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Robust Controller Design for Uncertain T-S Fuzzy Systems with
Time-Varying Delays

Fayçal Bourahala1,2, Kevin Guelton2, Farid Khaber1 and Noureddine Manamanni2

Abstract— This paper analyzes the robust control problems
for a class of uncertain Takagi-Sugeno (T-S) fuzzy systems with
time varying delays. T-S fuzzy models are employed to represent
uncertain delayed nonlinear systems. A Parallel Distributed
Compensation (PDC) control law, including both memoryless
and delayed state feedback, is considered for stabilization
purpose. Based on the choice of a convenient Lyapunov-
Krasovskii Functional (LKF) and introducing free weighting
matrices, sufficient delay-dependent controller design condi-
tions are derived in terms of linear matrix inequality (LMI).
Finally, a numerical example is presented to demonstrate the
effectiveness of the proposed approach and the conservatism
improvement regarding to previous results.

I. INTRODUCTION

An efficient way to represent a non-linear system consists
on a representation in the form of Takagi-Sugeno fuzzy
model [1]. These ones have been extensively investigated
due to their effectiveness and powerful tool to deal with
several nonlinear control problems, see e.g. [2], [3], [4],
[5], [6]. Historically, T-S fuzzy models can be interpreted
as a set of affine linear models interconnected by nonlinear
membership functions. The sub-models express the dynamics
of a system around particular operating points of the state
space. Moreover, using the well-known sector nonlinearity
approach [2], a systematic way to obtain the membership
functions is available and a T-S model matches exactly the
considered nonlinear one in a compact set of its state space.

The stability problem for T-S fuzzy models are often
studied from the well-known Lyapunov direct method. For
stabilization issues, the parallel distributed compensation
(PDC) control scheme can be considered and the design
conditions are often given as Linear Matrix Inequalities
(LMI) [2], [3], [7]. However, these conditions being only
sufficient, many efforts are done to reduce their conservatism,
see e.g. [8], [9], [10].

In practice, time-delays are encountered in a wide range
of engineering control processes such like chemical or met-
allurgical ones, network systems, pneumatic or hydraulic
plants, telecommunications, and so on [11]. Note that, in
such practical applications, time-delays cannot be neglected
since they are sources of instability, oscillations or degraded
performances for the considered dynamics [12]. Thus, it
appears necessary to develop tools dedicated to delayed
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systems such as stability and stabilization criteria. In this
context, several studies have been published in this latest
years, see for example [13], [14], [15], [16], [17] and the
references therein. Likewise, the stability of time delay
systems may vanish due to structural uncertainties [18], [19],
[20]. Thus, designing robust controllers for uncertain time-
delayed T-S systems remain a challenging problem.

Based on the sizes of time-delays, the stability criteria
of delayed T-S fuzzy systems can be classified into two
category: delay-independent ones and delay-dependent ones.
Delay-independent criteria have been proposed in [12], [13],
[21], which provides stability conditions which are inde-
pendent of the size of the delays i.e., they do not include
information related to delays. In general, this lack of infor-
mation leads to conservative results. Hence, delay-dependent
criteria have been proposed [14], [15], [17], [22], [23], [24].
These include informations regarding to the delays such as
their maximal values or the bounds of their derivatives. Such
approaches are less conservative than delay-independent ones
and are relevant when the delays are time varying.

In this paper, the problem of robust PDC controller design
for uncertain T-S fuzzy systems with time-varying delay is
considered as an extension to our preliminary work [25].
In this context, following the works done in [23], [16],
[26], the considered controller includes memoryless and
delayed state feedback to stabilize a uncertain T-S fuzzy
model. Therefore, one of the improvement proposed in the
present study consists in a convenient choice of a Lyapunov-
Krasovksii functional (LKF). Indeed, LKF allows to exploit
the information of the delays and their derivatives to de-
rive the stability conditions. To improved the conservatism,
the considered LKF is based on a state vector extension.
Moreover, following the works of [27], [28], [22], [29], to
provide more degree of freedom to the convex optimization
problem, free-weighting matrices are introduced into the
LMI conditions. Finally, the benefit of the proposed LMI
conditions in terms of conservatism, regarding to several
previous results, is illustrated through an academic example.

II. PRELIMINARIES

Let us consider an uncertain T-S fuzzy system with time-
delays with r fuzzy rules given by:
Rule i : IF z1(t) is µi1 and ... and zp(t) is µip THEN
ẋ(t) = (Ai + ∆Ai)x(t) +

(
Adi + ∆Adi

)
x (t− τ(t))

+ (Bi + ∆Bi)u(t)

x(t) = φ(t), t ∈ [−τ̄ , 0] , i = 1, ..., r
(1)



where p is the number of fuzzy sets µij in the ith rule (i.e.
j = 1, ..., p), z(t) =

[
z1(t) ... zp(t)

]
∈ RP is a known

vector of premise variables which may depend on the state
vector x(t) ∈ Rn, u(t) ∈ Rm is the control input vector,
Ai, Adi and Bi are known constant matrices with compatible
dimensions, τ(t) ∈ [0, τ̄ ] represent a time-varying delay with
τ̄ < +∞ and τ̇(t) ≤ η < +∞ (τ̄ and η are constant scalars),
φ(t) is a vector-valued initial function for t ∈ [−τ̄ , 0], ∆Ai ,
∆Adi and ∆Bi are unknown matrices representing Lebesgue
measurable uncertainties, which can be rewritten as [30]:

∆Ai = Hiδ(t)Eai (2)

∆Adi = Hiδ(t)E
d
ai (3)

∆Bi = Hiδ(t)Ebi (4)

where Hi, Eai, Edai and Ebi are known constant real matrices
with compatible dimensions, δ(t) is an unknown real time-
varying vector satisfying:

δT (t)δ(t) ≤ I (5)

Notations: In the sequel, for simplifying the notations, a
star (*) in a matrix denotes a block transpose quantity. Let us
denote Āi = Ai+∆Ai, Ādi = Adi+∆Adi and B̄i = Bi+∆Bi.
Moreover, for any set of matrices Mi of appropriate
dimensions, one denotes Mh =

∑r
i=1 hi(z(t))Mi and

Mhh =
∑r
i=1

∑r
j=1 hi(z(t))hj(z(t))Mij .

Let µij(zj(t)) ∈ [0, 1] be the grade of membership of
zj(t) in µij . By using the center-average defuzzification,
product inference and singleton fuzzifier, one may define the
membership functions as:

hi(z(t)) =
wi(z(t))∑r
i=1 wi(z(t))

(6)

with wi(z(t)) =
∏r
i=1 µij(z(t)).

Hence the membership functions hi(t) hold the convex
sum properties, i.e. for i = 1, ..., r, hi(z(t)) ≥ 0 and∑r
i=1 hi(z(t)) = 1.
From (6), a compact representation of the uncertain T-S

fuzzy model (1) is be given by:

ẋ(t) =

r∑
i=1

hi(z(t))
(
Āix(t) + Ādi x(t− τ(t)) + B̄iu(t)

)
(7)

or with the above defined notations:

ẋ(t) = Āhx(t) + Ādhx (t− τ(t)) + B̄hu(t) (8)

To stabilize the uncertain T-S fuzzy models (8) and due to
the existence of delayed terms, one considers the following
PDC control law [23]:

u(t) = um(t) + ud(t) (9)

with um(t) =
∑r
j=1 hj(z(t))Kjx(t) and ud(t) =∑r

j=1 hj(z(t))K
d
j x(t − τ(t)), and where Kj and Kd

j , for
j = 1, ..., r, are the controller gain matrices to be designed.

Assumption 1: When not explicitly stated, the time-varying
delay τ(t) is assumed to be available online at any time t.

Note that the control law (9) requires assumption 1,
which is considered as a general case to derive new design
conditions. Then, it will be shown that straightforward sim-
plifications may apply for particular cases such like constant
delays.

From (8) and (9), the closed-loop dynamics may be written
as:

ẋ(t) =
(
Āh + B̄hKh

)
x(t) +

(
Ādh + B̄hK

d
h

)
x (t− τ(t))

(10)
The purpose of this paper is to propose LMI conditions

for the design of a PDC controller (9) such that the closed-
loop system (10) is globally asymptotically stable (GAS).
To achieve this goal and to provide relaxed conditions the
following lemmas will be used.

Lemma 1: [22] For any constant matrices Q11 = QT11,

Q22 = QT22, and Q12 ∈ Rn×n satisfying
[
Q11 Q12

∗ Q22

]
≥

0, a positive scalar function τ(t) ≤ τ̄ < +∞, and a vector
function ẋ(t) : [−τ̄ , 0] → Rn, such that the following
integrations are well defined, then:

−τ̄
∫ t
t−τ̄

[
x(s)
ẋ(t)

]T [
Q11 Q12

∗ Q22

] [
x(s)
ẋ(s)

]
ds

≤ θT (t)

 −Q22 Q22 −QT12

Q22 −Q22 QT12

−Q12 Q12 −Q11

 θ(t) (11)

with θ(t) =

 x(t)
x(t− τ(t))∫ t
t−τ(t)

x(s)ds

.

Lemma 1 is derived from the Jensen’s integral inequality
[28]. It will be used in the proof of the theorem proposed in
the next section.

Lemma 2: [8] For (i, j) ∈ {1, ..., r}2, Let Γij be matrices
of appropriate dimensions. Γhh < 0 is satisfied if both the
following conditions hold:{

Γii < 0,∀i ∈ {1, ..., r}
2
r−1Γii + Γij + Γji < 0,∀ (i, j) ∈ {1, ..., r}2i 6=j

(12)

Lemma 2 is considered for conservatism reduction [8].
Note that, among relaxation lemmas, it constitutes a good
compromise between complexity and computational burden
[9].

To conclude this section, the following lemma will be
employed to deal with uncertainties in the proof of the
theorem proposed in the next section.

Lemma 3: [30] Let Q = QT , H , E and be real matrices
of appropriate dimensions and a vector δ(t) satisfying (3).
The inequality:

Q+Hδ(t)E + ET δT (t)HT ≤ 0 (13)

is satisfied if there exists a scalar λ > 0 such that:

Q+ λHHT + λ−1ETE ≤ 0 (14)



III. MAIN RESULT

In this section, the goal is to provide new LMI-based delay
dependent conditions for the design of PDC controllers (9)
which globally asymptotically stabilize uncertain T-S fuzzy
models with time varying delays (8). The main result is given
by the following theorem.

Theorem 1: For given scalars τ̄ > 0 and η > 0, the
uncertain T-S fuzzy model with time varying delays (8)
is globally asymptotically stabilized by the robust PDC
controller (9) if, for any time-delay τ(t) ∈ [0, τ̄ ] with
τ̇(t) ≤ η, and for all (i, j) ∈ {1, ..., r}2, there exist real
matrices with appropriate dimensions L = LT > 0, Fj , F dj ,
X , P11 = PT11, P22 = PT22, P12, Q11 = QT11, Q22 = QT22

and Q12, and the scalars ε1 > 0, ε2 > 0 and λi > 0 such
that the following LMI-based conditions hold:

Γii < 0, ∀ (i, j) ∈ {1, ..., r}2 (15)

2

r − 1
Γii + Γij + Γji < 0, ∀ (i, j) ∈ {1, ..., r}2 /i 6= j

(16)[
P11 P12

∗ P22

]
> 0 (17)[

Q11 Q12

∗ Q22

]
> 0 (18)

with

Γij =

[
Θ̃ + Υij + λiH̃iH̃

T
i ẼTij

Ẽij −λiI

]
,

Θ̃ =


Θ̃11 Θ̃12 P22 −QT12 P11 + τ̄2Q12

∗ Θ̃22 −(1− η)P22 +QT12 0
∗ ∗ −Q11 PT12

∗ ∗ ∗ τ̄2Q22

 ,
Θ̃11 = L+ P12 + PT12 + τ̄2Q11 −Q22,

Θ̃12 = −(1− η)P12 +Q22,

Θ̃22 = −(1− η)L−Q22,

Υij =


Υ11
ij Υ12

ij 0 −X + ε2

(
XTATi + FTj B

T
i

)
∗ Υ22

ij 0 −ε1X + ε2

(
XTAdTi + F dTj BTi

)
∗ ∗ 0 0
∗ ∗ ∗ −ε2(X +XT )

 ,
Υ11
ij = AiX +XTATi +BiFj + FTj B

T
i ,

Υ12
ij = AdiX +BiF

d
j + ε1

(
XTATi + FTj B

T
i

)
,

Υ22
ij = ε1

(
AdiX +XTAdTi +BiF

d
j + F dTj BTi

)
,

H̃i =
[
HT
i ε1H

T
i 0 ε2H

T
i

]T
,

Ẽij =
[
EaiX + EbiKj EdaiX + EbiK

d
j 0 0

]T
.

In that case, the changes of variables Kj = FjX
−1 and

Kd
j = F dj X

−1 provide the PDC control gains.
Proof: Let us consider the following LKF candidate:

V (t) = V1(t) + V2(t) + V3(t) (19)

with:
V1(t) = θT1 (t)Mθ1(t), (20)

V2(t) =

∫ t

t−τ(t)

xT (s)Sx(s)ds, (21)

V3(t) = τ̄

∫ 0

−τ̄

∫ t

t+s

θT2 (w)Nθ2(w)dwds, (22)

where θ1(t) =

[
x(t)∫ t

t−τ(t)
x(s)ds

]
and θ2(t) =

[
x(t)
ẋ(t)

]
.

The closed-loop system (10) is GAS if:

V̇ (t) = V̇1(t) + V̇2(t) + V̇3(t) < 0 (23)

Let us first focus on the time derivative of (20), one has:

V̇1(t) = θ̇T1 (t)Mθ1(t) + θT1 (t)Mθ̇1(t) (24)

Now, let M = MT =

[
M11 M12

∗ M22

]
> 0, (24) can be

rewritten as:

V̇1(t) = 2

[
x(t)∫ t

t−τ(t)
x(s)ds

]T
M

[
ẋ(t)

d
dt

∫ t
t−τ(t)

x(s)ds

]
(25)

Since d
dt

(∫ t
t−τ(t)

x(s)ds
)

= x(t) − (1 − τ̇(t))x (t− τ(t)),
the equation (25) can be rewritten as:

V̇1(t) = 2xT (t)M11ẋ(t) + 2
(∫ t

t−τ(t)
x(s)ds

)T
MT

12ẋ(t)

+2xT (t)M12x(t)− 2(1− τ̇(t))xT (t)M12x (t− τ(t))

−2(1− τ̇(t))
(∫ t

t−τ(t)
x(s)ds

)T
M22x (t− τ(t))

+2
(∫ t

t−τ(t)
x(s)ds

)T
M22x(t)

(26)

Let us denote ζ(t) =


x(t)

x(t− τ(t))∫ t
t−τ(t)

x(s)ds

ẋ(t)

, (26) yields:

V̇1(t) = ζT (t)Ωζ(t) (27)

with

Ω =


M12 +MT

12 Ω12 M22 M11

∗ 0 Ω23 0
∗ ∗ 0 MT

12

∗ ∗ ∗ 0

 ,
Ω12 = −(1− τ̇(t))M12,

Ω23 = −(1− τ̇(t))M22.

Now, let us focus on the time derivative of (21), one has:

V̇2(t) = xT (t)Sx(t)− (1− τ̇(t))xT (t− τ(t))Sx(t− τ(t))

= ζT (t)


S 0 0 0
0 −(1− τ̇)S 0 0
0 0 0 0
0 0 0 0

 ζ(t)

(28)



Then, let us focus on the time derivative of (22), one has:

V̇3(t) = τ̄2θT2 (t)Nθ2(t)− τ̄
∫ t

t−τ̄
θT2 (s)Nθ2(s)ds (29)

Let N = NT =

[
N11 N12

∗ N22

]
> 0, then applying lemma

1 on the second right hand term of (29), one obtains:

V̇3(t) ≤ τ̄2θT2 (t)Nθ2(t) + θ(t)T N̄θ(t) (30)

with N̄ =

 −N22 N22 −NT
12

N22 −N22 NT
12

−N12 N12 −N11

 and with θ(t)

defined in (11).
That is to say:

V̇3(t) ≤ ζT (t)Ψζ(t) (31)

with

Ψ =


τ̄2N11 −N22 N22 −NT

12 τ̄2N12

∗ −N22 NT
12 0

∗ ∗ −N11 0
∗ ∗ ∗ τ̄2N22


Thus, from (27), (28), (31) and since τ̇(t) ≤ η, the condition
(23) is satisfied if:

ζT (t)Θζ(t) < 0 (32)

with

Θ =


Θ11 Θ12 M22 −NT

12 M11 + τ̄2N12

∗ Θ22 −(1− η)M22 +NT
12 0

∗ ∗ −N11 MT
12

∗ ∗ ∗ τ̄2N22

 ,
Θ11 = S +M12 +MT

12 + τ̄2N11 −N22,

Θ12 = −(1− η)M12 +N22,

Θ22 = −(1− η)S −N22.

Next, let us rewrite (10) as:

N (t) =
(
Āh + B̄hKh

)
x(t)

+
(
Ādh + B̄hK

d
h

)
x (t− τ(t))− ẋ(t) = 0

(33)

From (33) one may introduce the slack variables R1, R2,
and R3, such that:

2
(
xT (t)R1 + xT (t− τ(t))R2 + ẋT (t)R3

)
×N (t) = 0

(34)
which is equivalent to:

ζT (t)Ῡhhζ(t) = 0 (35)

with

Ῡhh =


Ῡ11
hh Ῡ12

hh 0 −R1 +
(
Āh + B̄hKh

)T
RT3

∗ Ῡ22
hh 0 −R2 +

(
Ādh + B̄hK

d
h

)T
RT3

∗ ∗ 0 0
∗ ∗ ∗ −R3 −RT3

 ,
Ῡ11
hh = R1

(
Āh + B̄hKh

)
+
(
Āh + B̄hKh

)T
RT1 ,

Ῡ12
hh = R1

(
Ādh + B̄hK

d
h

)
+
(
Āh + B̄hKh

)T
RT2

Ῡ22
hh = R2

(
Ādh + B̄hK

d
h

)
+
(
Ādh + B̄hK

d
h

)T
RT2

Thus, by summing (35) with (32), the condition (23) is
satisfied if:

Θ + Ῡhh < 0 (36)

Let X ∈ Rn×n be a free invertible matrice and R1 = X−T ,
R2 = ε1X

−T and R3 = ε2X
−T where ε1 and ε2 are two

arbitrary scalars. Pre- and post-multiplying (36) respectively
by diag

[
X X X X

]T
and its transpose, and with

the change of variables Pab = XTMabX , Qab = XTNabX(
∀ (a, b) ∈ {1, 2}2 , a ≤ b

)
, L = XTSX , Fh = KhX and

F dh = Kd
hX , then (36) becomes:

Θ̃ + Υhh + ∆Υhh + ∆ΥT
hh < 0 (37)

with

Θ̃ =


Θ̃11 Θ̃12 P22 −QT12 P11 + τ̄2Q12

∗ Θ̃22 −(1− η)P22 +QT12 0
∗ ∗ −Q11 PT12

∗ ∗ ∗ τ̄2Q22

 ,
Θ̃11 = L+ P12 + PT12 + τ̄2Q11 −Q22,

Θ̃12 = −(1− η)P12 +Q22,

Θ̃22 = −(1− η)L−Q22,

Υhh =


Υ11
hh Υ12

hh 0 −X + ε2

(
XTATh + FTh B

T
h

)
∗ Υ22

hh 0 −ε1X + ε2

(
XTAdTh + F dTh BTh

)
∗ ∗ 0 0
∗ ∗ ∗ −ε2(X +XT )

 ,
Υ11
hh = AhX +XTATh +BhFh + FTh B

T
h ,

Υ12
hh = AdhX +BhF

d
h + ε1

(
XTATh + FTh B

T
h

)
,

Υ22
hh = ε1

(
AdhX +XTAdTh +BhF

d
h + F dTh BTh

)
and

∆Υhh =


∆Υ1

hh ∆Υ2
hh 0 0

ε1∆Υ1
hh ε1∆Υ2

hh 0 0
0 0 0 0

ε2∆Υ1
hh ε2∆Υ2

hh 0 0

 ,
∆Υ1

hh = ∆AhX + ∆BhFh,

∆Υ2
hh = ∆AdhX + ∆BhF

d
h .

Expending ∆Υhh with (2), (3) and (4), the inequatity (37)
can be rewritten as:

Θ̃ + Υhh + H̃hδ(t)Ẽhh + ẼThhδ
T (t)H̃T

h < 0 (38)

with H̃h =
[
HT
h ε1H

T
h 0 ε2H

T
h

]T
and

Ẽhh =
[
EahX + EbhKh EdahX + EbhK

d
h 0 0

]T
.

Then, applying lemma 3 and from (5), the inequality (38)
is satisfied if:

Θ̃ + Υhh + λhH̃hH̃
T
h + λ−1

h ẼThhẼhh < 0 (39)



where λh > 0 is a scalar function. Now, applying the Schur
complement, yields:[

Θ̃ + Υhh + λhH̃hH̃
T
h ẼThh

Ẽhh −λhI

]
< 0 (40)

Then, applying lemma 2, one obtains the conditions ex-
pressed in theorem 1.

Remark 2: The conditions expressed in theorem 1 are
LMIs if the scalars ε1 and ε2 are prefixed. Note that,
according to the proof of theorem 1 (see equation (34)) with
the changes of variables (R2 = ε1X

−T
1 and R3 = ε2X

−T ),
the choice of these scalars is arbitrary. Nevertheless, they
provide more degree of freedom to the design procedure.
Hence in practice, to solve such kind of LMI conditions,
these scalars are obtained from linear programming and
searched in a logarithmically spaced family, e.g. (ε1, ε2) ∈{

10−6, 10−5, ..., 106
}2

. As stated in [31], [32], this way of
doing is generally outperforming the results obtained without
these scalars.

Remark 3: One acknowledges that assumption 1, which is
required to implement the control law (9), may be challeng-
ing in practical applications. Nevertheless a straightforward
simplification of theorem 1 can be considered for constant
delays by setting η = 0. In this case, if the constant time
delay is known, the implementation of the controller (9) is no
longer challenging. Moreover, if the time delay is available
online but its variation rate is unknown, a straightforward
simplification of theorem 1 hold with L = 0, P12 = 0 and
P22 = 0.

IV. ILLUSTRATIVE EXAMPLE

In this section, our goal is to illustrate the effectiveness
and the conservatism reduction of the result proposed in
theorem 1 regarding to previous relevant results. Therefore,
let us consider the following time varying delayed T-S
system with 2 rules, defined by:

ẋ(t) =

2∑
i=1

hi(z(t))
(
Āix(t) + Ādi x(t− τ(t)) + B̄iu(t)

)
(41)

with

A1 =

[
0 0.6
0 a

]
, A2 =

[
1 0
1 0

]
, Ad1 =

[
0.5 0.9
0 2

]
,

Ad2 =

[
0.9 0
1 1.6

]
, B1 =

[
1
b

]
, B2 =

[
1
1

]
,

H1 = H2 =

[
−0.03 0

0 0.03

]
Ea1 = Ea2 =

[
−0.15 0.2

0 0.04

]
Eda1 = Eda2 =

[
−0.05 −0.35
0.08 −0.45

]
where a and b are two scalars dedicated to evaluate the
feasibility fields, and the membership functions given by

h1(x1(t)) = 1/
(
1 + e−2(x1(t)+π)

)
and h2(x1(t)) = 1 −

h2(x1(t)).
Figure 1 shows the feasibility fields of theorem 1 vs

theorem 3.3 in [23] and theorem 3 in [22] for τ̄ = 0.2,
η = 0.4, a ∈ [1, ..., 10] and b ∈ [1, ..., 6]. As one can notice,
theorem 1 provides the widest feasibility field.
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Fig. 1. Feasibility fileds obtained from theorem 1, theorem 3.3 in [23] and
theorem 3 in [22].

Another way to compare theorem 1 with the existing
results is to search the maximum allowable upper bound τ̄
of the time-delay τ(t). For the particular case where a = 1
and b = 1., table 1 shows the results obtained from theorem
1 and those proposed in [33], [26], [20], [22]. One more
time, it is clear that theorem 1 provides the less conservative
results.

TABLE I
MAXIMUM ALLOWABLE UPPER BOUND OF τ(t)

Considered results η = 0 η = 0.6 η = 3 η unknown
Theorem 4 in [33] - - - 0.3991
Theorem 3 in [26] 0.461 0.3941 0.2283 0.2321
Theorem 2 in [20] - 0.6072 - -
Theorem 3 in [22] 1.1644 1.0534 0.4780 0.4144
Theorem 1 in this paper 1.1648 1.0594 2.1813 0.9632

Hence, for τ̄ = 2.1813 and η = 3, theorem 1 provides the
following PDC gains for the control law (9):

K1 =
[

2.157 −19.633
]
,K2 =

[
1.156 −18.572

]
,

Kd
1 =

[
0.056 −2.093

]
,Kd

2 =
[
−1.022 −1.746

]
.

For simulation purpose, a random uncertain signal δ(t),
plotted in figure 2, has been generated. Moreover in this
figure, with a time varying delay τ(t) = τ̄

2

(
1 + sin

(
2η
τ̄ t
))

,
the initial state conditions x0 =

[
2 1

]T
and ∀t ∈

[−τ̄ , 0] , φ(t) = x0, the state responses and the control
signals are plotted from a closed-loop simulation. One no-
tices that the closed-loop is stable despite the presence of
uncertainties and time varying delay.
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Fig. 2. Closed-loop simulation: state response xi(t), control signal u(t)
and uncertain signal δ(t)

V. CONCLUSION

In this paper, new LMI conditions for the design of
PDC controllers have been proposed for uncertain T-S fuzzy
models with time-varying delay. The proposed PDC control
law includes both memoryless and delayed state feedback.
Based on a convenient Lyapunov-Krasoviskii functionals,
delay-dependent conditions have been obtained. A numerical
example has been provided to illustrate the effectiveness
of the results, as well as its improvement in terms of
conservatism regarding to recent studies.
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