Filtering and segmentation of 3D angiographic data: Advances based on mathematical morphology - Université de Reims Champagne-Ardenne Access content directly
Journal Articles Medical Image Analysis Year : 2013

Filtering and segmentation of 3D angiographic data: Advances based on mathematical morphology

Abstract

In the last 20 years, 3D angiographic imaging has proven its usefulness in the context of various clinical applications. However, angiographic images are generally difficult to analyse due to their size and the complexity of the data that they represent, as well as the fact that useful information is easily corrupted by noise and artifacts. Therefore, there is an ongoing necessity to provide tools facilitating their visualisation and analysis, while vessel segmentation from such images remains a challenging task. This article presents new vessel segmentation and filtering techniques, relying on recent advances in mathematical morphology. In particular, methodological results related to spatially variant mathematical morphology and connected filtering are stated, and included in an angiographic data processing framework. These filtering and segmentation methods are evaluated on real and synthetic 3D angiographic data.
Fichier principal
Vignette du fichier
HAL.pdf (1.77 Mo) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-01719012 , version 1 (27-02-2018)

Identifiers

Cite

Alice Dufour, Olena Tankyevych, Benoît Naegel, Hugues Talbot, Christian Ronse, et al.. Filtering and segmentation of 3D angiographic data: Advances based on mathematical morphology. Medical Image Analysis, 2013, 17 (2), pp.147-164. ⟨10.1016/j.media.2012.08.004⟩. ⟨hal-01719012⟩
7215 View
1117 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More