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ABSTRACT

Inter / intra operator errors and high-time consumption induced
by manual delineation, are the main drawbacks nowadays in clini-
cal PET tumor segmentation. Several methodologies have been pro-
posed to automate this task. However, there is not yet a validated
general protocol to use in clinical routine. Multimodality imaging
has been shown to provide good performance, taking into account
both functional and anatomical scopes together for segmentation de-
cision. In this context, the involved images used are generally re-
quired to be spatially corresponding. However, this is not always
the case due to acquisition constraints or for multidate follow-up. In
this work, we propose a spatially independent algorithm that avoids
image pre-processing (e.g. image registration) or acquisition ad-
justments for multimodal segmentation. In particular, non-spatially
correspondent images (such as multitemporal ones) can be directly
exploited taking advantage of hierarchical image structure proper-
ties. Regions, obtained from hierarchical models of images, are co-
evaluated to match similar ones such as tumors on PET and CT. Re-
sults show good performance in terms of time-computing and robust-
nesses dealing with PET/CT segmentation problems such as necro-
sis, compared with other methodologies.

Index Terms— Matching, segmentation, multimodality, hierar-
chical models, region-based attributes.

1. INTRODUCTION

Positron Emission Tomography/Computed Tomography bimodal
scope (PET/CT) is widely used to analyze body cellular metabolism
for detection, diagnosis, treatment planning and follow-up of sev-
eral diseases such as some kinds of cancers. The measurement of
radiotracer uptake (mostly 18FDG) allows one to detect abnormal
metabolic tissues and their aggressiveness level. Methodologically,
CT coupling provides anatomic information used to correct PET
attenuation, and an anatomical reference for functional/anatomical
fused visualization. For radiotherapy treatment purposes, iodine-
based contrast-enhanced CT (CE-CT) has a higher preference [1].
Contrast injection allows one to improve the contrast of tissues that
are well vascularized, for instance tumors where blood transit is a
factor that predisposes a higher contrast absorption and tumor cell
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division. Some organs or anatomic structures surrounding the tumor
can be vital and/or sensitive to radiation. Therefore, tumor zones
are manually delineated by supervising anatomical information to
apply the radiation protocol selected. However this modus operandi
is relatively slow and can lead to intra-inter operator variations [2].

Several methodological solutions have been proposed [3] to
automate and improve, in terms of robustness and ergonomy, tumor
segmentation process, mainly on PET due to its high sensitivity and
specificity. Thresholding approaches (fixed [4] and adaptive [5, 6])
are still mostly used in clinical routine, due to their straightforward
implementation and the production of acceptable results. Other
methodological fields have also presented their approaches with
their respective limits and advantages: region growing [7], learning-
based [8], gradient-based [9], watershed [10], active contours [11],
Gaussian mixture models [12], FLAB [13], fuzzy-c-means [14],
component-tree [15] and hybridization [16].

Recently, multimodality is gaining share. In [17, 18], it is
claimed and experimentally confirmed that the use of semantically
different and relevant information sources allows for a better seg-
mentation than monomodal approaches. However, the majority
of the methods relying on this paradigm require a spatial corre-
spondence between images to be used. In particular, registration is
required, which can be complex in certain cases, due to multimodal-
ity, multitime and/or different resolutions.

Based on these considerations, matching approaches can con-
stitute an alternative methodology, although not much exploited yet
for tumor recognition / segmentation issues [19]. These approaches
have been mainly exploited for image retrieval [20], object recogni-
tion [21] and image registration [22] under the general objective of
finding similar objects between images. Geometric-based features
[23], General Fourier Descriptor and [24] Zernike moments [25]
have been used as parameters to object characterization; and similar-
ity assignment [26] has been defined taking into account the spatial
(intrinsic features) and/or topography (inclusion and overlapped re-
gions). By contrast, we propose to exploit this correlation paradigm
from another point of view. Indeed, we aim to inter-relate similar
regions from two (or more) images that are semantically different,
in order to delete those which are not matched. This approach en-
compasses the use-case of different imaging types (mono- or multi-
temporal PET/CT), but also the case of synthetic images or binary
masks that could be represented by pre-segmentation results, and
associated to real target images, in a context of example-based seg-
mentation. Moreover, hierarchical structures are exploited to define
image regions, taking advantage of their intrinsic properties, such
as spatial independence and spectral-spatial region partition. At the



end of the matching process, the remaining nodes are evaluated by
a thresholding protocol on PET (high tumor contrast) to identify the
tumor nodes and retrieve the segmentation result.

2. METHOD

Our method uses the matching strategy as a way to obtain easier
object segmentation, by discriminating information considered dis-
similar on medical images.

Four main steps compose this methodology: tree (a.k.a hierar-
chical structure, HS) construction; attribute computing; match prun-
ing; and image restitution (see Fig. 1).

Fig. 1. Algorithm pipeline.

1. HS construction: From a set of n ≥ 2 images, a hierarchi-
cal structure Ψ is built for each image, leading to n tree structures
Ψ1,Ψ2, ...,Ψn. The nature of Ψ depends of its relevance for mod-
eling the objects of interest (OOI) (see Fig. 2). The image partition
convention of Ψ (e.g. max-tree, min-tree, tree of shapes, etc.) must
guarantee that the OOI is defined inside the graph.

2. Attributes computing: Relevant attributes are computed [27] on
the nodes of the tree Ψ in order to characterize them. These features
(generally expressed as scalar values) must be representative of the
OOI in a global scope (indeed, intensity scales are not often directly
comparable between imaging modalities).

3. Match pruning: The regions of the trees are co-related, with the
purpose of finding the similar ones (see Fig. 2). Their similarity level
is measured by a distance between node attributes, with a respective
tolerance value ε. Regions which exhibit distance lower than a given
ε are then considered similar. Afterward, mismatchings are reduced
by a correlation correction step, with the purpose of deleting false
positives.

4. Segmentation protocol and image restitution: A protocol of
segmentation is finally applied to identify the nodes belonging to the
object of interest. These nodes are re-embedded in their initial image
support space to recover the segmentation result.

2.1. Hierarchical image structures

A hierarchical structure (HS) is a graph representation of an image.
This structure Ψ is formed by nodes k ∈ Θ that are linked by edges
e ∈ E. Formally, a node represents an image region which is formed
by a set of 2D pixels / 3D voxels spatially connected and obtained
according to a spectral partition. These nodes are hierarchically or-
ganized via an order relation, e.g. the inclusion relation, or the nested
relation of their frontiers.

In this work, two hierarchical structures are mainly considered:
the component-tree (C-T) τ and the tree of shapes Φ. These hierar-
chical structures are chosen, in particular, with respect to their ability
to model the mixed spatial/spectral properties of objects of interest
in various kinds of medical imaging modalities.

Fig. 2. An example of simple region matching by circularity attribute
between a Max-tree (as Ψα) and a Tree of Shapes, and vice versa,
showing their results according to HS partition.

1. Component-tree : In this HS, images regions are obtained
applying a sequence of thresholding (≥ order for a max-tree,
≤ for a min-tree) at each intensity level λ∗(I), leading to
image partition [28]. From the highest level λmax(I) to the
lowest level λmin(I), nodes are related by spatial inclusion.

2. Tree of shapes : The ToS Φ [29] is defined as a self-dual
version of the C-T, that merges the max- and min-trees. The
fusion of the two associated partitions, following a spatial in-
clusion order of hierarchy, provides a “no-hole” node struc-
ture which defines an image isocountour representation.

These two structures can be computed in quasi-linear time [30, 31].

2.2. Attributes

An attribute [32] is a feature used to characterize image regions.
These features can rely on different notions, e.g. spectral attributes,
spatial attributes, geometrical attributes or hybrid attributes (i.e. a
mixture of the above). Attributes h are stored, for each node / re-
gion of the trees, in a vector A = [h1, h2, ..., hH ]. They have to be
inter-graph normalized according to their value scale.

2.3. Match pruning

2.3.1. Inter-node-tree correlation

This step aims to find the potentially correlated nodes. From the
tree set Ψ1:n, one of its tree is selected, and is called Ψα, while
the others are denoted Ψref=1:n−1. The nodes Θα of Ψα are inter-
correlated with the nodes Θref∗ of the remaining trees Ψref∗. The
comparison queue for each node ki ∈ Θα is comprised by the nodes
kj ∈ Θref of trees Ψref . An Euclidean distance D( ~Ai, ~Aj) is
computed between inter-node attributes A:

D( ~Ai, ~Aj) =

H∑
a=1

β[n](Ai[a]−Aj [a]) (1)

where β is a vector of sizem that weights up each attribute according
to its reletance, with

∑H
a=1 β[a] = 1.



A node status M is defined for nodes Θα and a matching ma-
trix mij is created to store the binomial relation ij. In particular, if
D( ~Ai, ~Aj)) < ε, then we set ki(M) = true, achieving a similarity
matching which is set at mij . At the end of the queue, if ki does
not reach at least one mij , then we set ki(M) = inactive. The ε is
a user-defined parameter chosen within the interval [0, 1] ∈ R+ that
establishes the similarity threshold.

2.3.2. Correlation correction

More than one node kj can be matched with a node ki if they ac-
complish the marked threshold. Two post-processing corrections are
considered in order to refine the results obtained from the above ap-
proach, namely hierarchical privilege and best representative.

A matching crossed problem occurs when an ancestor node
(higher λ∗) Anci of ki in ΨA is related with kj in ΨB and an an-
cestor Ancj of kj is related with ki. Respecting their hierarchy, in
an unilateral decision favoring α, the mij(ki, Ancj) is erased (see
Fig. 3).

Fig. 3. a) Hierarchical priority and b) best representative corrections.
Red lines are the correlation links mij where the pointed ones are
suppressed at the correction process.

The relation mji is reevaluated comparing the remaining node-
links to choose their best representative and to have a relation ratio
1:1. To this end, krefj preserves the link mji with ki which has the
lowest D( ~Ai, ~Aj). After these corrections, if a node ki loses all its
inter-node relations mji then ki(M) = inactive.

2.4. Image restitution

For the nodes such that ki(M) = active, a segmentation protocol
is finally applied to select those ones that correspond to the OOI.
The Ψα is reconstituted in its matrix image structure I , by pruning
all nodes, except the selected ones. A direct image restitution is
applied replacing node voxels at their orignal matricial place with an
intensity value set at 1 and for the rest at 0.

3. INSTANTIATION FOR TUMOR MATCHING IN
MEDICAL IMAGES

The above methodology is adapted and implemented for tumor seg-
mentation on medical PET/CT imaging.

3.1. Hierarchical structure selection

The tree of shapes is selected for both images, PET and CE-CT.
This data-structure allows us to discriminate possible heterogeneities
inside tumor regions.

In PET images, tumor cell biomarker metabolism is heteroge-
neous. In particular, if there is a necrosis (cell death), tumor com-
position has low intensities. In CT images, tumors can have a low

contrast compared to neighboring tissues and if a contrast agent is
injected, its absorption is irregular depending of vascularization.

These constraints can be fought by using isocontour notion when
defining image partition. Thus, we can enssure that the OOI (tumor)
is “well” represented inside the graphs with some regional variations
due to acquisition mode specificities.

3.2. Potential attributes

Spectral attributes: It is not straighforward to compare images with
different gray level scales, in particular SUV (PET) and Hounsfield
units (CT) in our case. Nevertheless, the use of their derived units is
possible such as Contrast = |max value−min value|.
Spatial attributes : A normalization of space is required. The area
value (number of voxels) is multiplied by the 3D image spacing
(mm3) for space arrangement.
For barycenter coordinates and other potential attributes derived
from 3D spatial coordinates, image framework is normalized by
creating a bounding box of human body having the brain and the
bladder as top and bottom limits, respectively. A distance between
barycenter coordinates (BCD) can be computed as a parameter to
evaluate the relative dispersion of nodes.
Geometrical attributes: This is the most relevant group of at-
tributes due to its spatial-spectral independence. Shape features can
be easily evaluated according to voxels distribution at the node.

• Compactness = 4π ∗ area / contour length2, is the circu-
larity (2D) / sphericity (3D) level, an often used feature in
tumors.

• Complexity = contour length / area.

• Rectangularity = area/bb area, where bb area is the
bounding box area which is defined by the supremum and
the infimum points.

3.3. Segmentation protocol

PET intensities are used to identify the object of interest in the tree.
A threshold t of SUVmax is applied on PET image. Voxels that have
an intensity value higher than t are mapped with their correspondent
T nodes kt in ToSPET . If ToSPET = Ψref , following the link
mji, the ktj are projected to Ψα to identify their respective kti . If this
node kti(M) = inactive, the node mapping is redirected, way down
into the root, assigning the next active node. The kt1 ∪ kt2... ∪ ktT is
selected to represent the segmentation.

Actually, this threshold protocol has a semantically different
meaning compared with a normal threshold on image intensities.
Voxels that respect the threshold protocol can be placed in a node
where other voxels do not.

4. EXPERIMENTATION

4.1. Data

Our material of experimentation is composed of 18F -FDG PET-CT
with iodinated contrast enhancement (CE) of different cancer pa-
tients (neck and head cancer, colon cancer). Images were carried out
by using a GE Discovery 710 PET/CT scanner at the Cancerology
Institute Jean-Godinot in Reims, France.

Patients received an intravenous dose of FDG (3 MBq/kg).
Then, 50 minutes after, CT phase was performed first, 70 seconds
after an intravenous dose of iodinated contrast agent (Optiject 350),
with auto mA mode, adaptive statistical iterative reconstruction



Fig. 4. CE-CT on the left and PET on the right. In red, a manual
delineation provided by a radiotherapist; in green, a threshold pro-
tocol of SUVmax, the most common methods nowadays in clinical
routine.

Fig. 5. Regions of ToS partition of a) at ΨPET
α , ΨCE−CT

ref that are
matched according to a ε = b) 0.1, c) 0.05 and d) 0.01.

Fig. 6. On blue ΦPETα , ΦCE−CT
ref , on yellow ΦCECT

α , ΦPETref , and
magenta ΦPETα , ΦBMref , results obtained.

(ASIR) and native collimation of 16×1.25 mm. PET phase was se-
quentially performed and reconstructed using an iterative algorithm
(OSEM 24 subsets, 2 iterations) and post-filtered with a Butterworth
filter (cut-off frequency: 6.4 mm). The resulting matrices spaces are
256×256×263 with voxel spacing of 2.73×2.73×3.27 mm3 for
CT and 512× 512× 343 with a voxel spacing of 0.97× 0.97× 2.5
mm3 for PET.

4.2. Implementation

A ToS Φ is built from each PET and CE-CT. We experiment both
cases using ΦPETα , ΦCE−CT

ref and vice versa. A third combination
is tested, ΦPETα is built and a binary mask obtained by operator de-
lineation was used as ΦBMref . The attributes explained in Sec. 3.2

(with exception of spectral ones and rectangularity) are computed,
A = [compacity, area, complexity,BCD]. The weighting vec-
tor β was set at [0.25, 0.2, 0.25, 0.3] giving a slightly higher impor-
tance to the distance between region centroids than size.

The ε is interactively moved, thus analyzing in real time, several
possible results (see Fig. 5). The lower ε, the lower the dissimilarity
tolerance, and the number of nodes matched.

4.3. Computer performances

For these experiments, a computer with a processor 3,1 GHz, Intel
Core i7 and Memory 16 Go 2133 MHz was used. The matching
step takes 6.36 seconds, in avereage. The whole process, including 2
ToS construction for medical images (resolution before mentioned),
4 attributes computing and image restitution takes 21.70 seconds, in
average.

4.4. Results

Our results were compared with other methodologies of the state of
the art, including the computation of the 40%SUVmax and two ver-
sions of multi-modal Random Walker [33], scalar RW-PET/CT (in-
tensities values) and vectorial HFA RW-PET/CT (Hierarchical For-
est Attributes - vectorial values).

Table 1. Methodological comparison
DSC (µ± σ) Our method (α, ref) DSC (µ± σ)

40% SUVmax 0.551± 0.179 PET, CT 0.744± 0.052
RW-PET/CT 0.802± 0.038 CT, PET 0.781± 0.040
HFA RW-PET/CT 0.856± 0.036 PET, BM 0.773± 0.045

5. DISCUSSION

This treatment is easy and fast. Results show a greater spatial ac-
curacy than threshold methods, but a lower one than other more
complex methods. However, the computation time is much lower,
compared to these other methods. Based on this trade-off between
time consumption and result quality, the proposed method seems to
provide a convenient solution to compare two images in real-time
and could be applied easily in clinical routine.

Spatial correspondence handling between medical images is
generally a complex issue in multimodal segmentation; and their
registration is time-consuming and sometimes prone to errors. Tree
of shapes computing is fast and a propitious solution for non-
spatially correspondent object evaluation. This structure is spatially
independent once built. In other words, objects of interest can be
equally distributed in the graph; no matter the image spatial resolu-
tion or local displacements according to a background.

We presented a fully automated methodology. The expert inter-
vention is only required to define few parameters according to the
object-of-interest characteristics. Using the same parameters, the re-
sult is reproducible, which avoids inter/intra operator errors. The
particularities of this similarity matching methodology lead us to
confirm that hyperfixant and transit organs are segmented too, since
they have the same conditions as the OOI (tumors) on PET/CE-CT,
a functional-anatomic representation; for the use of preceding seg-
mentation masks (BM ), this problem does not happen. This anal-
ysis of matching is only spatial and not topological, because inter-
image structures are not assured to have the same internal consis-
tence. Results lead us to continue this track crossing to increase
robustness in tumor matching on medical images.
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