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ABSTRACT

Thin structure filtering is an important preprocessing task for

the analysis of 2D and 3D bio-medical images in various con-

texts. We propose a filtering framework that relies on three

approaches that are distinct and infrequently used together:

linear, non-linear and non-local. This strategy, based on re-

cent progress both in algorithmic/computational and method-

ological points of view, provides results that benefit from the

advantages of each approach, while reducing their respective

weaknesses. Its relevance is demonstrated by validations on

2D and 3D images.

Index Terms— Thin object filtering, mathematical mor-

phology, Hessian filtering, non-local means, angiography.

1. INTRODUCTION

Thin patterns corresponding to anatomical (e.g., vessels,

fibers, etc.) or artificial (e.g., catheters, etc.) structures are

present in various 2D and 3D bio-medical images. Due to

their geometric and size properties, such structures are hard

to process, in particular because of noise –hiding them among

non-relevant signal– and artifacts or partial volume effects,

that tend to decrease their signal. This justifies the importance

of thin structure filtering as a preprocessing task before the

analysis of medical images in various contexts.

Several categories of filtering approaches have been de-

veloped and applied for medical image (pre)processing, in

particular for thin structures analysis. Among them, three

kinds of filters deserve our attention: (i) non-local means

(NLM) filters; (ii) Gaussian derivative filters; and (iii)
spatially-variant mathematical morphology (SVMM) filters.

Non-local means filters [1] take advantage of the redun-

dancy of information within an image. They act like aver-

aging filters by considering weights according to the similar-

ity of small windows around the regions of interest. These

make them effective at removing noise while preserving local

This research work has received funding from the French Agence Na-

tionale de la Recherche (Grant Agreement ANR-2012-MONU-XXXX).

structures. However, their drawback is their high computa-

tional cost, induced by the conjugate effects of the kernel and

computation window sizes. NLM have been shown useful for

curvilinear structures [2].

First- and second-derivative filters have been intensively

considered for thin structures analysis. They generally com-

bine a Gaussian (linear) scale space approach, with a Hessian

matrix analysis [3]. A multi-scale framework can not only

characterize thin structures, but also obtain information re-

lated to size and orientation. Hessian-based filters have been

used in anisotropic diffusion schemes [4], to suppress noise

while enhancing thin structures.

Mathematical morphology operators are well suited for

thin structure enhancement since geometry can be directly

considered via appropriate structuring elements. These in-

clude segments and paths, combined over families. These op-

erators can then act as filters, for noise removal [5], but also

for reconnection [6, 7], even in the presence of heavy noise.

In order to deal with the combinatorial issues related to the

use of families of structuring elements, SVMM approaches

have been developed [8].

These three families of filtering approaches present com-

plementary strengths against one another’s weaknesses, in

terms of behaviour (denoising vs. reconnection), underlying

strategy (linear vs. non-linear; local vs. non-local) and com-

putational cost. In previous works [9] an hybrid approach

involving Hessian-based and SVMM filtering was developed,

mixing linear and non-linear approaches. This method essen-

tially acted as an extensive filter that could reconnect vessels

for segmentation purposes [10], but could not actually remove

noise.

An other improvement of the method is that reconnection

is only applied at the end of each segment, which makes it

more efficient and less susceptible to changing the profile of

the whole structure.

We now investigate the relevance of mixing local and non-

local approaches. To this end, we introduce a filtering frame-

work based on the three above approaches. Our purpose is

threefold: (i) filtering out the noise without altering the thin



structures, (ii) correcting the disconnections of such struc-

tures, while (iii) maintaining a low computational cost.

This article is organised as follows. Sec. 2 describes the

combined filtering strategy. Sec. 3 proposes experimental val-

idations on synthetic images. Sec. 4 shows results on real im-

ages, recall the contributions and outlines further works.

2. METHODS

In this section, we propose a combined filtering framework

devoted to curvilinear objects. It especially aims at filtering

out the noise and enhancing the smallest (low-intensity) ves-

sels, and correctly dealing with disconnections.

The method takes as input a 2D or 3D grey-level image

Iin : E → V . The process is divided into four main steps: 1)

an optimised NLM filter is applied to denoise the image while

preserving the contrast and edges. 2) The Hessian matrix is

then computed at different scales, resulting in a vesselness

image and leading to define a vector image corresponding to

the principal vessel directions. 3) This direction field is sam-

pled at the endpoints of disconnected objects and dilated in

order to produce dense and regular direction fields across dis-

connection gaps. 4) Spatially-variant morphological closing

operation performs the final reconnection step.

The method finally provides as output a grey-level filtered

image F(Iin) : E → V of the input image Iin, such that

Iin ≤ F(Iin) (i.e., Iin(x) ≤ F(Iin)(x) for any x ∈ E),

and enabling in particular to reconnect relevant high intensity

line-like structures of Iin.

2.1. Step 1: Fast Enhanced NL-means

In this step, the Fast Enhanced NLM filter is applied to Iin =
I to denoise the image while preserving the contrast and edges

and resulting in image If . The NLM algorithm [1] is based on

the natural redundancy of information in images. The restored

intensity of the pixel x, NLM(I)(x) is a weighted average of

all voxel intensities in image I:

If (x) = NLM(I)(x) =
∑

y∈E

w(x, y)I(y), (1)

where w(x, y) is the weight assigned to I(y) in the restora-

tion of pixel x. The weight quantifies the similarity of pix-

els x and y and is normalized such that w(x, y) ∈ [0, 1] and
∑

y∈E w(x, y) = 1. For each pixel y, the averaged Euclidean

Distance (ED) is computed between I(Ny) and I(Nx). This

classical ED is convolved with a Gaussian kernel, and is a

measure of the distortion between pixel neighbourhood inten-

sities. A drawback of this filter is its computing efficiency and

the complexity of parameter fitting. Here, our enhancements

improve both. We fit the weights automatically, inspired by

Coupé et al. [2]. Specifically, to make the filter independent

of neighbourhood size and to reduce the computational time,

we normalize the classical ED by the number of elements.

Then, the expression of the weights becomes:

w(x, y) =
1

Zx
exp

(

−

∑|Nx|
p=1 (I

(p)(Nx)− I(p)(Ny))
2

2βσ̂2|Nx|

)

,

(2)

where I(p)(Nx) is the value of the p’s element of neighbor-

hood Nx in I . Now only the adjusting constant β needs to

be manually tuned, and Zx is a normalization constant. In

the Gaussian noise case, β is theoretically close to 1 if the

estimation σ̂ of the standard deviation of the noise is accu-

rate. It is possible to reduce the computation time further by

ignoring the small weight taking into account the mean and

variance in the neighbourhood. To further improve efficiency,

we grouped neighbourhoods to compute the weight when x

and y are centred on two homogeneous blocks. Finally, our

implementation takes advantage of a hybrid platform: MPI

multi-threading on multi-cores machine with GPU accelera-

tion.

2.2. Step 2: vessel detection

In this step, the Hessian matrix of If is computed at differ-

ent scales, resulting into a vesselness image Ives and leading

to define a vector field image corresponding to the principal

vessel directions: Ix1
, Ix2

and Ix3
(the latter in 3D only).

Given a set of different scales S to characterize vessels

with different radii, the image If is first convolved with a

Gaussian kernel G(x, s) = (2πs2)−N/2. exp(− |x|2

2s2 ) at each

scale s ∈ S. At each point x ∈ E, its Hessian matrix Hs

is then computed. After the eigen analysis of Hs, the princi-

pal values are ordered (assuming bright objects on dark back-

ground): |λ1| ≤ |λ2| ≤ |λ3|. The associated basis vectors

(e1, e2, e3) define the local orientation of the characterized

shape in x. In particular, the vectors e1 are stored in three

images as the principal directions (along the principal axes):

Ix1
, Ix2

, Ix3
: E → [−1, 1].

Using the eigenvalues λ1, λ2, λ3, a vesselness measure

introduced by Frangi et al. [3] identifies vessels, appearing as

bright objects on a dark background, and for 3D images can

be expressed as :

ν(x, s) =

{

0 if λ2 > 0 or λ3 > 0,

(1− e
−R2

A
2α2 ) · e

−
R2

B
2β2 · (1− e

−S2

2γ2 ) otherwise,
(3)

with

RA =
|λ2|

|λ3|
, RB =

|λ1|
√

|λ2λ3|
, S =

√

√

√

√

3
∑

j=1

λ2
j , (4)

in which RA differentiates between planar and line-like ob-

jects, RB describes blobs, and S accounts for the intensity

difference between objects and background. Parameters α, β



and γ influence the sensitivity of the filter to corresponding

measures. The final vesselness result among the scales of S is

chosen for each point x as its maximal response νmax(x) =
maxs∈S{ν(x, s)}.

2.3. Step 3: directional field correction

In this step, from a thresholded version of Ives, the direction

images Ix1
, Ix2

, Ix3
, and a discrete skeleton, dense and reg-

ular vessel direction fields Idx1
, Idx2

and Idx3
are obtained for

object reconnections.

In order to propagate objects outside their own bound-

ary, we propose using a spatially-variant morphological clos-

ing [11], that requires a direction vector field extending be-

yond these boundaries. In our case, the directional informa-

tion is necessary only as far as the dilation can reach. How-

ever, simply diffusing the directions obtained by second-order

derivatives is not sufficient. Indeed, directions are typically

unreliable at the end of tubular object segments. To solve

this, we regularize the direction vector field. For this, the ves-

selness image Ives is thresholded so that most of the vessel-

like objects are preserved and results in an image Itves. Then,

we obtain a morphological skeleton of Itves, from which we

extract the endpoints [12]. By identifying the endpoints of

this skeleton [13], we ensure that we use the tubular objects

as markers for direction field propagation and further recon-

nection only between disconnected objects. We perform a

morphological dilation of this direction field (Ix1
, Ix2

, Ix3
)

guided by endpoints with a structuring element of fixed size.

This results into extended and regularized direction fields Idx1
,

Idx2
, Idx3

.

2.4. Step 4: vessel reconnection

In this last step, a SV morphological closing operation is per-

formed over the image If with the aim of reconnecting ves-

sels. First, a morphological dilation is applied with a struc-

turing function B : E → 2E , providing, for each x ∈ E, a

structuring element B(x) centred on x, of fixed length, and

oriented according to e1(x). The (discrete) direction e1 of

B(x) is estimated from the images of regularized direction

fields, Idx1
, Idx2

and Idx3
, by defining a discrete segment.

This dilation, resulting in the image δB(If ), is followed

by an efficient adjunct erosion εB [9]. Both computations

(δB and εB), then provide the final filtering result F(If ) =
ϕB(If ) with a low algorithmic cost. This efficient adjunction

ensures that our filter is indeed a morphological closing.

3. EXPERIMENTS

In order to evaluate its effectiveness, the proposed filter was

compared to the classical anisotropic diffusion filter [4]. To

assess the relevance of mixing local and non-local approches,

(a) (b)

(c) (d)

(e) (f)

Fig. 2. (a,b) 2D fundus angiography images. (c,d) 2D neu-

rite images. (e,f) 3D magnetic resonance angiography (iso-

surface). (a,c,e) Original images. (b,d,f) Filtered images.

it has also been compared with its components, namely, the

NLM filter [1], and the morpho-Hessian filter [9] (see Fig. 1).

We used the synthetic dataset proposed in [14] for thin

objects filtering validations. In addition to the disconnections

induced by the low diameter at the convergence of the three

branches, supplementary disconnections were introduced by

decreasing the signal to noise ratio in each branch (Fig. 1(a)).

Several noise levels have been tested, corresponding to the

expected SNR in MR, CT or US data, but also to explore the

limits of the filter in the worst cases, which do sometimes

happen in clinical applications (Fig. 1(b–e)).

First, one can remark that the proposed filter has an invari-

ant behaviour w.r.t. the SNR of the images. This leads to sat-

isfactory ROC curves, which are not degraded for high levels

of noise, by opposition to the morpho-Hessian and anisotropic



(a)

(b) σ = 10

(c) σ = 20

(d) σ = 40

(e) σ = 80

(f) σ = 10 (g) σ = 20

(h) σ = 40 (i) σ = 80

Fig. 1. (a) The phantom used for validations. (b–e) Slices of the associated images for various levels of noise (see text). (f–i)

ROC curves of thresholding operations performed on the original/filtered image with different levels of noise (see text). The

triangular dot on each curve indicates when a correct reconnection of the segmented structure has been obtained.

diffusion filters. This quality is shared with the NLM filter.

Nevertheless, if both filters present similar results from a

quantitative point of view, the one we propose is superior to

the NLM filter alone from a qualitative point of view. Indeed,

the reconnection point is always obtained closer to the (0, 1)
point of the ROC diagram. In other words, the structures that

are reconnected are both relevant and non-noisy ones. In con-

trast, by itself the NLM filter often reconnects either struc-

tures that are non-complete, or strongly noisy.

4. RESULTS AND CONCLUSION

The proposed filtering method was applied to several families

of 2D and 3D (bio)medical images, including 2D fundus an-

giography data, 2D neurite images and 3D angiography MR

images. Fig. 2 shows some sample results, that confirm the

experimental validations of Sec. 3. In particular, we observe

that some of the gaps have been successfully corrected with-

out introducing significant artifacts. As well, noise is reduced,

contrast is enhanced and thin structures are preserved.

Nevertheless, some other disconnections –namely those

presenting a large gap between two segments– may not be

corrected by this filter. To deal with this issue, the SVMM

part of the method could be improved by using path-based

structuring elements [15]. Moreover, in order to propose a

more complete family of useful filters for thin and tubular

structures, future works will consider not only extensive op-

erators, but also anti-extensive ones, that will aim to repair

erroneous connexions between segments.
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