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Abstract—This paper deals with the non-quadratic robust
D-stabilization of uncertain Takagi-Sugeno (T-S) fuzzy sys-
tems. By considering the D-stability concept, Linear Matrix
Linearity (LMI) conditions are proposed for the design of
non Parallel-Distributed-Compensation (non-PDC) controllers
via non-quadratic Fuzzy Lyapunov Functions (FLF). These
conditions allow local D-stabilization. Thus, a simple way is
considered to estimate the domain of attraction (DA) of the
designed closed-loop dynamics. The proposed result is illustrated
through a numerical example.

I. INTRODUCTION

During the last three decades, the use of so-called ”multi-
model” approaches for controlling smooth nonlinear systems
develops exponentially. Takagi-Sugeno (T-S) fuzzy model are
made of sets of linear models blended together by convex
nonlinear membership functions [22]. Among the most widely
used methods, they are mainly considered since they can
exactly represent a nonlinear system in a compact set of
its state space by using, for example, sector nonlinearity
transformations [25].

By using the direct Lyapunov method, Linear Matrix In-
equality (LMI) conditions can be obtained for the stability
analysis and the stabilization of T-S models (see e.g. [4, 28, 23,
14, 19, 3]). First conditions were obtained through common
Quadratic Lyapunov Functions (QLF) [25, 28], which require
to find common Lyapunov matrix. The use of QLF leads
to conservative conditions [21]. To reduce the conservatism,
the design of non-PDC controllers have been proposed in
the non-quadratic framework via Fuzzy Lyapunov Functions
(FLF) [15, 23, 11, 24]. In this context, the time derivatives
of the membership functions appear in the obtained stability
conditions. Therefore, these conditions are local and some ap-
proaches have been proposed to estimate domain of attractions
[9, 10, 17].

This paper is concerned with the prescription of transient
response performances. This can be achieved by considering
the D-stability concept, which was first proposed for uncertain
linear systems [8]. This consists in constraining the migra-
tion of the designed closed-loop eigenvalues to belong in a
prescribed LMI region. This concept has been transposed to
T-S fuzzy model-based control in the quadratic framework
(see e.g. [16, 12, 13, 20, 26, 1, 6, 7]), then recently in
the non-quadratic framework for nominal T-S models without
considering domain of attraction estimations [5]. Hence, our

goal in this paper is to propose local non-quadratic LMI
conditions for the robust D-stabilization of uncertain T-S
models, with the estimation of their domain of attractions.

This paper is organized as follow. After presenting some
useful preliminaries, one derives robust non-quadratic con-
ditions for uncertain T-S closed-loop system including D-
stability constraints. In this context, a simple way, inspired
by [17], is considered to estimate the DA . Finally, the
effectiveness of the proposed results is illustrated through a
numerical example.

II. PRELIMINARIES

Let us consider an uncertain nonlinear system given by:

ẋ(t) = (A(x(t)) + ∆A(x(t)))x(t)
+ (B(x(t)) + ∆B(x(t))u(t))

(1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the
input vector, A(x(t)) ∈ Rn×n is the nominal state matrix,
B(x(t)) ∈ Rn×m is the nominal input matrix, ∆A(x(t)) ∈
Rn×n and ∆B(x(t)) ∈ Rn×m are Lesbesgue measurable
bounded uncertain matrices.

From usual polytopic transformations such like the sector
nonlinearity approach [25], one can define the following
compact set of the state space:

Ω :=

x(t) ∈ Rn

∣∣∣∣∣∣∣∣
A(x(t)) =

∑r
i=1 hi(z(t))Ai,

B(x(t)) =
∑r
i=1 hi(z(t))Bi,

∆A(x(t)) =
∑r
i=1 hi(z(t))∆Ai,

∆B(x(t)) =
∑r
i=1 hi(z(t))∆Bi.


(2)

where the following uncertain T-S model match exactly (1):

ẋ(t) =

r∑
i=1

hi(z(t))(Ãi(t)x(t) + B̃i(t)u(t)) (3)

with r the number of vertices, z(t) ∈ Rp the vector of
premises which is assumed to depend only on the state
variables, hi(z(t)) ∈ [0, 1] convex membership which satisfy
r∑
i=1

hi(z(t)) = 1, and:

Ãi(t) = Ai + ∆Ai(t) ∈ Rn×n (4)

B̃i(t) = Bi + ∆Bi(t) ∈ Rn×m (5)



where Ai and Bi are real constant matrices defining the
ith nominal vertex, ∆Ai(t) and ∆Bi(t) are bounded matrix
uncertainties, which can be rewritten as follow [30]:

∆Ai(t) = Eai δ
a(t)Lai (6)

and
∆Bi(t) = Ebi δ

b(t)Lbi (7)

where Eai , Ebi , Lai , Lbi are real constant matrices with appro-
priate dimensions and δa(t) and δb(t) are uncertain matrices
which verify the bounded conditions:

(δa)
T

(t)δa(t) 6 I (8)

and (
δb
)T

(t)δb(t) 6 I (9)

In order to provide relaxed controller design from a Fuzzy
Lyapunov Function, let us consider the non-PDC control law
given by [15, 11, 23]:

u(t) =

r∑
i=1

hi(z(t))Fi

 r∑
j=1

hj(z(t))Pj

−1 x(t) (10)

where Fi ∈ Rm×n and Pj ∈ Rn×n are constant gain matrices
to be synthesized. Note that P invertible is granted as it must
be positive definite.

Notations: In the sequel, the time t will be omitted in
mathematical expressions when there is no ambiguity. An
asterisk (∗) denotes a transpose quantity in a matrix and, for
any real square matrices R, H(R) = R+RT . Consider a set
of real matrices Mi and Nij , for all (i, j) ∈ {1, ..., r}2 , one

denotes Mz =
r∑
i=1

hi(z)Mi, Nzz =
r∑
i=1

r∑
j=1

hi(z)hj(z)Nij

and P−1z =

(
r∑
j=1

hj(z(t))Pj

)−1
.

From (3) and (10), the closed-loop dynamics may be
expressed as:

ẋ = G̃zzx (11)

where G̃zz = Gzz + ∆Gzz , Gzz = Az + BzFzP
−1
z and

∆Gzz = ∆Az + ∆BzFzP
−1
z .

The aim of this work is to propose new LMI based con-
ditions allowing to design a robust non-quadratic non-PDC
control law (10) such that the closed-loop dynamics (11) is
D−stable whatever δa(t) and δb(t) are, with respect to (8)
and (9). This will be achieved thanks to the following lemmas
and definitions.

Lemma 1. [29]: For any real matrices X , Y and T = TT > 0
with appropriate dimensions, the following inequality holds:

H(XTY ) < XTTX + Y TT−1Y (12)

Lemma 2. [27]: Let Γij , (i, j) ∈ {1, ..., r}2, be matrices
of appropriate dimensions. Γhh < 0 is satisfied if both the
following conditions hold:

Γii < 0,∀i ∈ {1, ..., r} (13)
2

r − 1
Γii + Γij + Γji < 0,∀(i, j) ∈ {1, ..., r}2 /i 6= j (14)

Lemma 1 is dedicated to cope with uncertainties and lemma
2 is considered for conservatism reduction, since it constitutes
a good compromise between complexity and conservatism
improvement (see e.g. [21]). Moreover, to introduce the D-
stability concepts [8], the following definitions are considered.

Definition 1. [8]. A subset D of the complex plan is called
an LMI region if it is defined by the matrices L = LT ∈ Rd×d
and M ∈ Rd×d such that:

D = {λ ∈ C : L+ λM + λ̄MT < 0} (15)

where d is called the order of the LMI region and λ̄ denotes
the complex conjugate of λ.

Definition 2. [20] Given an LMI region defined by (15), a
nonlinear system ẋ = f(x)x is said to be D-stable if there
exists a Lyapunov function V (x(t)) satisfying 1

2
V̇ (x(t))
V (x(t)) ∈ D,

i.e.:

L⊗ V (x(t)) +M ⊗ 1

2
V̇ (x(t)) +MT ⊗ 1

2
V̇ (x(t)) < 0 (16)

where ⊗ denotes the Kronecker product.

With respect to the considered control objectives, several
LMI regions can be designed through the matrices L and M
(see e.g. [8, 2]). In this paper, the one considered, which is
the most commonly used, is presented in Appendix.

III. MAIN RESULTS

The following theorem summarizes the main result of this
paper.

Theorem 1. Assume that, ∀k ∈ {1, ..., r}, ∃φk 6= +∞
such that |ḣk(z)| 6 φk. Let L and M be two prescribed
matrices defining a convenient LMI region (see definition 1 and
Appendix for more details on a specific region). The closed-
loop system (11) is locally D-stable, i.e the T-S uncertain
model (3) is locally D-stabilized by the non-PDC control law
(10), if there exist the matrices P = PT � 0, Fj and the
scalars τai and τ bi , with (i, j) ∈ {1, ..., r}2, such that the
following conditions are verified:

Λ̃ii < 0, ∀i ∈ {1, ..., r}, (17a)
2

r − 1
Λ̃ii + Λ̃ij + Λ̃ji < 0, ∀(i, j) ∈ {1, ..., r}2/i 6= j

(17b)

Ξiik > 0, ∀(i, k) ∈ {1, ..., r}2, (18a)
2

r − 1
Ξiik + Ξijk + Ξjik > 0, ∀(i, j, k) ∈ {1, ..., r}3/i 6= j

(18b)



where Λ̃ij is given in eq. (21) below and Ξijk = Pk +Rij .
In that case, an estimate of the designed closed-loop system
domain of attraction is obtained by maximizing c such that:

DA∗φ := {x(0) ∈ Rn |∃c̄ = max c, Λ(c̄) ⊆ Φφ } , (19)

that is to say, by finding the largest equipotential V (x) = c̄
included in:

Φφ = ∩rk=1

{
x ∈ Rn

∣∣∣ |ḣk(z)| 6 φk

}
∩ Ω (20)

Proof. Let us consider the FLF given by:

V (x) = xTP−1z x (22)

with Pz > 0.
From (22) and definition 2, the closed-loop system (11) is
D-stable if:

L⊗ xTP−1z x+H
(
M ⊗ xT

(
P−1z G̃zz +

1

2
Ṗ−1z

)
x

)
< 0

(23)
Thanks to the properties of the Kronecker product, one can
rewrite (23) as:

ψT
(
L⊗ P−1z +H

(
M ⊗

(
P−1z G̃zz +

1

2
Ṗ−1z

)))
ψ < 0

(24)
with ψ = I ⊗ x.
Thus, (24) is verified ∀x if:

L⊗ P−1z +H
(
M ⊗

(
P−1z G̃zz +

1

2
Ṗ−1z

))
< 0 (25)

Multiplying left and right by (I ⊗ P ) and since
PzṖ

−1
z Pz = −Ṗz , the inequality (25) is equivalent to:

L⊗ Pz +H
(
M ⊗

(
G̃zzPz −

1

2
Ṗz

))
< 0 (26)

Let us introduce the null term:

H
(
MMT ⊗Dzz −MMT ⊗Dzz

)
= 0 (27)

By adding (27) to (26) and from the Kronecker product
properties, one obtains:

L⊗ Pz +H
(
M ⊗ G̃zzPz

)
+H

(
(M ⊗ I)

(
MT ⊗Dzz − I ⊗ 1

2 Ṗz

))
− (M ⊗ I)

(
I ⊗

(
Dzz +DT

zz

)) (
MT ⊗ I

)
< 0

(28)

Then, let us rewrite (28) as:

γT

[
L⊗ Pz +H

(
M ⊗ G̃zzPz

)
(∗)

MT ⊗Dzz − I ⊗ 1
2 Ṗz I ⊗H (Dzz)

]
γ < 0

(29)

with γ =

[
I

MT ⊗ I

]
.

Thus, ∀M , the inequality (29) is verified if:

Υ̃zz + ∆Υ̃zz < 0 (30)

with Υ̃zz =[
L⊗ Pz +H (M ⊗ (AzPz +BzFz)) (∗)

MT ⊗Dzz − I ⊗ 1
2 Ṗz I ⊗H (Dzz)

]

and ∆Υ̃zz =

[
H (M ⊗ (∆AzPz + ∆BzFz)) 0

0 0

]
.

From (6) and (7), one can rewrite ∆Υ̃zz as:

∆Υ̃zz = H
(
X̄T
z δ̄Ȳz

)
(31)

with X̄T
z =

[
I ⊗ Eaz I ⊗ Ebz

0 0

]
, Ȳz =

[
M ⊗ LazPz 0
M ⊗ LbzFz 0

]
and δ̄ =

[
I ⊗ δa(t) 0

0 I ⊗ δb(t)

]
satisfying δ̄T δ̄ 6 0.

Thus, from (31) and by applying lemma 1, the inequality (30)
is satisfied if:

Υ̃zz + X̄T
z T̃zX̄z + Ȳ Tz T̃

−1
z Ȳz < 0 (32)

where T̄z =

[
I ⊗ τaz 0

0 I ⊗ τ bz

]
with the scalars τaz and τ bz .

Then, applying the Schur complement, one obtains:[
Υ̃zz + XT

z T̃zXz Y Tz
Yz T̃z

]
< 0 (33)

Note that from the convex sum property,
∑r
i=1 ḣi(x) = 0.

Hence, for any matrices Rij ∈ Rn×n, one can write:

Ṗz =

r∑
i=1

r∑
j=1

r∑
k=1

hi(z)hj(z)ḣk(z) (Pk +Rij) (34)

Therefore, let us assume that, ∀k ∈ {1, ..., r}, there exists:

|ḣk(z)| 6 φk (35)

with φk 6= +∞, it yields:

−Ṗz 6
r∑
i=1

r∑
j=1

r∑
k=1

hi(z)hj(z)φk (Pk +Rij) (36)

provided that:
r∑
i=1

r∑
j=1

hi(z)hj(z) (Pk +Rij) > 0, ∀k ∈ {i, ..., r}, (37)

At this stage, applying lemma 2 on the inequality (37), one
obtains the condition (18a) and (18b). Moreover, after matrix
expansion and majoring the inequality (33) by considering
(36), then applying lemma 2, one obtains the condition (17a)
and (17b) with (21).
Note that because of the assumption made in (35), one cannot
guarantee the global asymptotic stabilization of the considered
T-S model. Nevertheless, inspired by [17], an estimation of the
domain of attraction of the designed closed-loop system can
be obtained as follows.
First, let us define the compact subset related to the assumption
made in (35) and given by:

Πφ := ∩rk=1

{
x(t) ∈ Rn

∣∣∣ |ḣk(z)| 6 φk

}
(38)

Consequently, a restriction of the domain of validity of the
closed-loop T-S model under the assumption (35) is given by
the compact space:

Φφ = Πφ ∩ Ω (39)



Λ̃ij =


Λ̃
(1,1)
ij (∗) (∗) (∗)

MT ⊗Dij + I ⊗
(

1
2

r∑
k=1

φk (Xk +Rij)

)
−I ⊗H (Dij) 0 0

M ⊗ Lai P̃j 0 −I ⊗ τai 0
M ⊗ LbiFj 0 0 −I ⊗ τ bi

 (21)

with Λ̃
(1,1)
ij = L⊗ P +H ((I ⊗Ai)Pj +M ⊗BiFj) + I ⊗

(
τai E

a
i (Eai )

T
+ τ bi E

b
i

(
Ebbi
)T)

Moreover, the whole DA of a dynamic model is defined by:

DA :=

{
x(0) ∈ Rn

∣∣∣∣ lim
t→+∞

x(t) = 0

}
(40)

Furthermore, let us define the Lyapunov sublevel set given by:

Λ(c) := {x(0) ∈ Rn |V (x(t)) 6 c} (41)

where c is an positive scalar.
An estimate DA∗φ of the closed-loop system domain of attrac-
tion DA is therefore obtained by maximizing c such that:

DA∗φ := {x(0) ∈ Rn |∃c̄ = max c, Λ(c̄) ⊆ Φφ } ⊆ DA,
(42)

that is to say, by finding the largest equipotential V (x(t)) = c̄
included in Φφ.

Remark 1. Recall that the non-quadratic conditions proposed
above do not guarantee the global asymptotic stability of the
considered T-S model. Indeed, they involve the bounds of the
time derivatives of the membership functions |ḣk(z)| 6 φk.
Thus, the parameters φk must be known a priori to apply
the LMI conditions presented in theorem 1. However, it is
difficult (or impossible) to estimate them before synthesizing
the closed-loop dynamics. Recent results have been proposed
to allow the estimation of the domain of attraction simul-
taneously to the resolution of the LMI problem (see e.g.
[10, 18]). Nevertheless, these results being relatively complex
for practitioners, one have adopted an alternative way inspired
by the recent work of [17]. As a practical consequence, the
φk must be chosen as large as possible in order to guarantee
a local stabilization with the greatest possible domain of
attraction. This can be achieved by linear search to maximize
the φk.

IV. NUMERICAL EXAMPLE

Consider the following uncertain T-S model with two rules
given by:

ẋ =

2∑
i=1

hi(z) ((Ai + ∆Ai)x+ (Bi + ∆Bi)u) (43)

with x =

[
x1
x2

]
, A1 =

[
2 −10
2 0

]
, A2 =

[
1 −5
1 2

]
,

B1 =

[
1
1

]
, B2 =

[
1.6
2

]
. The uncertain matrices

∆Ai and ∆Bi are decomposed as in (6) and (7)

with Ea1 = Ea2 =

[
1
0

]
, Eb1 = Eb2 =

[
1
0

]
,

La1 = La2 =
[

1 0
]
, Lb1 = Lb2 = 0.03 and δ(t) scalar.

h1(z(t)) = 1−sin(x1)
2 and h2(z(t)) = 1+sin(x1)

2 are the convex
membership functions.

Note that, in this example, the considered T-S fuzzy
model is an academic one and is not derived from a specific
nonlinear model (1) via the sector nonlinearity approach.
Thus, one assumes that Ω = R2.

The following gain matrices of a non-PDC controller (10)
have been obtained from theorem 1 with φ1 = φ2 = 60 and
the LMI region given in Appendix (see Figure 3), parametrized
by s = 21, q = −17, β = 10, γ = 9 and θ = π/3.

F1 =
[
−88.50 −75.03

]
, F2 =

[
−50.67 −49.58

]
,

P1 =

[
7.00 4.96
4.96 3.67

]
, P2 =

[
6.66 5.42
5.42 4.59

]
.

Figure 1 shows the estimation of the designed closed-loop
system’s domain of attraction DA∗φ, which is delimited by the
largest equipotential of the Lyapunov function included in Φφ.
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Fig. 1. Estimation of the domain of attraction DA∗
φ: Restricted state

space Φφ (white) delimited by the bounds |ḣk| = φk (solid line), largest
equipotential of the Lyapunov function included in Πφ (dash-dot line), closed
loop trajectory with initial conditions at the border of DA∗

φ (dash line).



Figure 2 shows the simulation of the closed-loop state re-
sponse with the initial condition x(0) =

[
−5.56 −4.64

]T
,

i.e. at the border of DA∗φ. As one can notice in Figure 2(a),
the synthesized robust non-PDC control law stabilizes the
considered uncertain system (43) with an uncertainty δ(t),
plotted in Figure 2(b). Moreover, as shown in Figure 2(c),
the initial condition being inside DA∗φ, the time derivatives
of membership functions never exceed the prescribed bounds
φk = 60. Finally, Figure 2(d) shows that the migration of
closed-loop eigenvalues stay inside the defined LMI region
despite the presence of uncertainties. This confirms the effec-
tiveness of the conditions proposed in theorem 1.
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Fig. 2. Closed-loop simulation: (a) Closed-loop state response, (b) Uncertain
signal δ(t), (c) Evolution of the time derivatives of the membership functions,
(d) Migration of the eigenvalues.

V. CONCLUSION

In this paper, the problem of the local non-quadratic robust
D-stabilization of uncertain T-S systems has been considered.
LMI conditions have been derived for the design of robust
non-PDC controllers with D-stability constraints with a simple
method allowing to estimate of the closed-loop domain of
attraction. The effectiveness of the proposed approach have
been illustrated through a numerical example. Further works
will focus on conservatism reduction and the optimization of
the domain of attraction throughout LMI processing.
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APPENDIX

In this paper, an usual LMI region for D-stability purpose
is considered [8, 2] (see Figure 3). It is defined by the
combination of the following subregion:

1) the left half plan defined by Re(λ) < β,
2) a conic sector defined by its apex at (γ, 0) and an inner

angle π/2− θ,
3) a circle centered at (q, 0) with a radius s.

Fig. 3. Usual LMI region considered for D-stability purpose.

In that case and with regards to definition 1, the following
matrices the considered LMI region [8]:

L =


2β 0 0 0 0
0 −2γ cos θ 0 0 0
0 0 −2γ cos θ 0 0
0 0 0 −s −q
0 0 0 −q −s



M =


1 0 0 0 0
0 cos θ sin θ 0 0
0 − sin θ cos θ 0 0
0 0 0 0 1
0 0 0 0 0
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