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Abstract. Connectivity is the basis of several methodological concepts in math-
ematical morphology. In graph-based approaches, the notion of connectivity can
be derived from the notion of adjacency. In this preliminary work, we investi-
gate the effects of relaxing the symmetry property from adjacency. In particular,
we observe the consequences on the induced connected components, that are no
longer organised as partitions but as covers, and on the hierarchies that are ob-
tained from such components. These hierarchies can extend data structures such
as component-trees and partition-trees, and the associated filtering and segmen-
tation paradigms, leading to improved image processing tools.
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1 Introduction

Connectivity plays a crucial role in the definition of mathematical morphology. Intu-
itively, the notion of connectivity serves to decide whether a set is either in one piece,
or is split into several ones. This notion has been widely studied [2], from axiomatic
definitions [21] to variants such as constrained connectivity [24], second-generation
connectivity [15, 22, 7, 11], and hyperconnections [14].

Practically, connectivity in discrete image processing is often handled in graph-
based frameworks, via the notion of adjacency [16]. In this context, connectivity has
led to the development of data structures based on the partition of discrete spaces, and
further on partition hierarchies. Such hierarchies can rely on the image value space, e.g.,
in the case of component-trees [19, 8], partition-trees [18, 24], or hierarchical watershed
[4, 9, 10]. They can also derive from connectivity hierarchies, leading to partition-trees
based, e.g., on fuzzy connectedness [17, 1] or second-generation connectivity.

From an applicative point of view, all these concepts have been involved in the
development of connected operators [20, 23], devoted in particular to image processing
tasks such as filtering or segmentation. In this article, we present a preliminary study on
the effects of relaxing the symmetry hypothesis, actually required to define adjacency
relations (Secs. 2–3). We observe that partitions then become covers, which leads us
to define cover hierarchies instead of partition hierarchies. We prove however that such
hierarchies can still be handled as (enriched) tree structures (Sec. 4). This framework
generalises standard notions such as component-trees or partition-trees (Sec. 5), and
provides solutions for performing more accurate antiextensive filtering tasks (Sec. 6).

‹ The research leading to these results has received funding from the French Agence Nationale
de la Recherche (Grant Agreement ANR-2010-BLAN-0205).
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2 Background notions: From adjacency to partition hierarchies

We first recall basic definitions and properties related to the concept of adjacency and
some induced notions, namely connectedness, partitions and partition hierarchies.

2.1 Adjacency and connectedness

Let Ω be a nonempty finite set. Let é be an adjacency (i.e., irreflexive, symmetric,
binary) relation on Ω. (We recall that é is a subset of ΩˆΩ.) If x, y P Ω satisfy x é y
(and thus y é x), we say that x and y are adjacent.

Let X Ď Ω be a nonempty subset of Ω. Let ÕX be the equivalence relation on X
induced by the reflexive-transitive closure of the restriction éX of é to X. If x, y P X
satisfy x ÕX y, we say that x and y are connected (in X). In particular, the equivalence
classes of X associated to the relation ÕX are called the connected components of X,
and the set of these connected components is noted CÕrXs.

Remark 1 These definitions are directly linked to classical notions on graphs, con-
sidered for the topological modelling of digital images, as introduced, e.g., in [16]. In
particular, pΩ,éq and pX,éXq are irreflexive (non-directed) graphs.

2.2 Partition hierarchies

The notion of connected component, associated to (any subsets of) pX,éXq is important
in image analysis. Indeed, the partition CÕrXs associated to images defined on X, can
be considered for filtering and segmentation purpose, by considering approaches that
rely on partition hierarchies in the framework of connected operators [20, 23].

In this context, there exist two ways to refine pX,éXq, to build partition hierarchies.
The first way is to work on X, and to define subsets Y Ď X, i.e., to progressively
constrain the spatial part of pX,éXq. Practically, defining pY,éYq such that Y Ď X,
implies that éY “ péX X pY ˆ Yqq. The second way is to work on éX , and to define

(symmetric) subrelations
Ĳ

éX Ď éX , inducing connectedness relations
Ĳ

ÕX Ď ÕX , i.e.,
to progressively constrain the structural part of pX,éXq.

Remark 2 In the framework of graphs, pY,éYq is a subgraph of pX,éXq, and pX,
Ĳ

éXq

is a partial graph of pX,éXq.

In both cases, we have the following property.

Property 3 Let x P Y (resp. x P X). Let C “ Cx
ÕpYq P CÕrYs (resp. C “ Cx

Ĳ
Õ

pXq P

C Ĳ
Õ

rXs), and Cx
ÕpXq P CÕrXs be the unique connected components containing x. We

have
C Ď Cx

ÕpXq (1)

Moreover, for any K P CÕrXs, we have
`

K X C ‰ H
˘

ñ
`

K “ Cx
ÕpXq

˘

(2)
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By progressively refining either X into successive subsets, or éX into successive (sym-
metric) subrelations, we can then build partition hierarchies defined as trees4.

Property 4 Let pXiq
k
i“0 (resp. péiq

k
i“0) (k ě 0) be such that X0 “ X (resp. é0 “ éX)

and Xi`1 Ď Xi (resp. éi`1 Ď éi) for all i P rr0, k ´ 1ss. Let p
Ťk

i“0 CÕrXis,Ďq (resp.
p
Ťk

i“0 CÕi rXs,Ďq) be the partially ordered multiset5 where for all Kα P CÕrXαs (resp.
CÕα

rXs) and Kβ P CÕrXβs (resp. CÕβ
rXs) (α, β P rr0, kss), the order relation Ď extends

Ď as
`

Kβ Ď Kα
˘

ô

´

`

Kβ Ď Kα
˘

^
`

α ď βq
˘

¯

(3)

For any K,K1 P
Ťk

i“0 CÕrXis (resp.
Ťk

i“0 CÕi rXs), we then have
`

K X K1 ‰ H
˘

ñ
`

pK Ď K1q _ pK1 Ď Kq
˘

(4)

2.3 Partial and total partition hierarchies

Both ways to refine pX,éXq lead to partition hierarchies, but they differ with respect to
the nature of these partitions. Indeed the structural refinement leads to total partitions,
while the spatial refinement leads to partial partitions (as defined in [15]).

Property 5 We have, for all i P rr0, k ´ 1ss

ď

CÕrXi`1s Ď
ď

CÕrXis
ď

CÕi`1 rXs “
ď

CÕi rXs (5)

Remark 6 Typical examples of partial partition hierarchies are component-trees [19],
where the successive CÕrXis are defined by considering the binary images obtained by
thresholding a grey-level image I : X Ñ rr0, kss. Typical examples of total partition
hierarchies are (binary) partition-trees [18], where the successive CÕi rXs are defined
by progressively merging elementary parts of X, in a (multivalued) image I : X Ñ V.

3 Non-symmetry in adjacency: Semi-adjacency

In Sec. 2, a crucial hypothesis was the symmetry of the adjacency relation éX defined
on X. We now investigate the effects induced by the relaxation of this hypothesis.

3.1 Semi-adjacency

Adjacency is defined as a relation being both irreflexive and symmetric. By relaxing
the symmetry hypothesis, the obtained relation may (most of the time) no longer be an
adjacency. We then introduce a more general notion to handle that case.

4 Such trees are indeed forests, due to the non-necessary existence of a maximum (i.e., a unique
maximal element). For the sake of readibility, the term tree is used by abuse of notation.

5 It may happen that successive partitions contain some similar connected components.
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Definition 7 (Semi-adjacency) Let á be an irreflexive binary relation on Ω. Such a
relation is called a semi-adjacency on Ω. If x á y, we say that x is semi-adjacent to y.

We recall that, similarly to é, the relation á is still a subset of Ω ˆ Ω. However, by
opposition to é, we have px á yq œ py á xq.

3.2 Semi-connectedness

In the case of adjacency, the reflexive-transitive closure led to an equivalence relation
that characterised the notion of connectedness. We follow here the same approach.

Definition 8 (Semi-connectedness) Let X Ď Ω be a nonempty subset of Ω. We define
the semi-connectedness relation ÑX on X as the binary relation defined by the reflexive-
transitive closure of the restriction áX of á on X. If x, y P X satisfy x ÑX y, we say
that x is semi-connected to y (in X).

By opposition to ÕX , the relation ÑX is not an equivalence relation, in general. (Note
that a “semi-adjacency-based” notion of stream had also been considered in [3].)

Property 9 The relation ÑX is reflexive and transitive, but not necessarily symmetric.

It is however possible to derive an equivalence relation from ÑX by defining the strong
connectedness relation ýX on X by

`

x ýX y
˘

ô
`

px ÑX yq ^ py ÑX xq
˘

(6)

If x, y P X satisfy x ý y, we say that x and y are strongly connected (in X). This notion
of strong connectedness is classical the framework of (directed) graphs.

3.3 Semi-connected components

The notion of strong connectedness leads to equivalence classes of X, namely strongly
connected components. The set of these strongly connected components is notedCýrXs.
Similarly, we can define the components that gather elements that are semi-connected.

Definition 10 (Semi-connected components) Let x P X. The semi-connected compo-
nent of X of basepoint x is the subset of X defined by

Cx
ÑpXq “ ty P X | x ÑX yu (7)

The set of all the semi-connected components of X is noted CÑrXs.

By opposition to connected and strongly connected components, the semi-connected
components of X do not necessarily form a partition of X.

Property 11 CÑrXs is a cover of X, i.e., we have H R CÑrXs and X “
Ť

CÑrXs.

Indeed, it may happen that distinct semi-connected components have a nonempty inter-
section.
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3.4 Links between semi-connected and strongly connected components

As stated by Def. 10, a semi-connected component is generated by a specific element,
namely its basepoint. This basepoint is not necessarily unique: it may happen that
Cx

ÑpXq “ Cy
ÑpXq for x ‰ y. However, it is plain that such basepoints x and y are then

strongly connected. From this fact, we straightforwardly derive the following property.

Property 12 There exists an bijection between CýrXs and CÑrXs, expressed, for all
x, y P X, by

`

Cx
ÑpXq “ Cy

ÑpXq
˘

ô
`

Cx
ýpXq “ Cy

ýpXq
˘

(8)

Moreover, the partition CýrXs refines the cover CÑrXs.

Property 13 Let C P CÑrXs be a semi-connected component. There exists a nonempty
subset P Ď CýrXs of strongly connected components such that P is a partition of C.
In particular, P is defined as

P “ tCx
ýrXs | x P Cu (9)

From the very definitions of ÑX and ýX , we finally derive the following property, that
describes the structure of CÑrXs induced by Ď, with respect to CýrXs.

Property 14 Let C P CÑrXs and P Ď CýrXs be defined as above. Let Q Ď CÑrXs be
the subset of semi-connected components defined by

Q “ tCx
ÑrXs | Cx

ýrXs P Pu “ tCx
ÑrXs | x P Cu (10)

The Hasse diagram of the partially ordered set pQ,Ďq is a directed acyclic graph
(DAG), but not a tree in general. The maximum of pQ,Ďq is C, while its minimal el-
ements belong to P, and thus to CýrXs.

4 Semi-connected components hierarchies

In this section, we still suppose that X is equipped with a semi-adjacency áX , which
induces the semi-connectedness relation ÑX and the strong connectedness relation ýX .

4.1 Properties of semi-connected components hierarchies

Similarly to Sec. 2.2, we discuss here the effects of refining pX,áXq. Once again, this
refinement can be done in two ways: piq by defining pY,áYq such that Y Ď X and
áY “ áX XpY ˆ Yq (Figs. 1, 3), or piiq, be defining pX, Ĳ

áXq such that Ĳ
áX Ď áX .

Remark 15 As in Rem. 2, pY,áYq is a (directed) subgraph of pX,áXq, while pX, Ĳ
áXq

is a (directed) partial graph of pX,áXq.

However, under the current hypotheses, the results of Prop. 3 are no longer totally valid.
First, we have the following property that “extends” Eq. (1).
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Property 16 Let x P Y (resp. x P X). Let C “ Cx
ÑpYq P CÑrYs (resp. C “ Cx

Ĳ
Ñ

pXq P

C Ĳ
Ñ

rXs), and Cx
ÑpXq P CÑrXs be the semi-connected components of basepoint x. We

have
Cx

ÑpXq “ min
Ď

tK P CÑrXs | C Ď Ku (11)

Remark 17 As in Prop. 3, this property guarantees that there exists an inclusion re-
lation between the semi-connected components of same basepoint x between CÑrYs

(resp. C Ĳ
Ñ

rXs) and CÑrXs. However, contrarily to Prop. 3, it does not guarantee that
for any given x, Cx

ÑpXq is the only semi-connected component that satisfies this inclu-
sion relation. Nevertheless, it states that any other semi-connected component that has
the same property also includes Cx

ÑpXq.

Still by comparison to Prop. 3, the analogue of Eq. (2) is now no longer satisfied.

Property 18 With the same hypotheses as above, for any K P CÑrXs, we have
`

K X C ‰ H
˘

œ
`

K Ě Cx
ÑpXq

˘

(12)

As a corollary, Prop. 4, cannot be generalised to the case of semi-connected compo-
nents. Indeed, as stated by the following property, semi-connected components hier-
achies are not organised as trees, but as DAGs (Fig. 4(d)).

Property 19 Let pXiq
k
i“0 (resp. páiq

k
i“0) (k ě 0) be such that X0 “ X (resp. á0 “

áX) and Xi`1 Ď Xi (resp. ái`1 Ď ái) for all i P rr0, k ´ 1ss. Let us consider the
partially ordered multiset p

Ťk
i“0 CÑrXis,Ďq (resp. p

Ťk
i“0 CÑi rXs,Ďq) (with Ď defined

as in Eq. (3)). For any K,K1 P
Ťk

i“0 CÑrXis (resp.
Ťk

i“0 CÑi rXs), we have
`

K X K1 ‰ H
˘

œ
`

pK Ď K1q _ pK1 Ď Kq
˘

(13)

Nevertheless, the intersection implies (under certain hypotheses) the inclusion.

Property 20 Let x P Y (resp. x P X), and y P X. Let C “ Cx
ÑpYq P CÑrYs (resp.

C “ Cx
Ĳ

Ñ
pXq P C Ĳ

Ñ
rXs). Let Cy

ÑpXq P CÑrXs. We have

`

x P C X Cy
ÑpXq

˘

ñ
`

C Ď Cy
ÑpXq

˘

(14)

4.2 Properties of strongly connected components hierarchies

Unlike semi-connected components, strongly connected components are defined as
equivalence classes. Thus, they present common intrinsic properties with connected
components (Fig. 2). In particular, Props. 3 and 4 can be extended to their case. (Note
that C Ĳ

ý
rXs, CýrYs are defined the same way as C Ĳ

Õ
rXs, CÕrYs and C Ĳ

Ñ
rXs, CÑrYs.)

Property 21 Let x P Y (resp. x P X). Let C “ Cx
ýpYq P CýrYs (resp. C “ Cx

Ĳ
ý

pXq P

C Ĳ
ý

rXs) be the unique strongly connected component containing x. Then, there exists a
unique Cx

ýpXq P CýrXs that intersects (and actually includes) C.
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Property 22 Let pXiq
k
i“0 (resp. páiq

k
i“0) (k ě 0) be such that X0 “ X (resp. á0 “

áX) and Xi`1 Ď Xi (resp. ái`1 Ď ái) for all i P rr0, k ´ 1ss. Let us consider the
partially ordered multiset p

Ťk
i“0 CýrXis,Ďq (resp. p

Ťk
i“0 Cýi rXs,Ďq) (with Ď defined

as in Eq. (3)). For any two strongly connected components K,K1 of this set, we have
`

K X K1 ‰ H
˘

ñ
`

pK Ď K1q _ pK1 Ď Kq
˘

(15)

Then, by progressively refining X into successive subsets, or áX into successive subre-
lations, we can build strongly connected components hierarchies as trees (Fig. 4(a)).

4.3 Semi-connected components hierarchies as enriched strongly connected
components hierarchies

On one hand, it has been observed in Sec. 4.1, that the semi-connected components
hierarchies induced by progressively refining pX,áXq, have a structure which cannot
be trivially handled. Indeed, these (cover) hierarchies are DAGs, due to inclusions or
intersections (without inclusion) between different components at same levels.

On the other hand, it has been observed in Sec. 4.2, that the strongly connected com-
ponents hierarchies, induced by the very same process, have a much simpler structure.
Indeed, these (partition) hierarchies are trees.

Based on the bijection (Prop. 12) that exists between semi-connected and stron-
gly connected components, it is however possible to model the (DAG) hierarchy of
semi-connected components as a (tree) hierarchy of the associated strongly connected
components, enriched at each level by a “local” DAG that represents the inclusion re-
lation between the semi-connected components of this level. This model is formally
expressed by the following proposition.

Proposition 23 Let α, β P rr0, kss, with α ď β. Let x, y P X. Let Cx
ÑpXαq,C

y
ÑpXβq P

Ťk
i“0 CÑrXis (resp. Cx

Ñα
pXq,Cy

ÑβpXq P
Ťk

i“0 CÑi rXs). Then, we have

`

Cy
ýpXβq Ď Cx

ýpXαq
˘

ñ
`

Cy
ÑpXβq Ď Cx

ÑpXαq
˘

(resp.
`

Cy
ýβ

pXq Ď Cx
ýα

pXq
˘

ñ
`

Cy
Ñβ

pXq Ď Cx
Ñα

pXq
˘

) (16)

and
`

Cy
ÑpXβq Ď Cx

ÑpXαq
˘

ñ

´

`

Cy
ýpXβq Ď Cy

ýpXαq
˘

^
`

Cy
ÑpXαq Ď Cx

ÑpXαq
˘

¯

(resp.
`

Cy
Ñβ

pXq Ď Cx
Ñα

pXq
˘

ñ

´

`

Cy
ýβ

pXq Ď Cy
ýα

pXq
˘

^
`

Cy
Ñα

pXq Ď Cx
Ñα

pXq
˘

¯

)

(17)

Proof Let us suppose that Cy
ýpXβq Ď Cx

ýpXαq (resp. Cy
ýβ

pXq Ď Cx
ýα

pXq). Then, we
have y P Cx

ýpXαq (resp. y P Cx
ýα

pXq), and thus Cy
ýpXαq “ Cx

ýpXαq (resp. Cy
ýα

pXq “

Cx
ýα

pXq). From Eq. (8) (Prop. 12), we then have Cy
ÑpXαq “ Cx

ÑpXαq (resp. Cy
ÑαpXq “

Cx
Ñα

pXq). From the definition of Xα and Xβ (resp. áα and áβ) (Prop. 4), and the fact
that α ď β, we straightforwardly have Cy

ÑpXβq Ď Cy
ÑpXαq (resp. Cy

ÑβpXq Ď Cy
ÑαpXq),
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and then Cy
ÑpXβq Ď Cx

ÑpXαq (resp. Cy
ÑβpXq Ď Cx

Ñα
pXq). Eq. (16) then follows from

the definition of Ď, provided in Eq. (3) (Prop. 4).
Let us now suppose that Cy

ÑpXβq Ď Cx
ÑpXαq (resp. Cy

ÑβpXq Ď Cx
Ñα

pXq). From the
definition of Ď, we then have Cy

ÑpXβq Ď Cx
ÑpXαq (resp. Cy

ÑβpXq Ď Cx
Ñα

pXq). Let us
consider Cy

ÑpXαq (resp. Cy
ÑαpXq); this set exists since y P Cy

ÑpXβq Ď Cx
ÑpXαq Ď Xα

(resp. y P Cy
ÑβpXq Ď Cx

Ñα
pXq Ď X). From the very definition of semi-connectedness

(Def. 10), y P Cx
ÑpXαq (resp. y P Cx

Ñα
pXq) implies that Cy

ÑpXαq Ď Cx
ÑpXαq (resp.

Cy
ÑαpXq Ď Cx

Ñα
pXq), while Xβ Ď Xα (resp. áβ Ď áα) implies that Cy

ÑpXβq Ď Cy
ÑpXαq

(resp. Cy
ÑβpXq Ď Cy

ÑαpXq). Finally, we derive from Eq. (8) (Prop. 12) that Cy
ýpXβq Ď

Cy
ýpXαq (resp. Cy

ýβ
pXq Ď Cy

ýα
pXq), and Eq. (17) then follows. ■

Remark 24 Practically, this proposition proves that the standard relation Ď, that mod-
els the inclusion relation between the semi-connected components at distinct levels of a
hierarchy (Fig. 4(d)), can be conveniently handled by simultaneously using the inclusion
relation between the strongly connected components associated to the semi-connected
ones, and the inclusion relation between the semi-connected components of same level
in the hierarchy (Fig. 4(c)). This representation, which is formalised in Diagram (18),
has the two following virtues: piq it is information lossless, with respect to Ď; and piiq
it replaces the Hasse diagram of Ď, which is a complex DAG, by a tree structure that is
enriched by “local” simple DAGs at each level of the tree. Moreover, its complexity is
not excessive by comparison to the Hasse diagram of Ď.

Cx
ÑpXαq Cy

ÑpXαq Cy
ýpXαq

Cy
ÑpXβq Cy

ýpXβq

Cx
Ñα

pXq Cy
ÑαpXq Cy

ýα
pXq

Cy
ÑβpXq Cy

ýβ
pXq

................................................................................
Ď

.................................................................... ............ ................................................................................
„

.......

.......

.......

.......

.......

.......

.......

..............

............

Ď

.......................................................................................................................................................................................................................... ............ ......................................................................................................................................................................................................................................
„

.......

.......

.......

.......

.......

.......

.......

..............

............

Ď

................................................................................
Ď

.................................................................... ............ ................................................................................
„

.......

.......

.......

.......

.......

.......

.......

..............

............

Ď

.......................................................................................................................................................................................................................... ............ ......................................................................................................................................................................................................................................
„

.......

.......

.......

.......

.......

.......

.......

..............

............

Ď

(18)

5 Extending standard tree structures

The “enriched trees” defined above are compliant with standard partition hierarchies
when the considered semi-adjacency is indeed an adjacency.

Property 25 If áX is symmetric, we have CÑrXs “ CýrXs (“ CÔrXs by considering
áX as an adjacency relation). In such conditions, the Hasse diagram induced by Ď,
and the associated enriched tree are equal and both have a tree structure.

In a reverse way, we show how some standard (total and partial) partition hierarchies
can be generalised to handle semi-connected components hierarchies.

5.1 Partial partition hierarchies and component-trees

We consider the spatial way to refine pX,áXq. With this modus operandi, the semi-
connected components, present in successive subsets, have the same lower elements.

Property 26 Let K P CÑrXs X CÑrYs. Then we have tK1 P CÑrXs | K1 Ď Ku “

tK1 P CÑrYs | K1 Ď Ku.
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(a) pX0,áX0 q (b) pX1,áX1 q (c) pX2,áX2 q (d) pX3,áX3 q (e) pX4,áX4 q

Fig. 1. Subsets Xi of a set X, equipped with subrelations áXi of a semi-adjacency relation á, for
i “ 0 to 4, with Xi`1 Ď Xi for all i P rr0, 3ss, and áXi “ á X pXi ˆ Xiq for all i P rr0, 4ss.

A

(a) CýrX0s

B C

D

E

(b) CýrX1s

B’ C’

G

F

H

(c) CýrX2s

B’’ C’’

G’

(d) CýrX3s

C’’’

L M

K

JI

(e) CýrX4s

Fig. 2. The strongly connected components of Xi. Each one is labeled by a capital letter: A, B, C,
etc. When a component Z appears in several CýrXis, it is successively labeled as Z, Z’, Z”, etc.

A

(a) CÑrX0s

B CDB

DB EDB

(b) CÑrX1s

B’

GB’

FGB’

C’FGB’

HGB’

(c) CÑrX2s

B’’

G’B’’

C’’B’’

(d) CÑrX3s

JIJ C’’’J

MK

LMK

K

(e) CÑrX4s

Fig. 3. The semi-connected components of Xi. Each one is labeled by the capital letters corre-
sponding to the strongly connected components that form its partition: A, CDB, C’FGB’, etc.
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(b) pCÑrXis,Ďq4
i“0

C D E

C’ F H

C’’

B

B’

B’’

C’’’ J K

A

L M

G

G’

I

(c) “(a) Y (b)”

C D E

C’ F H

C’’ B’’

C’’’ J K

A

L M

G’

I

(d) p
Ť4

i“0 CÑrXis,Ďq

Fig. 4. (a) Hasse diagram for Ď of all the CýrXis. (b) Hasse diagrams for Ď of each CÑrXis. (c)
Proposed structure (enriched tree), i.e., the fusion of (a) and (b). (d) Hasse diagram for Ď (DAG)
of all the CÑrXis, modeled by (c). The dashed arrows in (c) are “extra” links with respect to (d).
The blue and magenta nodes are elements that may be collapsed in (c) without loss of information.
(b–d) For the sake of readability, the nodes are labeled by their first letter, with respect to Fig. 3.
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Two examples of such semi-connected components are provided in Fig. 4(c). These
(sets of) components, namely B, B’ and B” (resp. GB’ and G’B”), can be unified into
a single semi-connected component B” (resp. G’B”), as it is already trivially done in
Fig. 4(d) (where B, B’, B” and GB’ and G’B” would form two chains, respectively,
otherwise).

Remark 27 Prop. 26 implies that the partially ordered multiset p
Ťk

i“0 CÑrXis,Ďq can
be handled as a partially ordered set. However, it is not sufficient to claim that there
exists an equivalence between the set

Ťk
i“0 CÑrXis of all the semi-connected compo-

nents, and the set
Ťk

i“0 CýrXis of all the strongly connected components. In particular,
the semi-connected components CDB, C’FGB’, C”B” and C’”J of Fig. 4 straightfor-
wardly provide a counter-example to that claim.

From this remark, we can derive that it is possible to extend the notion of component-
tree [19, 8], but only up to an equivalence between equal strongly connected compo-
nents that provide basepoints for semi-connected components.

5.2 Total partition hierarchies and hierarchical connectivities

We now consider the structural way to refine pX,áXq.

Remark 28 By following this modus operandi, the semi-connected components that
are present in successive subsets do not necessarily have the same lower elements. This
difference with Rem. 27 derives from the fact that the semi-connected components of
CÑi rXs are composed of elements of X, but are actually defined with respect to Ñi.

Practically it is possible to extend (still up to an equivalence) some notions of partition-
tree, e.g., those modeling hierarchical connectivities in fuzzy paradigms [17, 1].

6 Application example

Basically, the enriched tree, that models a semi-connected components hierarchy, can
be built in two steps. The first step consists of computing the hierarchy of the strongly
connected components. This can be done by considering an approach based on Tar-
jan’s algorithm. The second step consists of computing, at each level of the tree, the
links derived from the inclusion between the semi-connected components. They actu-
ally correspond to the remaining semi-adjacency links between the strongly connected
components that model the semi-connected ones. A complete algorithmic discussion is
beyond the scope of this article, and will be developed in details in further works.

We finally propose a (simple) example, which purpose is to illustrate the relevance
of the notion of semi-connectedness, and its methodological usefulness. Let us consider
a digital grey-level image I : X Ñ V (Fig. 5(a)), that visualises neurites. A Hessian
filter can be applied on I, to classify the pixels as linear (L, in green), blobs (B, in red),
and others (O, in blue) (Fig. 5(b)). From this classification, the standard 4-adjacency
relation defined on X Ď Z2 can be restricted to a semi-adjacency relation áX defined
by x áX y iff x and y belong to the same class, or x P O or B while y P L.
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(a) Image I : X Ñ V (b) Classification tL, B,Ou (c) Filtered image

Fig. 5. Neurite filtering from semi-connected components hierarchy (see text).

From the semi-connected components hierarchy of I, with respect to áX (which
is an extension of a component-tree), we can filter the semi-connected components
presenting a linear shape. For instance, in Fig. 5(c), two of the three linear patterns have
been preserved, while a third one has been removed due to its orientation.

Of course, this example is of limited interest, since the crisp classification of X
into three classes strongly constrains the space of the possible results. A more satis-
factory solution may be to perform a fuzzy classification, that would lead to define
semi-adjacencies not only with respect to the level sets of I, but also to the level sets
of the fuzzy classification scores. Such perspective works mat be relevantly considered
in the framework of hypertrees [12]. Beyond these considerations, one may notice that
with a standard component-tree, the three linear patterns would have been merged in
the same connected component, forbiding piq linearity characterisation, and piiq split-
ting of the two linear patterns of highest intensity. The proposed example, despite its
simplicity, then clearly illustrates the potential usefulness of semi-connected filtering.

7 Conclusion

This work provides first results which demonstrate that cover hierarchies derived from
semi-adjacency piq can be handled via (enriched) tree structures; piiq provide a way
to generalise classical structures such as component-trees and partition-trees; and piiiq
may be involved in image processing tasks, in the framework of connected operators.

From a theoretical point of view, the links that may exist between such hierarchies
and those induced by hyperconnections [14] could be explored. The relationships with
other non-tree hierarchies [13] could also be investigated. More generally, the notion
of semi-connection could be axiomatically formalised, beyond the only framework of
graphs, similarly to the proposal of Serra [21] for connections.

From a methodological point of view, the extension of segmentation paradigms
based on optimal tree-cuts [6, 23] could be considered, with challenges related to algo-
rithmic complexities. New operators could also be designed to provide “disconnection”
filters, that may be seen as dual operators with respect to reconnection filters [5].
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