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LMI Conditions for Non-Quadratic Stabilization of T-S Models with
Pole Placement Assignation

Abdelmadjid Cherifi, Kevin Guelton and Laurent Arcese

Abstract— This paper presents new non-Parallel-Distributed-
Compensation (non-PDC) controllers design conditions for
continuous-time Takagi-Sugeno (T-S) models with pole place-
ment assignation. Based on the D-stability concept, a desired
transient response may be obtained by placing the poles of the
T-S closed-loop system in a specific region of the complex plan.
After deriving standard non-quadratic D-stability conditions
for the T-S closed-loop system, new relaxed LMI-based condi-
tions are obtained from enhanced Fuzzy Lyapunov Functions
(FLF), which involve a double sum fuzzy structure. The
effectiveness of the proposed result is illustrated in simulation
through the benchmark of a flexible robot with single joint.

I. INTRODUCTION

Takagi-Sugeno (T-S) models [1], also known as Quasi-
LPV models [2], constitute a class of convex polytopic
systems. T-S models may be of great interest in nonlinear
control since they allow representing a large class of nonlin-
ear systems, exactly on a compact set of their state space.
Such ability is guaranteed when a T-S model is obtained
from a sector nonlinearity approach [3].

T-S model-based control problem are usually investigated
through the direct Lyapunov methodology (see e.g. [3],
[4], [5], [6], [7], [8], [9]). In this context, the challenge
consists on expressing the stability conditions as Linear
Matrix Inequality (LMI) [10]. LMIs are interesting since they
can be solved by convex optimization algorithms [11].

The pioneer results in stabilization were obtained through
Quadratic Lyapunov Functions (QLF) (see e.g. [4], [3]).
Nevertheless, QLF-based conditions are conservative because
they require to find a common Lyapunov matrix solution
for a set of LMIs (see [12] for a review of the sources of
conservatism in T-S-based studies). To reduce the conser-
vatism, alternative Lyapunov functions have been considered
like piecewise Lyapunov function [13], switched Lyapunov
function [14], [15] and non-quadratic Fuzzy Lyapunov Func-
tion (FLF) [16], [17], [18]. Note that, since they share the
same fuzzy structure as the T-S model to be analyzed, FLF
approaches appear convenient, especially when the sector
nonlinearity approach is employed. However, in this non-
quadratic context, the time derivatives of the membership
functions occur in the stability conditions. To cope with these
non convex terms, it is often assumed that the bounds of these
derivatives are known before solving the LMIs, which is non
trivial in most of practical case, especially in stabilization.
To overcome this drawback, local conditions have been
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proposed [19], but with a somewhat complex formulation.
In [20], the use of Line-Integral Lyapunov Function (LILF)
have been proposed. According to path-independency con-
ditions [20], [21], [22], LILF have the advantage to make
the stability conditions free of the time derivatives of the
membership functions. However, the stabilization results in
[20] are given in terms of Bilinear Matrix Inequalities (BMI)
and recent results have shown that LILF may lead to LMIs,
but with a restriction to only second order systems [23],
[24], [25]. Alternatively, Sum-Of-Square (SOS) approaches
have been proposed but with a very restrictive modeling
assumption on the system’s input matrices [26], [27].

In this paper, we are interested in providing new LMI con-
ditions with pole placement assignation in the non-quadratic
framework. Indeed, ensuring the asymptotic stability does
not necessarily mean ensuring a good transient response
of the closed-loop system. In this context, some interesting
works were carried out in order to improve the closed-loop
transient response by adding pole placement constraints to
the stabilization problem [28], [29], [30], [31]. Neverthe-
less, these results are given in the quadratic framework (or
piecewise quadratic), which suffer from the above discussed
concerns. Therefore, in this paper, without considering the
estimation of a domain of attraction in the non-quadratic
framework [19], [32], which will be the subject of a further
extension, one first derives standard non-quadratic conditions
for T-S closed-loop systems including D-stability constraints
[33]. Then new relaxed D-stable LMI-based conditions are
proposed from an enhanced FLF [32], which involves a
double sum fuzzy structure. Finally, the effectiveness of
the proposed results is illustrated in simulation through the
benchmark of a flexible robot with single joint.

II. PRELIMINARIES

Consider the T-S fuzzy model given by [1]:

ẋ(t) =

r∑
i=1

hi(z(t)) (Aix(t) +Biu(t)) (1)

where x(t) ∈ Ω ⊆ Rn is the state vector, u(t) ∈ Rm is
the input vector, z(t) is the vector of premises which may
depend on the state and/or input variables, r is the number
of vertices and, for i ∈ Ir = {1, ..., r}, hi(z(t)) ∈ [0, 1]
are convex membership functions with

∑r
i=1 hi(z(t)) = 1,

Ai ∈ Rn×n and Bi ∈ Rn×m are real constant matrices
defining the ith nominal vertex.

Assumption 1 : The T-S model (1) is assumed to be smooth,
i.e. continuous and derivable within the time t, ∀x(t) ∈ Ω.



To stabilize (1), let us consider the non-PDC control law
given by [34]:

u(t) =

r∑
i=1

hi(z(t))Fi

 r∑
j=1

hj(z(t))Hj

−1

x(t) (2)

where Fi ∈ Rm×n and Hj ∈ Rn×n are constant gain
matrices to be synthesized.

Notations: In the sequel, to lighten mathematical
expressions, the time t will be omitted when there is
no ambiguity. I denotes a identity matrix with appropriate
dimension. An asterisk (∗) in a matrix denotes a transpose
quantity. For any square matrix Q, H(Q) = Q + QT .
Consider the set of real matrices Mi and Nij , with
(i, j) ∈ I2

r , one denotes Mz =
∑r
i=1 hi(z(t))Mi,

Nzz =
∑r
i=1

∑r
j=1 hi(z(t))hj(z(t))Nij . Finally, ⊗ denotes

the Kronecker product.

With the above defined notations and substituting (2) in
(1), the closed-loop dynamics may be expressed as:

ẋ(t) = Ãzzx(t) (3)

with Ãzz = Az +BzFzH
−1
z .

Consequently, ∀i ∈ Ir, if one can find the gain matrices
Fi and Hi such that (3) is stable, then the T-S model (1)
is stabilized by the non-PDC controller (2). The aim of
this work is to propose new LMI conditions to achieve this
goal in the non-quadratic framework with pole placement
assignation. In this context, the following definition and
lemmas are useful.

Definition 1 (LMI region) [33]: A subset D of the complex
plane is called an LMI region if it is defined by the matrices
L = LT ∈ Rd×d and M ∈ Rd×d such that:

D = {λ ∈ C : L+ λM + λ̄MT < 0} (4)

where d is called the order of the LMI region.

For more details and examples illustrating how the matrices
L and M are set for a given LMI region, the reader may
consult [33], [35] (an example is proposed in section IV
below). LMI regions being now defined, the following lemma
expresses the basic D-stability conditions.

Lemma 1 (D-stability)[33]. Given an LMI region defined
by (4), a nonlinear system (e.g. the closed-loop T-S fuzzy
model (3)) is said to be D-stable if there exists a Lyapunov
function V(x) satisfying 1

2
V̇ (x)
V (x) ∈ D, i.e.

L⊗ 1 +M ⊗ 1

2

V̇ (x)

V (x)
+MT ⊗ 1

2

V̇ (x)

V (x)
< 0 (5)

In the sequel, the following properties of the Kronecker
product will be used. For any scalars µ and matrices A, B
and C with appropriate dimensions [36]:

A⊗ (B + µC) = (A⊗B) + µ(A⊗ C) (6)

(A+ µB)⊗ C = (A⊗ C) + µ(B ⊗ C) (7)

(A⊗ C)(B ⊗D) = (AB ⊗ CD) (8)

(A⊗B)T = AT ⊗BT (9)

In addition, to reduce the conservatism of the LMI con-
ditions proposed in the sequel, the following lemma will be
employed.

Lemma 2 [37]: Let Γij , for (i, j) ∈ I2
r , be matrices of

appropriate dimensions. Γzz ≺ 0 is satisfied if the following
conditions hold:

Γij + Γji ≺ 0, i ≤ j, (i, j) ∈ I2
r , (10)

III. MAIN RESULTS

In this section, the goal is to propose new non-quadratic
LMI conditions for stabilization a class of nonlinear system
(1) by non-PDC controllers (2) in a prescribed pole place-
ment in LMI regions. First, based on the D-stability concepts
[33], non-quadratic conditions are obtained from standard
FLF candidates [16]. Then, relaxed conditions are proposed
via enhanced FLF involving double sum fuzzy structures
[32].

A. D-stabilizing controller design via standard FLF:

Let us first consider the standard FLF candidate given by
[16]:

V (x(t)) = xT (t)X−1
z x(t) (11)

In this non-quadratic context, D-stabilization conditions
for T-S models are summarized by the following theorem.

Theorem 1 : The T-S model (1) being smooth, ∀k ∈ Ir,
∃φk = inf

x∈Ω
(ḣk(x)) ≤ 0, φk 6= −∞. Let us assume that

the φk are known and let L and M be two prescribed
matrices defining a convenient LMI region (see definition 1).
For (i, j, k) ∈ I3

r , if there exists the matrices Xj = XT
j � 0,

Rij = RTij , Fj such that the LMIs (12) and (13) are verified,
then the T-S model (3) is D-stabilized by the non-PDC
control law (2) with Hi = Pi.

Xijk + Xjik � 0, i ≤ j, (i, j, k) ∈ I3
r , (12)

Ψij + Ψji ≺ 0, i ≤ j, (i, j) ∈ I2
r , (13)

with:
Xijk = Xk +Rij ,

Ψij = L⊗Xj +H
(
M ⊗

(
AiXj +BiFj −

1

2
Φijk

))
,

Φijk =

r∑
k=1

φkXijk.



Proof: Consider the FLF (11). The closed-loop dynam-
ics (3) is stable if, ∀i ∈ Ir, Xi = XT

i � 0 and [16]:

V̇ (x) = ẋTX−1
z x+ xTX−1

z ẋ+ xT Ẋ−1
z x

= 2xT
(
ÃTzzX

−1
z + 1

2Ẋ
−1
z

)
x

= 2xT
(
X−1
z Ãzz + 1

2Ẋ
−1
z

)
x < 0

(14)

According to lemma 1 and since V (x) > 0, the closed-loop
T-S model (3) is D-stable if:

L⊗ V (x) +M ⊗ 1

2
V̇ (x) +MT ⊗ 1

2
V̇ (x) < 0 (15)

One denotes:

Zzz = X−1
z Ãzz +

1

2
Ẋ−1
z (16)

Therefore, (15) can be rewritten as:

L⊗ xTX−1
x x+M ⊗ xTZxxx+MT ⊗ xTZTxxx < 0 (17)

Now, with (8), one can rewrite (17) as:

(I ⊗ x)T
(
L⊗X−1

z +H(M ⊗ Zzz)
)

(I ⊗ x) < 0 (18)

which holds ∀x if:

L⊗X−1
z +H(M ⊗ Zzz) ≺ 0 (19)

Now, multiplying (19) left and right by (I ⊗Xz) and since
XzẊ

−1
z Xz = −Ẋz , (19) is equivalent to:

L⊗Xz +H
(
M ⊗

(
ÃzzXz −

1

2
Ẋz

))
≺ 0 (20)

Note that
∑r
i=1 ḣi(x) = 0, thus for any matrices

Rij ∈ Rn×n one can write:

Ẋz =

r∑
k=1

ḣk(z)Xijk (21)

with Xijk = Xk +Rij .
Now, according to assumption 1, T-S model (1) is smooth.
Thus, ∀k ∈ Ir, ∃φk = inf

x∈Ω
(ḣk(x)) ≤ 0, φk 6= −∞ and,

with Rij = RTij and the LMI constraints Xijk � 0, one may
write:

Ẋz �
r∑

k=1

φkXijk (22)

Hence (20) is satisfied if:

L⊗Xz+H

(
M ⊗

(
ÃzzXz −

1

2

r∑
k=1

φkXijk

))
≺ 0 (23)

Finally, let Hz = Xz , then apply lemma 2, one obtains the
conditions expressed in theorem 4.

Remark 1 Note that the conditions of theorem 1 are quite
conservatism regarding to the general form of the non-
PDC controller (2). Indeed, theorem 1 requires Hz = Xz

symmetric positive definite matrix.

In the next subsection, in the same mood as the result
proposed in [34] for non-PDC controller design (without pole

placement), one proposes relaxed non-quadratic D-stability
conditions where Hz is no longer required to be symmetric
and decoupled from the fuzzy Lyapunov matrix. Moreover,
to improve the conservatism, an enhanced FLF candidate,
which involves a double summation fuzzy structure [32], will
be considered.

B. Relaxed D-stabilizing conditions via enhanced FLF:

Let us consider the enhanced FLF candidate given by [32]:

Ṽ (x(t)) = xT (t)X̃−1
zz x(t) (24)

In this enhanced non-quadratic context, D-stabilization con-
ditions for T-S models are summarized by the following
theorem.

Theorem 2 : The T-S model (1) being smooth, ∀k ∈ Ir,
∃φk = inf

x∈Ω
(ḣk(x)) ≤ 0, φk 6= −∞. Let us assume that

the φk are known and let L and M be two prescribed
matrices defining a convenient LMI region (see definition
1). For (i, j, k) ∈ I3

r , if there exists the matrices X̃ij = X̃T
ij ,

R̃ij = R̃Tij , Hj , Fj and a scalar ε > 0, such that the LMIs
(25) , (26) and (27) are verified, then the T-S model (3) is
D-stabilized by the non-PDC control law (2).

X̃ij + X̃ji � 0, i ≤ j, (i, j) ∈ I2
r , (25)

X̃ijk + X̃jik � 0, i ≤ j, (i, j, k) ∈ I3
r , (26)

Υij + Υji ≺ 0, i ≤ j, (i, j) ∈ I2
r , (27)

with:
X̃ijk = X̃kj + X̃ik + R̃ij ,

Υij =

[
Υ

(1,1)
ij (∗)

Υ
(1,2)
ij −εI ⊗H(Hj)

]
,

Υ
(1,1)
ij = L⊗ X̃ij +H

(
M ⊗

(
AiHj +BiFj − Φ̃ij

))
,

Υ
(1,2)
ij = M ⊗ (X̃ij −Hj) + εI ⊗ (HT

j A
T
i + FTj B

T
i ),

Φ̃ij =
1

2

r∑
k=1

φkX̃ijk.

Proof: By following the same path as the proof of
theorem 1 until equation (20), but with the enhanced FLF
(24), the closed-loop dynamics (3) is stable if (25) holds (to
guarantee V (x(t)) � 0) and:

L⊗ X̃zz +H
(
M ⊗

(
ÃzzX̃zz −

1

2
˙̃Xzz

))
≺ 0 (28)

Inequality (28) can be rewritten as:

L⊗X̃zz−H
(
M ⊗ 1

2
˙̃Xzz

)
+H

(
M ⊗ ÃzzX̃zz

)
≺ 0 (29)

Let us now consider an arbitrary scalar ε, one may introduce
the null terms:

H(M ⊗ ÃzzHz)−H(M ⊗ ÃzzHz) = 0 (30)



and

H(εI ⊗ ÃzzHT
z Ã

T
zz)−H(εI ⊗ ÃzzHzÃ

T
zz) = 0 (31)

By summing (29) with (30) and (31), it yields:

L⊗ X̃zz −H
(
M ⊗ 1

2
˙̃Xzz

)
+H(M ⊗ ÃzzHz)

+H(M ⊗ ÃzzX̃zz −M ⊗ ÃzzHz + εI ⊗ ÃzzHT
z Ã

T
zz)

−εI ⊗H(ÃzzHzÃ
T
zz) ≺ 0

(32)
or equivalently:

L⊗ X̃zz +H
(
M ⊗

(
ÃzzHz − 1

2
˙̃Xzz

))
+H((I ⊗ Ãzz)(M ⊗ (X̃zz −Hz) + εI ⊗HT

z Ã
T
zz))

(I ⊗ Ãzz)(−εI ⊗H(Hz))(I ⊗ ÃTzz) ≺ 0
(33)

Since
∑r
i=1 ḣi(z) = 0, for any symmetric matrices

R̃ij ∈ Rn×n one has:

˙̃Xzz =

r∑
i=1

r∑
j=1

hi(z)hj(z)

r∑
k=1

ḣk(z)(X̃kj + X̃ik + R̃ij)

(34)
Now, according to assumption 1, the T-S model (1) is
smooth. Thus, ∀k ∈ Ir, ∃φk = inf

x∈Ω
(ḣk(x)) ≤ 0, φk 6= −∞

and (33) is satisfied if:

L⊗ X̃zz +H
(
M ⊗

(
ÃzzHz − 1

2 Φ̃zz

))
+H((I ⊗ Ãzz)(M ⊗ (Xzz −Hz) + εI ⊗HT

z Ã
T
zz))

(I ⊗ Ãzz)(−εI ⊗H(Hz))(I ⊗ ÃTzz) ≺ 0
(35)

with Φ̃zz =
r∑
i=1

r∑
j=1

hi(z)hj(z)
r∑

k=1

φk(X̃kj+X̃ik+R̃ij) and:

r∑
i=1

r∑
j=1

hi(z)hj(z)(X̃kj + X̃ik + R̃ij) � 0 (36)

Applying lemma 2, (36) is satisfied if (26) holds. Now, let
us rewrite (35) as:

[
I

I ⊗ Ãzz

]T [
Υ

(1,1)
zz (∗)

Υ
(1,2)
zz −εI ⊗H(Hz)

] [
I

I ⊗ Ãzz

]
≺ 0

(37)
where Υ

(1,1)
zz = L⊗X̃zz+H

(
M ⊗

(
ÃzzHz − 1

2 Φ̃zz

))
and

Υ
(1,2)
zz = M ⊗ (Xzz −Hz) + εI ⊗HT

z Ã
T
zz .

Inequality (34) holds if:

Υzz =

[
Υ

(1,1)
zz (∗)

Υ
(1,2)
zz −εI ⊗H(Hz)

]
≺ 0 (38)

Applying lemma 2, (38) is satisfied if (27) holds.

Remark 2 The conditions of theorem 2 include the ones
of theorem 1. Indeed, from theorem 2, the conditions of
theorem 1 can be recovered by considering X̃ij = X̃ji =
Xj , Hj = Xj and R̃ij = Rij−Xk, then applying the Schur
complement and considering ε arbitrarily small. Therefore
the conditions expressed in theorem 2 are less conservative
than the ones of theorem 1.

Remark 3 The enhanced FLF conditions without pole
placement proposed theorem 7 in [32] constitute a special
case of theorem 2. Indeed, they can be recovered from
theorem 2 by considering L = 0 and M = 1, i.e. the LMI
region defined as the left hand-side of the complex plane.

Remark 4 As usual in the non-quadratic framework, when
FLFs are employed, the stability conditions depend on the
bounds of the time derivatives of the membership functions
φk = inf

x∈Ω
(ḣk(z)) ≤ 0. Even if under assumption 1 these

bounds always exist, they are difficult to estimate in practice,
especially in stabilization, before having synthesized the
closed-loop dynamics. Since these bounds are required to
solve the LMI problems expressed in theorem 1 and 2, it is
assumed that they are known, i.e. ḣk(z) ≥ φk (similarly
to several non-quadratic studies, e.g. [16], [18], [38]).
Moreover, in this case, it is not correct to tell about global
asymptotical stabilization since it is somewhat hypothetic to
say that these bounds arises for every initial conditions x(0).
To deals with this concerns, one may consider the estimation
of a domain of attraction [19], [32]. Nevertheless, for space
reason and since it is not the main focus of the proposed
results, such estimation is omitted in the present study and
will be the subject of further prospects.

Remark 5 Similarly to other results based on the Finsler’s
lemma (see e.g. [39], [34] or [25]), the conditions sum-
marized in theorem 2 involve a prefixed scalar parameter
ε > 0. In practice, such parameters are usually prefixed or
optimized by linear programming inside a logarithmically
spaced family of values such as ε ∈ {10−6, 10−5, . . . , 106}.
As quote in [34], this logarithmically spaced family avoids
an exhaustive linear search. Moreover, in [39], the authors
showed that for thousands of LPV models and comparing
with numerous results (classical Q approach, Finsler’s ap-
plication, and several other variations), this way of doing
was outperforming the existing results in a large way.

IV. SIMULATION RESULTS

In this section, the fourth order nonlinear benchmark of a
single link robot with flexible joint, depicted in Figure 1, is
considered [40], [41].

Fig. 1. Single link robot with a flexible joint [41].



From its nonlinear model [41] and applying the well-
known sector nonlinearity approach [3], the dynamics of this
robot can be exactly described by the following fourth order
T-S model [42]:

ẋ(t) =

2∑
i=1

hi(x1(t))Aix(t) +Bu(t) (39)

where x = [x1 x2 x3 x4]
T is the state vector, x1 and x2 are

respectively the angular position of the arm and the actuator,
x3 = ẋ1 and x4 = ẋ2, u is the motor control input, h1(x1) =
1−h2(x1) with h2(x1) = (1−f(x1))/(1+ρ) and f(x1(t)) =
sin(x1(t))/x1(t) ∈ [ρ ; 1] with ρ = min(sinx1(t)/x1(t)) ≈
−0, 2172. The vertices matrices are given by:

A1 =


0 0 1 0
0 0 0 1

k−mgL
J1

k
J1

0 0
k
J2

k
J2

0 0

 ,

A2 =


0 0 1 0
0 0 0 1

k−mgLρ
J1

k
J1

0 0
k
J2

k
J2

0 0

 , B =


0
0
0
1
J2


where J1 = J2 = 1 kg.m2 are respectively the actuator and
arm inertias, m = 1 kg is the mass of the arm, L = 1m
is the length of the arm, k = 100N.m.rad−1 is the spring
stiffness, g = 9.81m.s−2 is the acceleration due to gravity.

A non-PDC controller (2) have been design through the
LMI conditions of theorem 2, using the MATLAB LMI
toolbox [11], with the LMI region is defined as follows [33]:

1) the left half plan defined by Re(λ) < β,
2) a conic sector defined by its apex at (γ, 0) and an inner

angle π/2− θ,
3) a circle centered at (q, 0) with a radius s,

leading to the following LMI region matrices:

L =


−2β 0 0 0 0
0 −2γ cos θ 0 0 0
0 0 −2γ cos θ 0 0
0 0 0 −s −q
0 0 0 −q −s

 ,

M =


1 0 0 0 0
0 cos θ sin θ 0 0
0 − sin θ cos θ 0 0
0 0 0 0 1
0 0 0 0 0

 .
For s = 8, q = 7, β = 3, θ = π/5, γ = 3 and

φ1 = φ2 = −2, the solution with ε = 0.008 is given by
the following non-PDC gain matrices (the matrices X̃ij and
R̃ij , for (i, j) ∈ I2

r , are omitted for space reasons):

H1 =


0.0147 0.0155 −0.0545 −0.0355
0.0156 0.0183 −0.0751 −0.0689
−0.0561 −0.0761 0.4068 0.4139
−0.0360 −0.0692 0.4174 0.6392

 ,

H2 =


0.0197 0.0203 −0.0661 −0.0490
0.0202 0.0227 −0.0831 −0.0802
−0.0669 −0.0837 0.4103 0.3933
−0.0489 −0.0805 0.3959 0.6333

 ,
F1 =

[
−0.1507 0.2897 −2.7528 −8.0718

]
,

F2 =
[
−0.1353 0.3169 −2.0624 −8.0128

]
.

These gains provide that the closed-loop system is
D-stable. It is confirmed by Figure 2, which shows the
closed-loop trajectories, the time derivatives of the member-
ship functions and the poles location, for the initial condi-
tions x(0) = [−π/5 π/5 0 0]

T . Note that the assumption
ḣk(z) ≥ φk = −2 is verified in this simulation.
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Fig. 2. Closed-loop simulation: (a) closed-loop trajectories, (b) time
derivatives of the membership functions, (c) poles location in LMI region.

V. CONCLUSION

In this paper, non-PDC controller design conditions with
pole placement assignation for T-S fuzzy systems using non
quadratic Lyapunov function are proposed through the D-
stability concept. Relaxed results have been provided via
enhanced Fuzzy Lyapunov Functions involving a double
sum fuzzy structure. An example with the fourth order
benchmark of a flexible robot with single joint has shown the
effectiveness of the proposed results. Further works will be
done to deal with the estimation of the domain of attraction
in this non-quadratic D-stabilization context.
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