G. Antoch, L. Freudenberg, T. Beyer, A. Bockisch, and J. Debatin, To Enhance or Not to Enhance? 18F-FDG and CT Contrast Agents in Dual-Modality 18F-FDG PET/CT, J Nucl Med, vol.45, pp.56-65, 2004.

J. Fox, R. Rengan, W. Omeara, E. Yorke, Y. Erdi et al., Does registration of PET and planning CT images decrease interobserver and intraobserver variation in delineating tumor volumes for non???small-cell lung cancer?, International Journal of Radiation Oncology*Biology*Physics, vol.62, issue.1, pp.70-75, 2005.
DOI : 10.1016/j.ijrobp.2004.09.020

B. Foster, U. Bagci, A. Mansoor, Z. Xu, and D. Mollura, A review on segmentation of positron emission tomography images, Computers in Biology and Medicine, vol.50, pp.76-96, 2014.
DOI : 10.1016/j.compbiomed.2014.04.014

W. Yu, X. Fu, Y. J. Zhang, J. Xiang, L. Shen et al., GTV spatial conformity between different delineation methods by 18 FDG PET/CT and pathology in esophageal cancer, Radiother Oncol, issue.3, pp.93441-446, 2009.

L. Drever, W. Roa, A. Mcewan, and D. Robinson, Iterative threshold segmentation for PET target volume delineation, Medical Physics, vol.42, issue.4, pp.1253-1265, 2007.
DOI : 10.1259/bjr/72059318

U. Nestle, A. Schaefer-schuler, S. Kremp, A. Groeschel, D. Hellwig et al., Target volume definition for 18F-FDG PET-positive lymph nodes in radiotherapy of patients with non-small cell lung cancer, European Journal of Nuclear Medicine and Molecular Imaging, vol.62, issue.Suppl, pp.453-462, 2007.
DOI : 10.1148/radiology.213.2.r99nv46530

E. Day, J. Betler, D. Parda, B. Reitz, A. Kirichenko et al., A region growing method for tumor volume segmentation on PET images for rectal and anal cancer patients, Medical Physics, vol.27, issue.10, pp.4349-4358, 2009.
DOI : 10.1016/S0969-8051(00)00155-4

L. Bi, J. Kim, D. Feng, and M. Fulham, Multi-stage Thresholded Region Classification for Whole-Body PET-CT Lymphoma Studies, pp.569-576, 2014.
DOI : 10.1007/978-3-319-10404-1_71

M. Wanet, A. Lee, B. Weynand, M. De-bast, A. Poncelet et al., Gradient-based delineation of the primary GTV on FDG-PET in non-small cell lung cancer: A comparison with threshold-based approaches, CT and surgical specimens, Radiotherapy and Oncology, vol.98, issue.1, pp.117-125, 2011.
DOI : 10.1016/j.radonc.2010.10.006

P. Tylski, G. Bonniaud, E. Decencì-ere, J. Stawiaski, J. Coulot et al., /sup 18/F-FDG PET images segmentation using morphological watershed: a phantom study, 2006 IEEE Nuclear Science Symposium Conference Record, pp.2063-2067, 2006.
DOI : 10.1109/NSSMIC.2006.354319

H. Li, W. Thorstad, K. Biehl, R. Laforest, Y. Su et al., A novel PET tumor delineation method based on adaptive region-growing and dual-front active contours, Medical Physics, vol.13, issue.8, pp.3711-3721, 2008.
DOI : 10.1109/42.363096

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3304493/pdf

M. Aristophanous, B. Penney, M. Martel, and C. Pelizzari, A Gaussian mixture model for definition of lung tumor volumes in positron emission tomography, Medical Physics, vol.47, issue.11, p.42234235, 2007.
DOI : 10.1016/S0360-3016(00)00467-3

M. Hatt, C. Cheze-le-rest, P. Descourt, A. Dekker, D. De-ruysscher et al., Accurate Automatic Delineation of Heterogeneous Functional Volumes in Positron Emission Tomography for Oncology Applications, International Journal of Radiation Oncology*Biology*Physics, vol.77, issue.1, pp.301-308, 2010.
DOI : 10.1016/j.ijrobp.2009.08.018

URL : https://hal.archives-ouvertes.fr/inserm-00537776

S. Belhassen, H. Zaidi, E. Grossiord, H. Talbot, and N. Passat, A novel fuzzy C-means algorithm for unsupervised heterogeneous tumor quantification in PET, Meignan M. and Najman L. Automated 3D lymphoma lesion segmentation from PET/CT characteristics. ISBI, pp.1309-1324, 2010.
DOI : 10.1016/j.ijrobp.2007.04.065

A. Dewalle-vignion, N. Betrouni, R. Lopes, D. Huglo, S. Stute et al., A New Method for Volume Segmentation of PET Images, Based on Possibility Theory, IEEE Transactions on Medical Imaging, vol.30, issue.2, pp.409-423, 2011.
DOI : 10.1109/TMI.2010.2083681

U. Bagci, J. Udupa, N. Mendhiratta, B. Foster, Z. Xu et al., Joint segmentation of anatomical and functional images: Applications in quantification of lesions from PET, PET-CT, MRI-PET, and MRI-PET-CT images, Medical Image Analysis, vol.17, issue.8, pp.929-945, 2013.
DOI : 10.1016/j.media.2013.05.004

W. Ju, D. Xiang, B. Zhang, L. Wang, I. Kopriva et al., Random Walk and Graph Cut for Co-Segmentation of Lung Tumor on PET-CT Images, IEEE Transactions on Image Processing, vol.24, issue.12, pp.5854-5867, 2015.
DOI : 10.1109/TIP.2015.2488902

E. Petrakis, Design and evaluation of spatial similarity approaches for image retrieval, Image and Vision Computing, vol.20, issue.1, pp.59-76, 2002.
DOI : 10.1016/S0262-8856(01)00077-4

E. El-kwae and M. Kabuka, A robust framework for content-based retrieval by spatial similarity in image databases, ACM Transactions on Information Systems, vol.17, issue.2, pp.174-198, 1999.
DOI : 10.1145/306686.306689

S. Belongie, J. Malik, and J. Puzicha, Shape matching and object recognition using shape contexts, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.24, issue.4, pp.509-522, 2002.
DOI : 10.1109/34.993558

URL : http://nma.berkeley.edu/ark:/28722/bk0005s3w6n

D. Shen, Image registration by local histogram matching, Pattern Recognition, vol.40, issue.4, pp.1161-1172, 2007.
DOI : 10.1016/j.patcog.2006.08.012

N. Alajlan and M. Kamel, Geometry-Based Image Retrieval in Binary Image Databases, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.30, issue.6, pp.1003-1013, 2008.
DOI : 10.1109/TPAMI.2008.37

D. Zhang and G. Lu, Shape-based image retrieval using generic Fourier descriptor, Signal Processing: Image Communication, pp.825-848, 2002.
DOI : 10.1016/S0923-5965(02)00084-X

K. Whoi-yul, Y. , and K. , A region-based shape descriptor using Zernike moments, Signal Processing: Image Communication, pp.95-102, 2000.

J. Mattes, M. Richard, and J. Demongeot, Tree representation for image matching and object recognition. DGCI, pp.298-309, 1999.
DOI : 10.1007/3-540-49126-0_23

P. Salembier, A. Oliveras, and L. Garrido, Antiextensive connected operators for image and sequence processing, IEEE Transactions on Image Processing, vol.7, issue.4, pp.555-570, 1998.
DOI : 10.1109/83.663500

URL : http://upcommons.upc.edu/bitstream/2117/90134/1/UPC1.pdf

C. Ballester, V. Caselles, and P. Monasse, The tree of shapes of an image, ESAIM: Control, Optimisation and Calculus of Variations, vol.4, pp.1-18, 2003.
DOI : 10.1007/BF00410640

E. Carlinet and T. Géraud, A comparison of many max-tree computation algorithms. ISMM, pp.73-85, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01476238

T. Géraud, E. Carlinet, S. Crozet, and L. Najman, A Quasi-linear Algorithm to Compute the Tree of Shapes of nD Images, pp.97-108, 2013.
DOI : 10.1007/978-3-642-38294-9_9

E. Breen and R. Jones, An Attribute-Based Approach to Mathematical Morphology, Comp Imag Vis, vol.5, pp.41-48, 1996.
DOI : 10.1007/978-1-4613-0469-2_6

F. Alvarez, B. Romaniuk, B. Naegel, S. Servagi-vernat, D. Morland et al., Hierarchical forest attributes for multimodal tumor segmentation on FDG- PET/contrast-enhanced CT ISBI, 2018.