Supervised Evaluation of the Quality of Binary Partition Trees based on Uncertain Semantic Ground-Truth for Image Segmentation Purpose

Jimmy Francky Randrianasoa¹, Camille Kurtz², Pierre Gançarski³, Éric Desjardin¹, Nicolas Passat¹

¹ Université de Reims Champagne-Ardenne, CReSTIC, France ² Université Paris-Descartes (Sorbonne Paris Cité), LiPAdE, France ³ Université de Strasbourg, CNRS, ICube, France

Binary Partition Tree (BPT)
Hierarchical representation of an image based on a metric / feature choice

Problemsatics
Is the BPT "good"?

How to evaluate?

How to chose a good metric / feature to build a BPT?

1-GT Map Choice
User

Problem of Uncertain borders

Image

Semantic labels

Built area

Forest area

Herbeceous area

Shadow

GT map

2- Node / Segment Matching
Comparing a node N and a GT segment S

Similarity metric \(\Lambda(S, N) \)

Examples of the function \(\Lambda \)

Jaccard: \(J(N, S) = \frac{\text{Built area}(N) \cap \text{Built area}(S)}{\text{Built area}(N) \cup \text{Built area}(S)} \)

Dice: \(D(N, S) = \frac{2 \text{Built area}(N) \cap \text{Built area}(S)}{\text{Built area}(N) + \text{Built area}(S)} \)

Distance function

Membership function

Uncertainty model

\(TP(N, S) = \sum_{x \in S} \mu_{\text{Built area}}(x) \text{dx} \)

\(FP(N, S) = \sum_{x \notin S} (1 - \mu_{\text{Built area}}(x)) \text{dx} \)

\(TP(N, S) = \sum_{x \in S} (1 - \mu_{\text{Built area}}(x)) \text{dx} \)

\(FP(N, S) = \sum_{x \notin S} \mu_{\text{Built area}}(x) \text{dx} \)

\(\mu_{\text{Built area}}(x) = \frac{\text{Built area}(x)}{\text{Built area}(S)} \)

3- Finding Matching Nodes

Nodes matching in the BPT

GT segments

Spatial constraints

Vertical selection

Quantitative heuristics

Horizontal selection

4- Global Quality Score

For each \(S_i \)

Best matching node

Average global score

For the GT map composed of \(S \)

Best similarity score

Weighted global score

with \(w_i = 1 \), \(\sum_{i \in S} w_i = 1 \), and \(w_i \geq 0 \) where \(S \) is the label set and \(C \) is the different semantic classes of GT segments

Experiments and Results

<table>
<thead>
<tr>
<th>Image</th>
<th>GT</th>
<th>Std</th>
<th>NDVI</th>
<th>NDWI</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Index</th>
<th>Std</th>
<th>NDVI</th>
<th>NDWI</th>
<th>N/S</th>
<th>Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D)</td>
<td>0.670</td>
<td>0.523</td>
<td>0.516</td>
<td>51/51</td>
<td>450</td>
</tr>
<tr>
<td>(J')</td>
<td>0.531</td>
<td>0.389</td>
<td>0.399</td>
<td>51/51</td>
<td>484</td>
</tr>
</tbody>
</table>

Global quality scores of \(BPT_{\text{std}}, BPT_{\text{ndvi}} \) and \(BPT_{\text{ndwi}} \) from a VHRS image (1000x1000 pixels). \(N/S \): number of BPT nodes retrieved according to the number of reference segments.

Keywords

- Binary Partition Tree (BPT)
- Supervised evaluation
- Uncertainty
- Semantics
- Segmentation
- Mathematical morphology
- Remote sensing

This research was partially funded by the French Agence Nationale de la Recherche (Grant Agreement ANR-12-MONU-0001 ANR)