

Camille Kurtz¹, Nicolas Passat¹, Anne Puissant², Pierre Gançarski¹

¹LSIIT – Image Sciences, Computer Sciences and Remote Sensing Laboratory ²LIVE – Image, City and Environment Laboratory

University of Strasbourg

ISMM 2011 (6-8 July 2011) 10th International Symposium on Mathematical Morphology

Introduction 00000	Related works 00	Methodology 000000000	Experiments 00000	Conclusion
Outline				

- 2 Related works
- Proposed methodology
- Experimental study

Introduction	Related works 00	Methodology ೦೦೦೦೦೦೦೦೦	Experiments 00000	Conclusion
Outline				

- 2 Related works
- Proposed methodology
- 4 Experimental study
- **5** Conclusion

Introduction •0000	Related works	Methodology 0000000000	Experiments 00000	Conclusion			
Context: extraction of knowledge about the Earth surface							
Image and	knowledge						

Context

Extraction of knowledge about the Earth surface from remote sensing data

Purpose: automatic information retrieval from satellite images

To provide a set of (semi)-automatical tools enabling to extract relevant information (e.g., land uses/covers, urban structures) from satellite images

Domains

- Data mining
- Image analysis

 Introduction
 Related works
 Methodology
 Experiments
 Conclusion

 00000
 0000000000
 00000
 00000
 00

 Context: extraction of knowledge about the Earth surface
 Multiresolution images/complex objects of interest
 Interest

Data

Numerous kinds of images (multisource, multiresolution, etc.)

MSR (10m)

HSR (2,4m)

VHSR (60cm)

Objects of interest

Different complex objects of interest have to be extracted

Districts

Blocks

Buildings

Introduction	Related works	Methodology	Experiments	Conclusion	
00000					
Context: extraction of knowledge about the Earth surface					

lssues

Thematical issues

- The (manual) extraction of objects of interest is a complex process
- 2 A level is not always linked to a particular spatial resolution

Computational issues

- (V)HSR images: huge volume of data (several GB!)
- 2 The objects of interest (districts, blocks, simple objects) are complex and heterogeneous

Urban blocks on a VHSR image

Introduction ○○○●○	Related works 00	Methodology 0000000000	Experiments 00000	Conclusion
Classical approaches and	their limits			
Classical app	roaches and th	neir limits		

- Pixel-based approaches vs. Object-based approaches
- **2** Supervised approaches *vs.* Unsupervised approaches

Unsupervised approaches

- To discover the data structures in order to extract relevant information
- Does not require complex *a priori* knowledge about the considered data (labelled examples, number of classes...)

- Pixel-based approaches vs. Object-based approaches
- **2** Supervised approaches vs. Unsupervised approaches

Unsupervised approaches

- To discover the data structures in order to extract relevant information
- Does not require complex *a priori* knowledge about the considered data (labelled examples, number of classes...)

Introduction	Related works	Methodology 0000000000	Experiments 00000	Conclusion
Purpose				
Purpose				

Main purpose

To extend the **object-based** approaches to extract complex/multilevel urban elements from satellite images

- To use the complementarity of the information available in all the resolutions (MSR, HSR, VHSR): **multiresolution analysis**
- To use an **unsupervised** approach

Advantages

- To consider all the available data
- To not required complex a priori information
- To propose to the user homogeneous sets of objects of interest which can be labelled by using his background knowledge

Introduction 00000	Related works	Methodology 000000000	Experiments 00000	Conclusion
Outline				

- 2 Related works
- Proposed methodology
- 4 Experimental study
- **5** Conclusion

Introduction 00000	Related works ●○	Methodology 0000000000	Experiments 00000	Conclusion
State of the art				
	C 1			

Extraction of complex patterns

Grouping approaches: to extract complex objects by grouping several basic ones: to look for patterns within the **RAG** [Barnsley and Barr, 1997]

Hierarchical segmentations: to provide a series of partitions of an image with an increasing (or decreasing) level of details

- Top-down: Graph partitioning [Shi and Malik, 2000]
- Bottom-up: Region merging [Baatz and Schape, 2000], Connected operators [Serra and Salembier, 1993]

Multiresolution approaches: to extract a specific level of information/semantic using a specific spatial resolution

- To process synthetic degraded images (Fourrier transforms, wavelets) [Aksoy and Akcay, 2005] or directly multi-sensors ones
- To process a coarser resolution than the original: the largest and complex structures of interest may appear more **homogeneous** [Goffe et al., 2010]

Introduction 00000	Related works ●○	Methodology 0000000000	Experiments 00000	Conclusion
State of the art				
	C 1			

Extraction of complex patterns

Grouping approaches: to extract complex objects by grouping several basic ones: to look for patterns within the **RAG** [Barnsley and Barr, 1997]

Hierarchical segmentations: to provide a series of partitions of an image with an increasing (or decreasing) level of details

- Top-down: Graph partitioning [Shi and Malik, 2000]
- Bottom-up: Region merging [Baatz and Schape, 2000], Connected operators [Serra and Salembier, 1993]

Multiresolution approaches: to extract a specific level of information/semantic using a specific spatial resolution

- To process synthetic **degraded images** (Fourrier transforms, wavelets) [Aksoy and Akcay, 2005] or directly **multi-sensors ones**
- To process a coarser resolution than the original: the largest and complex structures of interest may appear more **homogeneous** [Goffe et al., 2010]

Introduction 00000	Related works ●○	Methodology 0000000000	Experiments 00000	Conclusion
State of the art				
	C 1			

Extraction of complex patterns

Grouping approaches: to extract complex objects by grouping several basic ones: to look for patterns within the **RAG** [Barnsley and Barr, 1997]

Hierarchical segmentations: to provide a series of partitions of an image with an increasing (or decreasing) level of details

- Top-down: Graph partitioning [Shi and Malik, 2000]
- Bottom-up: Region merging [Baatz and Schape, 2000], Connected operators [Serra and Salembier, 1993]

Multiresolution approaches: to extract a specific level of information/semantic using a specific spatial resolution

- To process synthetic degraded images (Fourrier transforms, wavelets) [Aksoy and Akcay, 2005] or directly multi-sensors ones
- To process a coarser resolution than the original: the largest and complex structures of interest may appear more **homogeneous** [Goffe et al., 2010]

Introduction 00000	Related works ○●	Methodology 0000000000	Experiments 00000	Conclusion
Position				
Purpose				

Objectives of this work

- To extend the multiscale/hierarchical (connected operators) approaches to deal with multiresolution remote sensing images
 - To extract hierarchies of segments
 - To use all the available data
- ② To use a top-down approach through the resolution (to analyse the content of an image at a coarser resolution and then progressively increase this resolution)
 - Similar to the photo-interpretation process
 - To avoid the problems due to the analysis of VHSR images
- To apply this approach to extract complex objects at different semantic levels (Ex: districts, blocks, simple objects)

Introduction 00000	Related works ○●	Methodology 0000000000	Experiments 00000	Conclusion
Position				
Purpose				

Objectives of this work

- To extend the multiscale/hierarchical (connected operators) approaches to deal with multiresolution remote sensing images
 - To extract hierarchies of segments
 - To use all the available data
- O To use a top-down approach through the resolution (to analyse the content of an image at a coarser resolution and then progressively increase this resolution)
 - Similar to the photo-interpretation process
 - To avoid the problems due to the analysis of VHSR images
- To apply this approach to extract complex objects at different semantic levels (Ex: districts, blocks, simple objects)

Introduction 00000	Related works ○●	Methodology 0000000000	Experiments 00000	Conclusion
Position				
Purpose				

Objectives of this work

- To extend the multiscale/hierarchical (connected operators) approaches to deal with multiresolution remote sensing images
 - To extract hierarchies of segments
 - To use all the available data
- To use a top-down approach through the resolution (to analyse the content of an image at a coarser resolution and then progressively increase this resolution)
 - Similar to the photo-interpretation process
 - To avoid the problems due to the analysis of VHSR images
- To apply this approach to extract complex objects at different semantic levels (Ex: districts, blocks, simple objects)

Introduction 00000	Related works	Methodology	Experiments 00000	Conclusion
Outline				

- 2 Related works
- Proposed methodology
- Experimental study
- **5** Conclusion

Methodology: a top-down extraction approach

Input / Output

- Input: n images of the same scene with different spatial resolutions
- Output: *n* levels of segmentation

Principle

The extraction methodology performs n successive steps (one step per resolution) from the lowest resolution to the highest one, enabling different scales of interpretation

Each step is composed of:

- a monoresolution hierarchical segmentation approach
- **2** a multiresolution clustering approach

At each resolution/step r, the output (a set of regions gathered into c clusters) is embedded into the resolution r + 1 to be treated as input of the next step

Methodology: a top-down extraction approach

Input / Output

- Input: n images of the same scene with different spatial resolutions
- Output: *n* levels of segmentation

Principle

The extraction methodology performs n successive steps (one step per resolution) from the lowest resolution to the highest one, enabling different scales of interpretation

Each step is composed of:

- a monoresolution hierarchical segmentation approach
- **2** a multiresolution clustering approach

At each resolution/step r, the output (a set of regions gathered into c clusters) is embedded into the resolution r + 1 to be treated as input of the next step

Principle: a top-down multiresolution extraction approach

Methodology: a top-down extraction approach

Introduction	Related works	Methodology	Experiments	Conclusion
		000000000		
Segmentation approach				

A monoresolution hierarchical segmentation approach

Ideas

- To adapt/divide the segmentation process (and/or the segmentation parameters) to local areas of homogeneous classes of radiometric intensity
- To provide an interactive segmentation tool using the advantages of the BPTs

Principle

- BPT segmentations are defined interactively by the user on different parts of the images (with different sematical contents)
- These segmentation results are then learnt and automatically reproduced on the whole remaining data

Introduction	Related works	Methodology	Experiments	Conclusion
		000000000		
Segmentation approach				
A	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1.		

A monoresolution hierarchical segmentation approach

Input / Output

- Input: k ≥ 2 parts of a same image representing k different (but specific) areas
- Output: k segmentations with a similar level of scale

Methodology

- For one of the k images, the user first interactively performs a segmentation, by providing a cut in its BPT. This cut is assumed to correctly characterise the user-defined segmentation
- **2** This cut is then considered as an example to reproduce in the BPTs of the k 1 other images

Introduction 00000	Related works	Methodology ○○●○○○○○○○	Experiments 00000	Conclusion
Segmentation appr	oach			
Rinary Pa	rtition Tree			

Definition

- The tree leaves correspond to the initial pixel level partition
- The remaining tree nodes represent the regions formed by the merging of two children regions
- The tree construction is performed by keeping track of merging steps of an iterative region merging algorithm

Introduction 00000	Related works 00	Methodology ○○○●○○○○○○	Experiments 00000	Conclusion
Segmentation appro	ach			
Building a	BPT			

- Region model $M(R_i)$ The region model specifies how a region is represented / modelled
- Merging criterion $O(R_i, R_j)$

The similarity between neighboring regions determines the merging order

Introduction 00000	Related works 00	Methodology 000000000	Experiments 00000	Conclusion 00
Segmentation appro	ach			
Building a	BPT			

- Region model M(R_i)
 The region model specifies how a region is represented / modelled
- Merging criterion $O(R_i, R_j)$ The similarity between neighboring regions determines the merging order

The region model $M(R_i)$

A region $R_i \in \mathcal{N}$ $(R_i \subseteq E)$ is modelled by the couple

$$M_r(R_i) = \langle (v_b^-(R_i), v_b^+(R_i)) \rangle_{b=1}^s$$

$$M_g(R_i) = (e(R_i), a(R_i))$$

() v_b^{\star} refers to the extremal values in the b^{th} spectral band of \mathcal{I} (*i.e.*, in \mathcal{I}_b)

2 e and a represent respectively the elongation and the area of the region

Introduction 00000	Related works	Methodology ○○○●○○○○○○	Experiments 00000	Conclusion
Segmentation appr	oach			
Building a	BPT			

- Region model M(R_i)
 The region model specifies how a region is represented / modelled
- Merging criterion $O(R_i, R_j)$

The similarity between neighboring regions determines the merging order

The merging criterion $O(R_i, R_j)$

At each step, the algorithm determines the pair of most similar connected regions minimizing the increase of the ranges of the intensity values and having low elongation/area properties

$$O_r(R_i, R_j) = \frac{1}{s} \sum_{b=1}^s \frac{\max\{v_b^+(R_i), v_b^+(R_j)\} - \min\{v_b^-(R_i), v_b^-(R_j)\}}{v_b^+(E) - v_b^-(E)}$$
$$O_g(R_i, R_j) = \frac{1}{2} (e(R_i \cup R_j) + a(R_i \cup R_j))$$

Introduction 00000	Related works 00	Methodology ○○○●○○○○○○	Experiments 00000	Conclusion
Segmentation appr	oach			
Building a	a BPT			

- Region model M(R_i)
 The region model specifies how a region is represented / modelled
- Merging criterion $O(R_i, R_j)$

The similarity between neighboring regions determines the merging order

The merging criterion $O(R_i, R_j)$

The similarity measure between 2 regions R_i and R_j is computed as

$$O(R_i, R_j) = \alpha . O_r(R_i, R_j) + (1 - \alpha) . O_g(R_i, R_j)$$

Introduction 00000	Related works 00	Methodology ○○○●○○○○○○	Experiments 00000	Conclusion
Segmentation appr	oach			
Building a	a BPT			

- Region model M(R_i)
 The region model specifies how a region is represented / modelled
- Merging criterion $O(R_i, R_j)$

The similarity between neighboring regions determines the merging order

The merging criterion $O(R_i, R_j)$

The similarity measure between 2 regions R_i and R_j is computed as

$$O(R_i, R_j) = \alpha \cdot O_r(R_i, R_j) + (1 - \alpha) \cdot O_g(R_i, R_j)$$

How to determine $\alpha \in [0, 1]$?

- In practice, the closer the nodes are to the root, the less relevant O_r is
- Consequently, the weight α can be defined as a function depending directly on the value of O_r (and decreasing when O_r increases)

Introduction 00000	Related works	Methodology ○○○●○○○○○○	Experiments 00000	Conclusion
Segmentation appr	oach			
Building a	BPT			

- Region model M(R_i)
 The region model specifies how a region is represented / modelled
- Merging criterion $O(R_i, R_j)$

The similarity between neighboring regions determines the merging order

The merging criterion $O(R_i, R_j)$

The similarity measure between 2 regions R_i and R_j is computed as

$$O(R_i, R_j) = \alpha . O_r(R_i, R_j) + (1 - \alpha) . O_g(R_i, R_j)$$

Introduction 00000	Related works	Methodology ○○○○●○○○○○	Experiments 00000	Conclusion
Segmentation appr	oach			
Defining a	a cut interactiv	velv		

Interactive cut

ĸ a

- It enables to obtain a segmentation adapted to the user requirement
- It is possible to interactively browse the tree in order to extract a cut "example" C_i

Introduction 00000	Related works	Methodology ○○○○○●○○○○	Experiments 00000	Conclusion
Segmentation appr	oach			
Learning o	of the cut			

Principle

To enable the reproduction of the cut example: \Rightarrow It is necessary to learn this cut by extracting the most relevant features

Learning algorithm

1g

- Find u coherent/homogeneous groups into the set of nodes of the cut example
- Extract u centroids modelled by their histograms $\{\mathcal{H}_i\}_{i=1}^u$ which summarize/characterize the cut example

Introduction 00000	Related works	Methodology ○○○○○●○○○	Experiments 00000	Conclusion
Segmentation appro	ach			
Reproduci	ng the cut			

Principle

To reproduce the cut example on the remaining data

Climbing algorithm

- For each tree to cut, the algorithm looks for a cut C_j, minimizing a scattering measure computed between the set of histograms of the *u* centroids {H_i}^u_{i=1} (which summarized the cut example) and the set of nodes of the current cut C_j
- The scattering measure $\zeta(C_j)$ associated to the cut C_j is defined as

$$\zeta(C_j) = \sum_{i=1}^{u} \frac{|\bigcup_{X \in C_j} X|}{|\bigcup_{X \in C_j} X|} \cdot d(\overline{\mathcal{H}_{i,j}}, \mathcal{H}_i)$$

• Does the cut C_i minimize the ζ function ?

• Does the cut C_i minimize the ζ function ?

• End: \hat{C}_i minimizes the ζ function

Introduction 00000	Related works	Methodology ○○○○○●○○○	Experiments 00000	Conclusion
Segmentation appr	roach			
Reproduc	ing the cut			

Introduction 00000	Related works	Methodology ○○○○○○●○○	Experiments 00000	Conclusion
Segmentation approach	ı			
Application				

To segment a whole image

- Find s sets of similar semantic area through the image
- Apply the methodology for each set of similar regions
- **③** Gather the *s* sub-partitions obtained

Introduction 00000	Related works	Methodology ○○○○○○○●○	Experiments 00000	Conclusion
Multiresolution clas	sification			
A multires	solution cluster	ring approach		

Ideas

- To **fuse the information** provided by the analysis of the regions of the image at the lower resolution with the clustering result of the image at the higher resolution
- To consider the spatial context of the objects of interest and their semantic relations through the different resolutions available

Principle

- To use a clustering algorithm to gather the segments extracted at a resolution r into c homogeneous sets (clusters)
- In order to do that, these segments are caracterized using their composition into the resolution r + 1

Introduction 00000	Related works	Methodology ○○○○○○○●○	Experiments 00000	Conclusion			
Multiresolution classification							
A multires	olution cluster	ring approach					

Methodology

Multiresolution region-based clustering for urban analysis [Kurtz et al., 2010]

Introduction 00000	Related works	Methodology ○○○○○○○●	Experiments 00000	Conclusion
Workflow				

Global methodology

Introduction 00000	Related works 00	Methodology 000000000	Experiments	Conclusion
Outline				

- 2 Related works
- Proposed methodology
- Experimental study

Introduction	Related works	Methodology	Experiments	Conclusion
Materials and meth	nodology			
Methodol	ogy			

Tools

The proposed top-down approach has been used to extract 3 levels of complex objects from urban scenes:

- urban districts
- 2 urban blocks
- urban objects

Level	Urban areas	Urban blocks	Urban objects
Scale	1:100 000–1:25 000	1:10 000	1:5 000
Objects of interest	 * High-density fabric * Low-density fabric * Industrial areas * Forest zones * Agricultural zones * Water surfaces * Bare soil 	 * Continuous urban blocks * Discontinuous urban blocks Individual urban blocks Collective urban blocks * Industrial urban blocks * Urban vegetation * Forest * Agricultural zones * Water surfaces * Roads 	* Building/roofs - Red tile roofs - Grey residential roofs - Ught commercial roofs * Vegetation - Non-photosynthetic veget. * Transportation areas - Streets - Parking lots * Water surfaces - Nivers - Natural water bodies * Shadows

Introduction 00000	Related works	Methodology 000000000	Experiments 0●000	Conclusion
Materials and meth	odology			
Data				

Three datasets

Each dataset is composed of:

- one MSR image, 1 pixel = 9.6 m \times 9.6 m, 4 spectral bands
- one HSR image, 1 pixel = 2.4 m \times 2.4 m, 4 spectral bands
- one VHSR image, 1 pixel = 60 cm \times 60 cm, panchromatic

Hautepierre dataset

Introduction 00000	Related works	Methodology 0000000000	Experiments ○○●○○	Conclusion
Validation protocol				
Validation	protocol			

Results evaluation

- At each step, the extracted result (a classification map) has been compared to a certified ground thruth map
- Computation of the Kappa and F-Measure indexes

Ground-thruth maps of the Hautepierre dataset

Introduction 00000	Related works	Methodology 0000000000	Experiments	Conclusion
Results				
Results				

Results for the Hautepierre dataset

MSR result

HSR result

VHSR result

Percentage of pixels correctly classified

- Kappa: (MSR 72%), (HSR 78%), (VHSR 76%)
- F-Measure: (MSR 56%), (HSR 69%), (VHSR 72%)

Introduction 00000	Related works	Methodology 0000000000	Experiments 00000	Conclusion
Outling				
Outline				

1 Introduction

- 2 Related works
- Proposed methodology
- Experimental study

Introduction 00000	Related works	Methodology 0000000000	Experiments 00000	Conclusion ●○
Contributions				
Contribut	ions			

Methodological contributions

- Extension of an approach based on **connected operators** to deal with **multiresolution data**
- Interactive segmentation approach based on BPTs, interactively defined by the user on a part of an image, and then automatically reproduced on the remaind of the data
- **Top-down methodology**: unsupervised classification and then segmentation of the obtained clusters

Applicative contributions

- Developement of a top-down methodology to extract complex and **multilevel objects** from multiresolution satellite images
- Application to the extraction of urban objects

Introduction 00000	Related works 00	Methodology 0000000000	Experiments 00000	Conclusion ○●
Perspectives				
Theoritical	and methodo	ological perspe	ectives	

Theoretical perspectives

- To introduce the knowledge of the expert in the segmentation and in the clustering processes
- To enable the correction of the borders of the objects extracted at the coarser resolutions (by using an ascendant climbing approach)

Methodological perspectives

- To try another hierarchical segmentation models
- Integration of thematical knowledges
- Application to other domains (Landslides monitoring)

Introduction 00000	Related works	Methodology 000000000	Experiments 00000	Conclusion

Thank you for your attention

Aksoy, S. and Akcay, H. G. (2005).

Multi-resolution segmentation and shape analysis for remote sensing image classification.

In International Conference on Recent Advances in Space Technologies, pages 599–604.

Baatz, M. and Schape, A. (2000).

Multiresolution segmentation: an optimization approach for high quality multi-scale image segmentation.

In Verlag, W., editor, <u>Angewandte Geographische</u> <u>Informations-Verarbeitung XII</u>, volume 58 of <u>Karlsruhe</u>, pages 12–23.

Barnsley, M. J. and Barr, S. L. (1997).

Distinguishing urban land-use categories in fine spatial resolution land-cover data using a graph-based, structural pattern recognition system.

Computers, Environment and Urban Systems, 21(3):209-225.

Goffe, R., Damiand, G., and Brun, L. (2010).

A causal extraction scheme in top-down pyramids for large images segmentation.

In International Workshop On Structural and Syntactic Pattern Recognition, volume 6218 of Lecture Notes in Computer Science, pages 264–274. Springer.

Serra, J. C. and Salembier, P. (1993). Connected operators and pyramids. In Dougherty, E. R., Gader, P. D., and Serra, J. C., editors, Image Algebra and Morphological Image Processing IV, volume 2030, pages 65–76. SPIE.

 Shi, J. and Malik, J. (2000).
 Normalized cuts and image segmentation.
 IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8):888–905.