J. Long, E. Shelhamer, and T. Darrell, Fully convolutional networks for semantic segmentation, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.3431-3440, 2015.
DOI : 10.1109/CVPR.2015.7298965

K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition, 1409.

Y. Xu, T. Géraud, and I. Bloch, Extra materials for this paper, 2017.

F. Shi, Y. Fan, S. Tang, J. H. Gilmore, W. Lin et al., Neonatal brain image segmentation in longitudinal MRI studies, NeuroImage, vol.49, issue.1, pp.391-400, 2010.
DOI : 10.1016/j.neuroimage.2009.07.066

URL : http://europepmc.org/articles/pmc2764995?pdf=render

M. J. Cardoso, AdaPT: An adaptive preterm segmentation algorithm for neonatal brain MRI, NeuroImage, vol.65, pp.97-108, 2013.
DOI : 10.1016/j.neuroimage.2012.08.009

G. Sanroma, Building an Ensemble of Complementary Segmentation Methods by Exploiting Probabilistic Estimates, Intl. Work. on Machine Learning in Medical Imaging, pp.27-35, 2016.
DOI : 10.1109/TPAMI.2012.143

L. Gui, R. Lisowski, T. Faundez, P. S. Hüppi, F. Lazeyras et al., Morphology-driven automatic segmentation of MR images of the neonatal brain, Medical Image Analysis, vol.16, issue.8, pp.1565-1579, 2012.
DOI : 10.1016/j.media.2012.07.006

P. Moeskops, Evaluation of an automatic brain segmentation method developed for neonates on adult MR brain images, Proc. of SPIE Medical Imaging, p.941315, 2015.

L. Wang, Y. Gao, F. Shi, G. Li, J. H. Gilmore et al., LINKS: Learning-based multi-source IntegratioN frameworK for Segmentation of infant brain images, NeuroImage, vol.108, pp.160-172, 2015.
DOI : 10.1016/j.neuroimage.2014.12.042

B. Morel, Y. Xu, A. Virzi, T. Géraud, C. Adamsbaum et al., A challenging issue: Detection of white matter hyperintensities in neonatal brain MRI, 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp.93-96, 2016.
DOI : 10.1109/EMBC.2016.7590648

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proc. of the IEEE, pp.2278-2324, 1998.
DOI : 10.1109/5.726791

URL : http://www.cs.berkeley.edu/~daf/appsem/Handwriting/papers/00726791.pdf

W. Zhang, Deep convolutional neural networks for multi-modality isointense infant brain image segmentation, NeuroImage, vol.108, pp.214-224, 2015.
DOI : 10.1016/j.neuroimage.2014.12.061

URL : http://europepmc.org/articles/pmc4323729?pdf=render

M. Lai, Deep learning for medical image segmentation, 2015.

P. Moeskops, Automatic Segmentation of MR Brain Images With a Convolutional Neural Network, IEEE Transactions on Medical Imaging, vol.35, issue.5, pp.1252-1261, 2016.
DOI : 10.1109/TMI.2016.2548501

D. Nie, L. Wang, Y. Gao, and D. Sken, Fully convolutional networks for multi-modality isointense infant brain image segmentation, 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp.1342-1345, 2016.
DOI : 10.1109/ISBI.2016.7493515

URL : http://europepmc.org/articles/pmc5031138?pdf=render

H. Chen, Q. Dou, L. Yu, and P. Heng, VoxResNet: Deep voxelwise residual networks for volumetric brain segmentation, 2016.
DOI : 10.1016/j.neuroimage.2017.04.041

K. He, X. Zhang, S. Ren, and J. Sun, Deep Residual Learning for Image Recognition, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.770-778, 2016.
DOI : 10.1109/CVPR.2016.90

URL : http://arxiv.org/pdf/1512.03385

C. N. Devi, A. Chandrasekharan, V. Sundararaman, and Z. C. , Neonatal brain MRI segmentation: A review, Computers in Biology and Medicine, vol.64, pp.163-178, 2015.
DOI : 10.1016/j.compbiomed.2015.06.016

I. Despotovi´cdespotovi´c, B. Goossens, and W. Philips, MRI segmentation of the human brain: Challenges, methods, and applications, Computational and Mathematical Methods in Medicine, vol.2015, 2015.

H. Greenspan, B. Van-ginneken, and R. M. Summers, Guest Editorial Deep Learning in Medical Imaging: Overview and Future Promise of an Exciting New Technique, IEEE Transactions on Medical Imaging, vol.35, issue.5, pp.1153-1158, 2016.
DOI : 10.1109/TMI.2016.2553401

K. Fritscher, Deep Neural Networks for Fast Segmentation of 3D Medical Images, Proc. of MICCAI, pp.158-165, 2016.
DOI : 10.1109/ICCV.2015.123

A. Prasoon, K. Petersen, C. Igel, F. Lauze, E. Dam et al., Deep Feature Learning for Knee Cartilage Segmentation Using a Triplanar Convolutional Neural Network, Proc. of MICCAI, pp.246-253, 2013.
DOI : 10.1007/978-3-642-40763-5_31

H. R. Roth, A New 2.5D Representation for Lymph Node Detection Using Random Sets of Deep Convolutional Neural Network Observations, Proc. of MICCAI, pp.520-527, 2014.
DOI : 10.1007/978-3-319-10404-1_65

URL : https://hal.archives-ouvertes.fr/hal-01669719

H. Shin, Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning, IEEE Transactions on Medical Imaging, vol.35, issue.5, pp.1285-1298, 2016.
DOI : 10.1109/TMI.2016.2528162

URL : http://arxiv.org/pdf/1602.03409

Y. Bar, Chest pathology detection using deep learning with non-medical training, 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), pp.294-297, 2015.
DOI : 10.1109/ISBI.2015.7163871

J. Donahue, DeCAF: A deep convolutional activation feature for generic visual recognition, ICML, pp.647-655, 2014.

K. Maninis, Deep Retinal Image Understanding, Proc. of MICCAI, pp.140-148, 2016.
DOI : 10.1007/978-3-319-24888-2_17

URL : http://arxiv.org/pdf/1609.01103

I. I?gum, Evaluation of automatic neonatal brain segmentation algorithms: The NeoBrainS12 challenge, Medical Image Analysis, vol.20, issue.1, pp.135-151, 2015.
DOI : 10.1016/j.media.2014.11.001

A. M. Mendrik, MRBrainS Challenge: Online Evaluation Framework for Brain Image Segmentation in 3T MRI Scans, Computational Intelligence and Neuroscience, vol.20, issue.1, pp.10-1155, 2015.
DOI : 10.1016/j.neuroimage.2014.12.042

D. P. Huttenlocher, G. A. Klanderman, and W. J. Rucklidge, Comparing images using the Hausdorff distance, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.15, issue.9, pp.850-863, 1993.
DOI : 10.1109/34.232073