays and even worse in a multi-view environment.
In this article, we propose an approach that addresses these issues
while providing an efficient parallel GPU implementation of the out-
of-core addressing data structure. Our method is designed to limit the
communications between the CPU and the GPU to their strict minimum
while ensuring not to overload the GPU occupancy. In addition, our
system is created for a general-purpose context and provides an API
available from the GPU for any applications such as standalone or
combined visualization and processing of large volume data.

2 RELATED WORKS

External memory data management [4, 28, 32] also called out-of-core
data management, defines the class of techniques used to handle data
that are too large to fit entirely into the main memory of the unit in
charge of their processing. There is a vast body of literature on the
use of this kind of methods for visualization on different data types,
other than volume data [9, 16, 25, 31]. The development of out-of-core
methods more specifically for real-time visualization of regular voxel
grids has been motivated by volume ray casting [21] of large datasets
on GPU and has been widely used during the last decade.

In 2008, Gobbetti et al. [15] were the first to offer a complete, out-
of-core, multi-resolution volume renderer on GPU. Crassin et al. [11]
proposed the year after, a more efficient system with Gigavoxel, a
ray-guided streaming of opaque voxelized surfaces for entertainment
purposes. In [12], Engel presented a framework for scientific visualiza-
tion of tera-voxels, improving previous works by optimizing the GPU
to CPU communications.



In all previously mentioned works, a tree structure is used to ad-
dress out-of-core bricked data (an octree or a generalized N3-tree in
Gigavoxel) with a kd-restart algorithm to go through the tree on the
GPU. The basic principle is the use of a brick pool in GPU texture
memory as a cache to store small bricks of voxels with, in the case
of [11, 12], a node pool to store the tree nodes. Cache misses are re-
ported for the bricks that are not present in the video memory. These
pools are updated at each frame to insert requested data by replacing
unused ones if needed; all managed with a simple Least Recently Used
(LRU) mechanism. While Gobbetti et al. used visibility information
for culling, the others introduce a full ray-driven streaming that only
loads visible data. Brix et al. [8] approach relies on concepts described
in [11] and adapts it to the specific needs of multi-channel microscopy
on standard computers. More recently, Hoetzlein [18] presented GVDB,
a voxel database structure particularly suitable for large volumes with
dynamic topology changes to render simulations with a ray tracer on a
sparse hierarchy of grids. He also used a particular tree with their own
short stack ray tracer. Moreover, several works for storage optimization
or efficient construction have been proposed to improve tree structures
in this area [4, 20, 22].

We can find many approaches based on a tree structure that are used
to address out-of-core data (KD-tree [27, 34], binary space partitioning
(BSP) tree [33] or octree [11, 12, 15]) by linking the data through the
nodes of the tree. However, Hadwiger et al. [17] presented a new virtual
memory approach to address several petabytes of biomedical data. They
focused on electron microscopy volumes with a continuous stream of
data. They compared their approach with tree traversal and observed
that it scales better to extremely large volume sizes. Their work was
extended to the visualization of segmented electron microscopy vol-
umes [6]. In this extension, the data are segmented beforehand and
then stored in an archive before being sent to the GPU on-demand.
The segmentation is not performed during the interactive visualization
stage on the data cached on the GPU. Jeong et al. [19] proposed a
volume renderer with on-the-fly processing for noise removal, but only
on the currently visible part of the volume. More recently, a visibility-
driven method for on-the-fly filtering of 4D ultrasound data have been
presented by Solteszova et al. [29, 30].

Lastly, for a detailed analysis of out-of-core ray-guided volume
rendering, one can refer to Fogal et al. [14]. They present a study
about the optimal brick subdivision, I/O disk access with or without
compression and other characteristics analysis. A complete state of the
art can be found in [7]. The above-mentioned works are presented with
a complete description of different methods of data representation and
storage or comparison of address translation approaches. In addition,
some works focused on the use of out-of-core methods on clusters or
supercomputers, to distribute the data on several nodes [13].

Although these different solutions address most of the out-of-core
data management issues, they do not mention all the needs in a versatile
way regardless of the end-user application. For instance, BSP and
octree-based approaches may need intermediate structures to be built
and thus updated for any change in the data stored in leaves. With ani-
mated scenes or scenes where content is unknown in advance, the whole
hierarchy needs to be updated. Previous modern visualisation-driven
approaches proposed cache miss management that is not adapted to
algorithms other than visualization. Hadwiger and Fogal, for example,
use a set of hash tables to report missing elements organized in the
screen space in a ray-guided context. This does not allow to generate
cache misses for bricks that are not part of the working set required for
visualization.

Besides the previously mentioned approaches, it is important to
mention the NVidia’s unified memory technology with CUDA [3]. This
technology has been improved since the Pascal architecture and CUDA
8.0 and now allows to allocate buffers larger than the physical memory
available on GPUs. By using this system with the address translation
support (ATS) and the POSIX mmap, it is possible to address an entire
volume stored on disk from the GPU. In that case, the page faults
are managed automatically by the GPU and the OS. However and
conversely to our method, this is strictly restricted to the use of the
latest NVidia V100 cards with NVlink2, combined to a UNIX system

with the latest kernel (4.16) on a Power 9 architecture [1]. In addition,
this technology does not allow to have a control on the page faults and
does not allow to use the GPU texture memory (which is mandatory,
for instance, in a volume ray casting renderer to take advantage of the
interpolation during the sampling).

In the volume ray casting rendering context, Hadwiger et al. [17]
introduced a data structure different from a tree to avoid maintaining
and traversing it. Their choice was motivated by the major constraint
of a constant flow of data coming from a microscope inducing the
non-prior knowledge of the entire dataset. Moreover, their structure
is interesting outside its application framework and scales better than
octrees for extremely large volumes. The access time to the data is
the same regardless of the resolution level, unlike a tree that requires
a depth traversal to access the higher resolution data. Nonetheless,
they use it only for visualization with a specific volume ray caster.
Our method proposes to extend their approach in a general-purpose
framework allowing to visualize and process volumes interactively on
the GPU. In addition, Hadwiger proposed to manage the content of the
caches present in its structure from the CPU, with per-frame read-back
for brick usages and requests. To overcome this shortcoming, we take
our inspiration from Cyril Crassin’s work realized in another context
and described in his PhD thesis [10]. We adapt his method used to
maintain an octree to propose a parallel version on the GPU of the
management of the virtual addressing structure proposed by Hadwiger.
Finally, we present our understanding of the implementation proposed
by Hadwiger and give a detailed description of our own.

3 SYSTEM OVERVIEW AND CONTEXT

The system we propose is illustrated in Figure 1. It is composed of:

• Multi-resolution 3D mipmap pyramid subdivided into small
bricks of voxels for each level and stored in a mass storage, ob-
tained in a preprocessing step;

• Large and simple CPU RAM brick cache and a brick loader
interface between the disk / CPU and the GPU;

• Virtual memory architecture: multi-level, multi-resolution PT
hierarchy and a brick cache on GPU;

• Cache manager entirely on GPU to maintain the caches and offer
an efficient cache miss management.

We propose to implement a multi-level, multi-resolution page table
hierarchy to address a full volume using a virtual memory management
scheme. This hierarchy is composed of several virtualization levels,
with a page table for each level, to address very large volumes. The
page table levels (except the root) as well as the bricks of voxels are
cached in the GPU and managed individually by LRUs. We propose a
full management of the GPU caches from the GPU in order to take ad-
vantage of the multi-threaded architecture and to limit communications
and synchronization between CPU and GPU.

Caches management. This management can be summarized in two
main tasks:

1. the updates of the usage information of cached bricks and the
updates of LRU caches;

2. the cache miss reports.

Pipeline details. The main feature of our pipeline is to propose a
GPU interface for any application that manipulates very large volumes
represented as a regular grid of voxels. The navigation inside the vol-
ume is performed in a virtual normalized volume. At any time of the
run-time application, a voxel can reside in several memory places (mass
storage, system memory, or GPU memory). The voxel addressing is
done as one uniform address space regardless of its physical storage
location. The access to a voxel is determined by a pair (l, p) with l, the
desired level of details (LOD) and p, the 3D normalized floating posi-
tion in the virtual volume (p≡ [x,y,z] ∈ [0,1)3). When the application
requires a voxel (Fig. 1.(1)), the entire pipeline is triggered as follows:



Fig. 1. Overall out-of-core pipeline. An end-user application (1) is connected to the GPU interface of the pipeline and can require voxels (2) from
the caching system. This system is entirely managed on the GPU to handle brick usage (3) and requests (2.1). When bricks are missing, a small
request list is sent to the CPU (2.2) to load them asynchronously from the CPU cache manager (2.3) or from a mass storage device (2.4) where a
bricked multi-resolution representation of the volume is stored. The bricks are sent back to the GPU (2.5) and the page table hierarchy is updated
(2.6).

i) (Lookup) The first step is to check in the page table hierarchy if the
brick containing the requested voxel is present or not in the GPU data
cache (Sec. 5.1 & Fig. 1.(2)). ii) (Hit) In the case where this brick is
present in the brick cache, the cache manager can directly provide the
requested voxel to the application. Then it reports the usage of that
brick (Sec. 5.2). iii) (Miss) In the other case — when a cache miss
occurs — a brick request is reported by the cache manager (Sec. 5.2).

Our implementation targets general usage. The optimal cache update
strategy depends on the application and will surely be different for ray
casting, volume data processing or slice-based volume visualization.
On one hand, the cache update will trigger the LRU update from the
previous use of bricks (Fig. 1.(3)) and, on the other hand, it will
generate a complete request list with all the reported cache misses (Fig.
1.(2.1)). Then a small request list is sent to the CPU (Fig. 1.(2.2)) for
an asynchronous processing. An asynchronous thread will request the
bricks to the CPU cache manager (Fig. 1.(2.3)). If needed, the bricks
are read from the mass storage and written into the CPU cache (Fig.
1.(2.4)). Then, the requested bricks will be written in a buffer accessible
by the GPU (Sec. 5.3 & Fig. 1.(2.5)). When the bricks can be written
in the GPU data cache, the page table hierarchy is updated accordingly
(Sec. 5.6 & Fig. 1.(2.6)). The application efficiently manages the
voxel requests, by only asking for the necessary bricks, so as never to
load unnecessary ones (for instance, adopting a ray-guided method for
volume ray casting).

This pipeline is relatively similar to that proposed by Hadwiger et
al. [17]. However, its design differs in several aspects because the data
accessed is not a constant stream output by a microscope. Therefore,
we have an a priori knowledge of the dataset, and we store the bricks
directly (e.g. 323−2563 voxels) rather than storing 2D tiles that require
registrations and a step of 3D construction of bricks at run-time.

Communications. In our system, the communications from CPU
to GPU are limited to the strict minimum. They consist of sending the
bricks of voxels and a Boolean flag for each of them (for an empty brick
information). The communications from GPU to CPU are restricted
to a small request list containing (l, p) pairs of each requested bricks.
All other mandatory actions of the out-of-core data management are
performed inside the GPU, taking advantage of its computing power
and limiting costly communications with the host.

4 DATA REPRESENTATION

The input data may come from a physical model acquisition (e.g.
biomedical scans, MRI, etc.) as well as from the voxelization of any
data as long as they can be represented as a regular 3D grid (Sec. 9).

Multi-resolution. Raw data volumes are preprocessed in order to
create a 3D mipmap pyramid which represents the volume at different
LODs. Data anisotropy in sampling, which often occurs in medical
imaging, can be drastically reduced by applying different downsam-
pling ratios along each axis in this multi-resolution representation.

Bricking. Each level of the multi-resolution pyramid is then divided
into small independent blocks of voxels, called “bricks”. All bricks
have the same size, regardless of their resolution level. This object
space decomposition method allows for the manipulation of small
amounts of data rather than the whole large volume. The brick shape
does not necessarily have to be cubic; different edge sizes can be used.
In any case, when the volume is not sufficient to complete all bricks,
the last bricks are simply completed with empty voxels. Our approach
avoids generating unnecessary empty bricks like most approaches that
manipulate only power of two volume sizes. In addition, an overlapping
area can be created, between neighbouring bricks, to ensure coherence
of future treatments on the voxels (interpolation, convolution, etc.).

Our system is designed for the use of volumes whose entire dataset is
already defined and known. It means that treatments could be performed
on the data before using them in the system. As we are dealing with
large volumes of data, both steps mipmapping and bricking take a
substantial time to be done; therefore it is interesting to perform these
steps outside the stream.

Compression. Finally, the bricks are stored on a large storage de-
vice in raw data or compressed format. Using a compressed brick
format has two advantages: the volumes will take less memory space
on the storage; and it will reduce the loading time of the bricks from
the mass storage to the CPU (Sec. 8.4). Nevertheless, we are targeting
a real-time application using scientific images; this means the com-
pression algorithm needs to be lossless and has to provide a fast time
decompression. To this end, we have opted for an LZ41 compression
scheme.

1http://lz4.github.io/lz4/

http://lz4.github.io/lz4/


Fig. 2. Multi-resolution, multi-level page table hierarchy virtualiza-
tion principle. A 2D representation of our 3D addressing structure. In
this example, only one intermediate virtualization level is used (PT1).
One entry of the MRPD addresses a PT block of 3×3 entries in the PT1
cache and one entry in the PT1 cache addresses a brick of 4×4 voxels
in the data cache.

5 OUT-OF-CORE DATA MANAGEMENT

We detail in this section the out-of-core addressing data structure used
to access all the dataset. We present its implementation on GPU and
the parallelization strategy of its associated cache manager. We also
propose our implementation version and technical details for the virtual
hierarchy management and update.

5.1 Memory virtualization
In order to address the bricks of a large multi-resolution volume from
the GPU, we adopt an approach of multi-level, multi-resolution page
table hierarchy. This structure is based on a large page table organized
on several levels, which consists of mapping the virtual address of
each voxel with its physical address. This can be seen as a pyramidal
structure where each level virtualizes a set of entries (e.g. 163−643)
organized into 3D blocks in the level below (Fig. 2). The top of the
hierarchy is composed of the multi-resolution page directory (MRPD)
which corresponds to the starting point of the virtual addressing of
any voxels, at any resolution level. This is the only level which is
not virtualized and entirely present on the GPU with a low memory
impact (Sec. 8.4). For very large volumes of data, the MRPD itself is
too large to be held in GPU memory. The virtualization principle can
therefore be applied to the page table itself. Hence, below the MRPD,
there may be N intermediate PT levels with, for each one, a cache
containing PT blocks. Adding intermediate levels increases the amount
of virtualization and reduces the size of the MRPD. Finally, the data
cache containing the bricks is located at the bottom of the hierarchy.
The theoretical complexity of the algorithm to access data, given its
tree-based data structure, is O(log(b)), where b is the number of bricks
at leaf level. However, the constant of this complexity is very small,
and in practice, with two intermediate levels, petabytes of data can be
addressed. In addition, the access time does not increase with LOD
(unlike an octree).

Our implementation of this hierarchy has been planned generically in
order to dynamically create as much intermediate PT level as necessary
to address any volume size. This allows the use of smaller bricks and
therefore a finer data addressing.

Note, it is important not to confuse the multi-resolution representa-
tion volume and its virtualization used for the address indexing on the
GPU. While, the former refers to the resolution levels l (LODs), the
latter refers to the virtualization levels.

5.2 Implementation
Each hierarchy level is implemented with the CUDA surface API [2] in
order to read and write elements into 3D texture memory with hardware
accelerated 3D indexing. In the case of a graphic end-user application,
the spatial coherent access patterns of the surface memory have a
significant benefit. All the caches are managed by an LRU implemented
as a simple device vector with the Thrust parallel template library [2].

The data cache implementation is templated in order to store any
type of voxels from GRAY8 to RGBA32 and others (Sec. 9). Conversely,
a page table entry is represented with four 32-bit integers to store the 3D
coordinates c of the block virtualized by this entry in the next hierarchy
level and a flag representing the state of this block. This flag can be
either empty, mapped or unmapped (not present on the GPU).

The MRPD is represented in memory as a buffer containing one
3D subgrid per LOD added next to each other on the x-axis. This
representation is illustrated in figure 4. The size of the MRPD is equal
to the sum of the x-size of each subgrid and the size of the largest
subgrid in the y- and z- axes. This representation implies that a part of
the buffer will not be used.

A cache manager is used to maintain the bricks and page tables usage
as well as to manage the brick requests. These operations are done in
parallel on the GPU with data parallel primitive stream compaction
operations.

LRU update. Updating the used bricks is necessary for caches
management. This is assured by an LRU algorithm on a list for each
cache. All the GPU threads report the use of elements by marking the
corresponding elements, in a shared 3D buffer (called usage buffer)
on global GPU memory, with a global 32-bit integer timestamp. This
timestamp is incremented after each update; it is not necessary to use
atomic writes to handle concurrent threads access because each thread
will write the same timestamp integer in the corresponding entry. There
is one such buffer for each cache and it contains as many entries as
elements present in its corresponding cache (one to one 3D mapping).
Then, a mask is created and filled with a Boolean value that indicates if
the corresponding usage buffer entry contains the current timestamp
or a previous one. The stream compaction ensures the sorting of the
lists by moving the most recently used elements to the beginning while
maintaining the order of the others (Fig. 3.(a)).

Cache misses. Figure 3.(b) illustrates the creation of the requested
brick list. When a requested brick is not present in the GPU (flag
set to unmapped), a cache miss occurs and triggers a request for this
brick. In the same way as the element usage information, the requested
bricks are maintained in a list through a stream compaction operation
from a buffer (called request buffer) shared by all the CUDA threads.
This buffer contains as many entries as bricks in the whole multi-
resolution volume, and each thread will tag the corresponding entries
to the required bricks with the global integer timestamp. The resulting
request list is limited to a small size in order to limit the number of
bricks loading at each update. This list contains the requested bricks
IDs. These IDs are guaranteed to be unique and are constructed from
the spatial position in the volume and the resolution level of the bricks.
The proposed cache miss management strategy is entirely generic. It
makes it possible to request any brick at any resolution level and at any
time without being oriented towards a specific application type.

Comparison with an octree. With an octree approach, the PT
entries of the virtual memory management are the octree nodes them-
selves (stored in a node pool). This implies to transfer these nodes
from the CPU to the GPU memory by raising PT entry requests (node
requests). In the proposed method, the PT entries are updated di-
rectly in the GPU, thus avoiding transfers to the device. The sin-
gle communications between the central memory and the GPU tex-
ture memory are data (bricks) transfers. However, our request buffer
has to be sized to the number of total bricks. For instance, let us
consider a large volume of 163843 voxels RGBA (which is about



(a) (b) (c)

Fig. 3. Parallel cache manager mechanisms on the GPU (a) Cache usage update: a single pass to update LRU with double stream compaction
(Cartesian products) from a shared buffer to report bricks usage. (b) Bricks request list creation: a single stream compaction from a shared request
buffer to create a small request list. (c) Empty bricks management strategy at loading.

17.6TB) with a ratio of two between two consecutive LODs and a
brick size of 643 voxels. Since the request buffer is represented in
memory in the same way as the MRPD, it will require, with nine LODs
(16384+ 8192+ 4096+ 2048+ 1024+ 512+ 256+ 128+ 64)× 1

64
entries on the x-dimension, 16384

64 entries on the y-dimension, and 16384
64

entries the z-dimension. With a timestamp on 4 bytes, the total size
of the request buffer will be around 134MB. With a data cache of
4GB (which is correct for modern GPUs), it represents less than 3.5%
overhead in memory.

5.3 Data fetch
The brick requests are asynchronously handled by the CPU to fetch
the data. As shown by Crassin [10], it is more efficient to use CUDA
zero-copy [2] in order to load the bricks into GPU memory. It ensures
optimal uses of the hardware rather than transferring those manually
using copy operations triggered by the CPU. To achieve this, we use a
requested buffer allocated in CPU memory with CUDA; this buffer is
pinned on a physical address region for the PCI Express controller to
use directly. A dedicated CPU thread takes care of fetching bricks from
the CPU cache or the mass storage and signals the GPU that bricks are
available in this buffer. The writing of the requested bricks from the
requested buffer to the GPU data cache is performed with a single pass
in a CUDA kernel with one thread per voxel per brick.

Empty bricks. Empty brick information makes possible to distin-
guish the bricks that do not participate in the running algorithm because
they are considered as empty, transparent or without any important
information. It is important to never load such bricks on the GPU to
avoid cluttering the data cache. The access to a brick whose flag is set
to empty in the virtual addressing structure does not generate a cache
miss. However, a brick flagged to unmapped, which generates a cache
miss, may potentially be empty. Figure 3.(c) shows the adopted strategy
to efficiently deal with this behaviour. For each request of brick, we
test on the CPU whether it is empty or not (regardless of which criteria).
Only non-empty bricks are added in the requested buffer. A Boolean
vector indicating for each requested brick whether it is empty or not is
transferred to the GPU. With this information, it is possible for the GPU
to identify the bricks to transfer and to write inside the data cache. Thus,
a dual stream compaction operation is used on the initial brick request
list from the empty information mask. This step generates a sorted
list to discriminate non-empty from empty bricks. The former will be
added to the data cache and referenced as mapped in the hierarchy. The
latter will be referenced with the empty flag.

5.4 Voxel access
This section is a reminder of the method presented by Hadwiger et
al. [17]. For the sake of reproducibility, we adopt a formal way of
presenting the involved concepts. In particular, we present the virtual

volume representation in section 5.5 and the update of the virtualization
hierarchy in section 5.6.

Using figure 4, a voxel is addressed from a LOD l and a position
p ∈ [0,1)3, with the following two equations:

PDentry(l, p) = PageDirBase[l]+ bp� v[l]0c ∈ N3 (1)

Centryn(l, p) =Cbasen(l, p)+ bp� v[l]n+1c mod bn ∈ N3 (2)

with

Cbasen(l, p) =

{
MRPD[PDentry(l, p)].c if n = 1
PTCachen−1[Centryn−1(l, p)].c if n > 1

(3)

Equation (1) returns the 3D address to look at in the MRPD. In this
formula, PageDirBase[l] corresponds to the 3D position of the be-
ginning of the subgrid for the resolution level l in the MRPD and
v[l]0 its number of entries (3D size). The operatorb c is the element-
wise vector floor, i.e. b[x,y,z]c= [bxc,byc,bzc]. The operator � is the
element-wise vector multiplication, i.e. [x,y,z]� [a,b,c] = [xa,yb,zc].
If the flag contained in the entry at the coordinates PDentry(l, p) of
the MRPD is set to mapped, we can continue to equation (2). This
second gives the 3D address to look at in all different caches (PT
and data caches). The operator modulo is defined on vectors as
[x,y,z] mod [a,b,c] = [x mod a,y mod b,z mod c]. The value n corre-
sponds to the virtualization level from n = 0 (MRPD) to n = nmax (data
volume) and passing through intermediate cache levels (0 < n < nmax).
Since equation (1) computes the case n = 0, n goes from n = 1 (the first
cache after the MRPD) to n = nmax−1 (the data cache) in equations (2)
and (3). Hence, as shown in the equation (3), Cbasen(l, p) is a vector
containing 3D cache coordinates c. It is stored in the MRPD for n = 1
or in the cache just above otherwise. This vector will indicate the 3D
position of the beginning of the block in the cache below. v[l]n and bn
are respectively: the virtualized volume size of LOD l according to the
virtualization level n and the size of a PT block, for the PT cache of
level n; or the volume size in voxels and the size of a brick, for the data
cache (Sec. 5.5).

For instance, the access to the highlighted voxel (voluntarily
restricted to the plane z = 0) of figure 4.(a), using the configuration of
figure 4.(b), will be:

PDentry(0,
[

1
8
,

1
4
,

0
1

]
) =


x = 0+ b 1

8 ×4c= 0
y = 0+ b 1

4 ×2c= 0
z = 0+ b 0

1 ×1c= 0

It is important to note that even if p is composed of real val-
ues, the results are given as integer values which is required to



Fig. 4. 2D representation of voxel addressing in the virtual hierar-
chy. (a) Volume used as an example, represented with three LODs cut in
bricks of size of 2×2 voxels. It contains 8×4 voxels at the highest resolu-
tion level (L0), 4×2 voxels at the intermediate LOD (L1) and 2×1 voxels
at the coarsest LOD (L2) filled with empty voxels (black) to get one entire
brick. (b) Data structure to address the voxels using one virtualization
level. One entry of the MRPD addresses one brick. (c) Data structure
to address the voxels using two virtualization levels. One entry in the
MRPD addresses one PT block of 1×2 entries in the intermediate PT
cache. One entry in this PT cache addresses one brick in the data cache.
In both cases (b) and (c), we try to get the value of the voxel positioned
at l = 0 and p = [ 1

8 ,
1
4 ,0]. In the MRPD and the PT cache, white means

the flag is set to mapped and black means it is set to unmapped.

match with the positions in the caches. The entry located at
PDentry(0, [ 1

8 ,
1
4 ,

0
1 ]) = [0,0,0] in the MRPD contains the beginning

of the entry (here a brick) in the data cache and a flag set to mapped. In
our case the entry will be [x,y,z] = [2,0,0]. We can now calculate the
coordinate of the voxel in the data cache:

Centry1(0,
[

1
8
,

1
4
,

0
1

]
) =


x = 2+ b 1

8 ×8c mod 2 = 3
y = 0+ b 1

4 ×4c mod 2 = 1
z = 0+ b 0

1 ×1c mod 1 = 0

By accessing the coordinates [x,y,z] = [3,1,0] in the data cache, we
can read the values of the requested voxel. The behaviour will be the
same independently of the number of intermediate caches (Fig. 4.(c))
with equation (1) for the MRPD and equation (2) for all other caches.

5.5 Real vs. virtual volume representations
The virtualization hierarchy may introduce changes in the size of the
volume. These changes are induced by the successive block sizes bn
between the different virtualization levels n. Hence, a volume of a
given size may be virtually larger than its real size. To express these
differences we note the size of the real volume r[l]n and the size of the
virtual volume v[l]n.

The processing of the real and the virtual sizes (r[l]n and v[l]n) is
performed in two steps using the following equations:

r[l]n = dr[l]n+1�bne (4)

and

v[l]n =

{
r[l]n if n = 0
v[l]n−1�bn−1 if n≥ 1

(5)

The first step uses equation (4) and computes the real dimensions of
the volume for each virtualization level. Starting from the dimension of
the volume in voxels r[l]nmax , this allows us to obtain the dimension of
the MRPD r[l]0 according to the block size at each virtualization level
n. The operator � is the element-wise vector division, i.e. [x,y,z]�
[a,b,c] = [ x

a ,
y
b ,

z
c ]. The operator d e is the element-wise vector ceil,

i.e. d[x,y,z]e = [dxe,dye,dze]. The second step, using equation (5),
computes the virtual sizes v[l]n from the MRPD v[l]0 = r[l]0 to the
volume v[l]nmax in voxels according to the different block size bn.

Tables 1.(a, b) indicate the real and the virtual dimensions of the
volume shown in section 5.4 and figure 4. The table 1.(b), especially
for LOD L1 and L2, illustrates the fact that virtual sizes can be larger
than real sizes, due to the ceiling operator in equation (4).

(a)

n = 2 = nmax n = 1 n = 0 n = 1 n = 2 = nmax
Vol.

voxels
Vol.

bricks MRPD Vol.
bricks

Vol.
voxels

L0 [8,4,1] [4,2,1] [4,2,1] [4,2,1] [8,4,1]
L1 [4,2,1] [2,1,1] [2,1,1] [2,1,1] [4,2,1]
L2 [2,2,1] [1,1,1] [1,1,1] [1,1,1] [2,2,1]
bn – b1 = [2,2,1] b0 = [1,1,1] b1 = [2,2,1] –

r[l]n v[l]n
(b)

n = 3
= nmax

n = 2 n = 1 n = 0 n = 1 n = 2
n = 3
= nmax

Vol.
voxels

Vol.
bricks PT 1 MRPD PT 1 Vol.

bricks
Vol.

voxels
L0 [8,4,1] [4,2,1] [4,1,1] [4,1,1] [4,1,1] [4,2,1] [8,4,1]
L1 [4,2,1] [2,1,1] [2,1,1] [2,1,1] [2,1,1] [2,2,1] [4,4,1]
L2 [2,2,1] [1,1,1] [1,1,1] [1,1,1] [1,1,1] [1,2,1] [2,4,1]
bn – b2 = [2,2,1] b1 = [1,2,1] b0 = [1,1,1] b1 = [1,2,1] b2 = [2,2,1] –

r[l]n v[l]n

Table 1. Real and virtual sizes of the volume illustrated on figure
4.(a). Table (a) corresponds to the configuration of figure 4.(b). Table (b)
corresponds to the configuration of figure 4.(c). The r[l]n and the v[l]n
are the virtual representation of the volume at the virtualization level n.
For a PT cache level, v[l]n corresponds to the set of PT entries mapped
on the volume representation at the virtualization level n.

Position. The previously mentioned vector p∈ [0,1)3 represents the
3D normalized coordinates of a voxel in the virtual volume representa-
tion. Thereby, a position p = [0.5,0.5,0.5] will refer to the center of
the virtual volume which is not necessary the center of the real volume.
To correct this, one needs to change its coordinate system as follow:

preal = pvirtual � (r[l]nmax � v[l]nmax)

Block size. The choices of the different bn are at the user’s discre-
tion. We chose small values bn for this paper in order to simplify the



Fig. 5. 2D representation of the hierarchy update. Update of the PT hierarchy when adding the brick containing the voxel positioned at l = 0 and
p = [ 2

8 ,
0
4 ,

0
1 ] in the configuration of figure 4.(a). The status before the update is shown on the left of the arrows and the status after the update on their

right. (a) The update of the MRPD in the case of one virtualization level (according to figure 4.(b)). (b) The update of the MRPD and the intermediate
PT cache (and its LRU) in the case of two virtualization levels (according to figure 4.(c)). (c) The update of the data cache (and its LRU) in both cases.

understanding. In real situations the bn are commonly sized from 163

to 643. The greater these values, the lower the MRPD, however, larger
blocks will require more memory space. A balance must be struck
between the bn, the size of the caches and the size of the MRPD.

5.6 Hierarchy updates
Figure 5 illustrates the update of the PT hierarchy according to the
configuration of figure 4. This update consists to load new bricks into
the data cache and to reference them. It follows three sequential steps:
i) removing the references of the bricks that will be removed from the
GPU data cache (if the cache is already full), ii) writing the new bricks
in the GPU data cache and updating its LRU, and iii) referencing these
new bricks in the PT hierarchy.

For instance, let us suppose we request the brick containing the
values of the voxel positioned at l = 0 and p = [ 2

8 ,
0
4 ,

0
1 ] from figure

4.(a). To add this new brick in the data cache illustrated in figure 5.(c),
it is required to dereference the oldest brick given by the LRU (the one
positioned at coordinates [0,0,0] in the data cache). Using equation (1)
with the coordinates of the oldest brick, it is possible to set the flag of
its corresponding entry in the MRPD to unmapped (Fig. 5.(a)). The
brick is then considered as not present in the cache. Once this first
step is done, the new brick is loaded in place of the oldest one for the
second step (Fig. 5.(c)). Finally, knowing the coordinates of the new
brick and using equation (1), we set in the corresponding MPRD entry
the coordinates of this brick in the data cache and its flag to mapped
(Fig. 5.(a)).

In case of intermediate PT caches level (Fig. 5.(b)), the behaviour is
the same. However, if we want to load the brick containing the voxel
l = 0 and p = [ 2

8 ,
0
4 ,

0
1 ], it will be necessary to add a new PT block in

the PT cache in order to be able to reference the added brick. To add a
new PT block, the oldest one (given by the LRU) is dereferenced from
the level just above. Then a new one is generated with all flags set to
unmapped. Finally the oldest one is replaced by this new one which is
then reference in the level just above.

6 ON-DEMAND PROCESSING DURING VISUALIZATION

The proposed approach allows the introduction to on-demand data
processing algorithms on visible or not currently visible data during the
visualization stage. A processing stage is initiated by an action of the
user during the interactive visualization. It can be launched in a different
CUDA stream in order to be able to run in parallel (kernel overlapping)
and to be independent of the visualization algorithm. Both algorithms
(visualization and processing) can request bricks at the same time using
the shared request buffer without concurrency problem. Regardless of
which step it is generated, these requests will be handled in the same
way by the cache manager.

(a) (b) (c) (d)

Fig. 6. Working set configurations. The blue set represents the whole
multi-resolution volume data, the green and the red ones represent the
visualization and/or processing working sets. (a) a unique application
(visualization or processing), (b, c, d) on-demand processing during
interactive visualization.

The processing step can impact the data in different ways. It can
provide global information that does not modify the data itself (e.g.
number or size of an element). It can indirectly modify a voxel by
providing information about it (whether or not a voxel is present in a set,
e.g. classification), which will be then interpreted by the visualization
step to possibly treat this voxel differently (e.g. applying a certain
color). Finally, it can modify the value of a voxel (e.g. filtering).
This modification can be permanent: the new value of the voxel is
written back in the cache and then propagated with a CPU read-back
to be written on the storage; or not permanent: the treatment should
be reapplied to this voxel if it is removed and put back later into the
cache. If it is necessary to propagate the modification of the value
of a voxel to all the LODs, it is up to the application to support this
behaviour by requesting the corresponding brick in each LOD present
in the multi-resolution volume representation. It is necessary to build
as many addresses (l, p) as resolution levels l, keeping the same p (the
normalized voxel position in the virtual volume).

Working set. Figure 6 shows the different configurations of the
possible working set. An approach that only allows visualization or
processing is represented by the first configuration (Fig. 6.(a)). The
working set can be defined by one of the other representations in the
context of on-demand processing during visualization. A processing
could operate only on the data that are visualized during its initialization
(Fig. 6.(c)). In that case, the data involved in the processing algorithm
are already present in the GPU data cache (or already requested by
the visualization stage). Conversely, if the processing algorithm sets
up data that are not part of the visualization-specific working set (Fig.
6.(b, d)), this can lead to new brick requests. This may increase the risk
of having a working set that is too large to be stored in the cache. In
practice, the last configuration would probably be the least frequent.
However, it may be found in a distributed environment with a subset of



(a) (b) (c)

Fig. 7. Datasets used for system validation and performance analysis. (a) A 1.459TB histological slices stack render with our high-resolution 2D
slices visualizer, (b, c) a 330GB Mandelbulb fractal and a 11GB primate hypocampus from a light sheet microscope, render with our own OptiX-based
DVR solution [24].

the resources dedicated to the visualization and possibly another subset
in charge of processing a part of the volume that is not visualized.

7 COMPARISON WITH OTHER SYSTEMS

By contrast to above-mentioned approaches (Sec. 2), our proposal
is the first system that uses a virtual memory architecture based on
a multi-level, multi-resolution page table hierarchy with a complete
management on the GPU. In this way, in addition to taking advantage of
its multi-threaded environment, we designed a system with communi-
cations between CPU and GPU that are reduced to their bare minimum.
In the work of Hadwiger et al. and Fogal et al. [14, 17] the use of the
same type of structure could be found but with a cache management
carried out on the CPU. Hadwiger et al. attached a use-bit to each brick
present in the cache to report brick usages. To report cache misses in
their parallel volume ray casting application, they hosted on the GPU,
one hash table per image tile to avoid contention and synchronization.
For an image tile size of 64× 64 with a full HD frame buffer, this
sums up to 510 hash tables with expensive atomic operations to report
brick requests. Those hash tables are then sent back to the CPU to
handle the requests. It is possible to quantify the transfer of these hash
tables. For this, it is necessary to note that they used a 32-bit or a 64-bit
ID to report each cache misses, depending on the size of the volume.
They also limit the number of requests per ray to a small number M in
order to distribute cache misses over multiple frames. This represents a
message set of about 1920×1080×4×4≈ 33 MB (in the worst-case
scenario) for an HD viewport with M = 4 and a 32-bit ID, at each frame.
It reaches 3840×2160×4×4≈ 133MB for a 4K viewport with the
same configuration. These values may have to be multiplied by N in a
context of visualization with N views (stereo or multiscopic) [26]. For
instance, a 4K screen with 11 views it represents 133×11 ≈ 1.4GB.
These quantities are smaller in the case of Fogal et al. since they use
a compressed format of lock-free hash tables. We propose to limit
globally the request number instead of a per-ray limitation. This allows
us to work in a general-purpose context and to be more scalable on
the cache miss transfers. As already mentioned, we draw our inspira-
tion from Crassin [10] for a comprehensive cache management on the
GPU. For the brick usage, we proceed in the same way. However, one
notable difference compared to his work is the use of a tree structure
with nodes as page tables to address the data bricks. In his system,
the octree nodes (equivalent to our page table entries) are requested by
the GPU and induce communications between the central memory and
the video memory. Moreover, in contrast to previous systems that are
particularly focused on volume ray casting, our approach takes place in
a general-purpose context.

8 EVALUATION

In order to test our GPU cache system, we developed two kinds of
visualization applications and a processing stage. The first is a 2D ren-
dering virtual microscope with a navigation through an image stack [26]
that provides easy access to high-resolution images. The second is a
GPU-based volume ray casting [5]. Furthermore, to test our system
with on-demand processing, we offer a convolutional image processing
algorithm.

To illustrate the results, we used three datasets (Fig. 7):

• (a) A 114 histological slices stack of a mouse brain with a resolu-
tion of 64000×50000 RGBA pixels (1.459TB);

• (b) A 3D Mandelbulb fractal of 43523 RGBA voxels (330GB)
generated with Mandelbulb3D;

• (c) A 2160×2560×1072 volume with grayscale 16 bits voxels
(11GB) of a primate hypocampus from a light sheet microscope.

All the tests were carried out on an NVIDIA GeForce Titan X with
6GB of VRAM, a CPU Intel i7 4790K 4GHz, 32GB of RAM. We
used CUDA 8.0 and OpenGL 4.5 interoperability to render on a full
HD viewport 1920×1080.

8.1 Use case 1 – Virtual microscope
The first developed application allows us to navigate (pan and zoom)
in a stack of images with 2D multi-resolution rendering. The interest
is to simulate the behaviour of a microscope to visualize and navigate
into large slices. The principle is to compose a 2D texture from the
bricks intersecting all or part of the plane perpendicular to the z-axis in
the volume considering the 3D camera position in the volume. We opt
for a strategy that promotes the quality of the visual feedback for the
user. In this sense, when a request is lifted because a brick of resolution
level l is missing, the cache manager provides our renderer with a lower
resolution brick (if there is one in the cache) until the brick of level l
arrives in the data cache.

8.2 Use case 2 – OptiX™ based volume rendering
In order to maximize the GPU load (cache and end-user application
included), a ray casting volume renderer module based on the NVidia
OptiX [24] engine was developed. This module is based on the pro-
posed GPU volume ray casting of Kruger and Westermann [21] and
uses a modern ray-guided system to ensure a visibility-driven rendering
of multi-resolution volumes. The sample integration scheme simu-
lates an emission-absorption model based on the equation presented by
Max [23].



(a) (b) (c) (d) (e)

Fig. 8. GPU usage and bricks loading time. Comparison of the time spent (in ms) for the rendering, the caches management, and the bricks
loading on a 25-second exploration sequence inside the Mandelbulb dataset (b), with the following scenario: a zoom-in, a z-axis navigation, a pan
navigation and an edge detection algorithm as image processing. This timeline was obtained with the 2D visualizer described in section 8.1. The five
images (a) to (e) are key snapshots of the previously described scenario.

8.3 On-demand image processing

In order to test the system with on-demand processing, we have de-
veloped a convolution image processing algorithm. This is an edge
detection algorithm that is integrated into the main rendering loop. At
any time, the user can initiate it by interacting with the visualized data.
It is not relevant here to provide details about this algorithm which can
be seen as a black box. This algorithm was used to validate the cor-
rect behaviour of an on-demand processing step during the interactive
visualization phase, especially to test the sharing of out-of-core data
request management of such a process with the rest of the application.

8.4 Performance analysis

Figure 8, obtained by benchmarking the application described in section
8.1, presents the comparison of the time spent on three operations: the
rendering and the caches management, both performed on the GPU, and
the bricks loading processed asynchronously on the CPU. The caches
management operations cover: the LRUs updates and the data request
management done at each iteration, the writing of the bricks in the
data cache and the hierarchy updates done when new bricks are sent to
the GPU. These times are calculated on the datasets (b) by performing
the following navigation scenario: zooming from the lowest to the
highest resolution level, navigating through the slices of the image
stack along the z-axis, pan navigating within a slice (x-,y-axes), and
an edge detection convolutional algorithm for image processing. A
low amount of time without any interaction is deliberately maintained
between each step in order to illustrate the null bricks loading time
during these periods.

Throughout the entire scenario, the rendering time is constant and
very low (∼ 0.2ms). Moreover, we note that our application allows
the rendering to be carried out with a rate of about several hundreds
of frames per second. Such high frame-rates can be achieved because
the proposed application does not require significant resources at the
scale of the data management. In addition, this time is constant because

the loading of bricks is performed asynchronously and does not inter-
fere with rendering. The caches update times are less than 2ms with
additional peaks according to the brick loading. These update times are
reasonable and allow interactive navigation in the scene. Furthermore,
in the case of an application that requires more computational resources,
they become negligible.

This scenario allows us to validate an on-demand image processing
step within an interactive visualization application. Thus, we can see
in figure 8 some of the brick loading peaks that emanate from requests
caused by this processing step. Once again, we can note that the
rendering time is not affected by this step. As a consequence, these two
steps can cohabit by using our out-of-core management system, both at
the same time.

Despite the fact that the entire management of the caches and the vir-
tualization hierarchy are realized on the GPU, its occupancy is around
5%. The bottleneck occurs at the data loading, between the mass
storage and the CPU. The computation footprint on the GPU is small
enough to allow heavy rendering workloads.

Bricks loading. We measured i) the average loading time for one
brick, from its request by the GPU, to its rendering (or processing),
and ii) the average time to render a complete correct view (with all the
needed bricks addressed in the GPU cache). These two measurements,
shown in the table 2, were performed from empty GPU caches. We
studied two scenarii: firstly, a worst-case scenario where the bricks
are only present on the mass storage. Secondly, when all the bricks
are present in our intermediate CPU cache. In the first scenario, the
given times indicate: 1) the bricks requests management (request list
creation and sending to the CPU), 2) the disk access time, 3) the LZ4
decompression, 4) the CPU to GPU transfer and 5) the update of the
addressing hierarchy (page table referencing and LRU update). The
second scenario only includes the steps 1, 4 and 5. Note that like
Hadwiger [17], our worst-case scenario takes few seconds to generate
a complete view.

Ray casting performance. The last row of table 2 shows the aver-



Dataset Histological Mandelbulb LightSheet
Vol. resolution 114×64000×50000 43523 2160×2560×1072
Vol. size (GB) 1459 330 11

Brick size (voxels) 643 643 643

Voxel size (B) 4 4 2
MRPD (kB) 25.20 < 1 749.08
LRU(s) (kB) 94.08 94.08 160.16

Usage buffer(s) (kB) 13.44 13.44 22.88
Request buffer (kB) 12518 2550 187.27

Total (MB) 12.65 2.65 1.11

One brick HDD to GPU cache (ms) 11.76 13.60 5.15
CPU cache to GPU cache (ms) 2.80 2.90 2.12

One complete view HDD to GPU cache (s) 6.57 7.43 1.97
CPU cache to GPU cache (s) 1.64 1.62 0.83

FPS volume ray casting – 45 47
Table 2. Volumes description, memory occupancy and ray casting frame rates. The first part of this table lists the characteristics of the 3
datasets used. The second part details the GPU memory footprint for all the resources needed in the out-of-core data management. The third part
gives the average brick loading times for i) one brick and ii) all the bricks needed to a complete full HD view. The last row gives the frame rates for
the volume ray casting rendering. The FPS measurement environment is described in section 8.4 and the virtualization parameters used to measure
the amount of memory, depending on the datasets, are described in section 8.5.

age frame rates of the volume rendering using the application described
in section 8.2. These measurements used a linear transfer function. We
focused these measurements on the dataset (b) and (c) because there is
no interest to visualize the dataset (a) in this way. These frame rates can
be considered at least as efficient as the previous approaches similar
to ours. Therefore, we do not lose in rendering performance using a
volume ray caster while proposing a more general method allowing
different types of visualization and / or processing.

8.5 Memory occupancy
The second part of the table 2 shows the required memory on the GPU
for all the elements of our structure and its management (without the
caches themselves). For (a) and (b), we used a PT cache storing 500
PT blocks in the second virtualization level and a data cache storing
2860 bricks (∼ 3GB). For (c), we use a data cache storing 5720 bricks
(∼ 3GB). The memory occupancy is about 12.65MB for the first
dataset (a) with two virtualization levels, using a brick size of 643

and a PT block size of 323 voxels; 2.65MB for the second (b) with
two virtualization levels, using a brick and a PT block size of 643

voxels; 1.11MB for the last (c) with only one virtualization level and
a brick size of 643 voxels. The low costs of these values maintain
a limited pressure rate between the memory allocated for the caches
management and those necessary for a well-functioning state of the
end-user application.

9 DISCUSSION

The proposed approach offers benefits for a wide range of applications,
but suffers a few limitations detailed here.

9.1 Limitations
Race conditions. This system implies some limitations regarding race
conditions. Indeed, the thread in charge of loading and preparing the
bricks cannot load them in the cache and update the virtual hierar-
chy without inducing possible collision with the GPU rendering (or
processing) thread.

Page table hierarchy updates. There are two main limitations
related to the update of the PT hierarchy. The first occurs when an entry
is removed from a PT cache. In figure 5.(b) when the new PT block
overwrites the oldest one, we lose the link to all the bricks that the last
one was referencing. In essence, some data may still be present in the
caches but not referenced (garbage that is not taken out). However,
these orphan blocks/bricks will converge to the oldest part of the LRUs
and will be replaced in future iterations. The second limitation is related

to the way to reference, in the PT, the bricks recently added to the data
cache. Although we propose an implementation of this step on the
GPU, it is done sequentially for each brick. For instance, let us assume
we want to add, at the same time, two spatially close bricks, both being
referenced by a single PT block. A parallel system would add two PT
blocks in the cache that would both reference a single brick while only
one block may be required to reference these two new bricks. To avoid
such a scenario, each brick needs to be referenced one by one.

Loss of virtual pages. The proposed approach of virtual memory
architecture does not guarantee the meta-information perennity of pages
inside the page table. For the possible intermediate virtualization levels
(PT caches), there is a problem of information preservation. The pages
are created on-the-fly on the GPU as needed and then cached. When a
page is removed from the cache, all its contained information is lost.
A typical example is the empty brick state indicated by the empty flag
which will not be preserved. In contrast, this problem does not occur
with the use of tree structures (like octrees) since the nodes of the tree
are actually used as pages. These nodes are written and saved and then
transferred to the GPU if necessary.

Processing. Our system can support any data processing if it is used
alone. However, if it is initiated during an interactive visualization stage,
it needs to be restricted. Indeed, an algorithm manipulating the whole
volume will generate many cache flushes, which may severely impact
the possibility to maintain the interactive visualization working set
stored in the data cache. Thus, we must limit the processing to a lower
working set size corresponding to a set of smaller local treatments.

9.2 Strengths
With this data structure, the system gets access to the data in O(log(b))
where b is the number of bricks. However, the complexity constant is
such that in practice it dwarfs the access time to a very small value (two
or three levels in practice), as detailed in section 5.1.

Communications. The communications between the CPU and the
GPU are restricted in order to reduce to data flow. The information
transferred is simply the requested brick coordinates for the GPU to
CPU communications and the voxels themselves, organized in bricks,
for the CPU to GPU communications. Restricting the communications
with these two kinds of data prevents bottlenecks.

Data Type. With the proposed approach, it is possible to virtualize
any kind of data as long as these data can be represented as a regular 3D
grid. Our approach uses the CUDA texture memory that can store up to
4 channels with a maximum of 32 bits each. However the approach also
applies to general data configuration with the use of global memory



instead of CUDA surfaces to extend to a more general purpose context;
the same algorithms and the logic still apply.

Scalability. This system may be easily scaled in a high performance
computing environment: cache managers deployed on each node are
independent, each one handling a subworking set. The main difference
would lie in the cache misses, where the nodes could communicate
together in order to speed up the brick loading time.

10 CONCLUSION & PERSPECTIVES

We propose an out-of-core caching system fully managed on GPU to
address very large volumes of data. Our pipeline can be used by any
type of application that requires manipulating volumes represented as a
regular grid of voxels, with the ability to manipulate multi-modal data.
In particular, this allows us to introduce the possibility of on-demand
processing of visible or not currently visible data during an interactive
visualization stage. We demonstrate the validity of our implementation
using a 2D high-resolution slice visualization tool with interactive
navigation in volumes exceeding the amount of GPU and CPU memory
with a very high rendering frame-rate and a low memory footprint on
the GPU. We also show that our method performs at least as effectively
as the previous ones in a context of volume ray casting application.

Hierarchy updates. In the current approach, the PT hierarchy up-
dates are performed on the GPU but in a sequential context (one thread
kernel). It prevents duplications in the load of bricks or race conditions
in the PT entry updates but it does not take advantages of the parallelism
of the GPUs. It could be interesting to consider a parallel strategy to
improve performance of this update step.

Transfer times. The main bottleneck in the system is the brick
loading time from the storage device to the GPU. Data compression
addresses part of this problem, but it could be more interesting to be
able to decompress the bricks directly on the GPU. This could take
advantage of the multi-threaded environment to implement an efficient
decompression algorithm and reduce the amount of transferred data to
the GPU. As many bricks are loaded, there is a natural parallelism that
can be exploited. Another solution would be to bring this system to
a high performance computing environment. By properly sharing the
work, the different nodes of such an environment could then distribute
the transfers and thus reduce this bottleneck.

Cache misses. We could consider a strategy to improve the cache
miss management system by prioritizing requests. For instance, with a
counter we could determine which bricks have been the most requested.
Such bricks would have a higher priority for the loading step. This
could potentially improve visual quality of the rendering for the same
overall performance level of the system.
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