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Non-PDC Controller Design for Takagi-Sugeno Models via
Line-Integral Lyapunov Functions

Abdelmadjid Cherifi, Kevin Guelton and Laurent Arcese

Abstract—This paper presents a new non Paral-
lel Distributed Compensation (non-PDC) controllers
design based on line-Integral Lyapunov functions for
continuous-time Takagi-Sugeno (T-S) fuzzy models.
The previous works are mainly based on a BMI
formulation (LMI for first and second order systems
only). In this paper, we show that using a property on
dual system, it can be possible to formulate the design
of a controller as an LMI problem for n-th order T-
S systems. Two simulations are provided to show the
effectiveness of the proposed approach : a numerical
second order academic example and a fourth order
benchmark of a single link robot with flexible joint.

I. Introduction

Among nonlinear control theory, (T-S) fuzzy systems
[1] have shown their interests since they allow extending
some of the linear control concepts in the nonlinear
framework [2]. Indeed, a nonlinear system can be exactly
rewritten as a T-S fuzzy one on a compact set of the state
space. A T-S system is a convex polytopic model, i.e. a
collection of linear dynamics blended together by convex
nonlinear membership functions[2].
Using the direct Lyapunov approach, various conditions
have been studied for the design of fuzzy controllers and
stability analysis [3], [4], [5], [6], [7]. In most of the cases
such control problems are expected to be written as Li-
near Matrix Inequalities (LMI). Indeed LMI constraints
are interesting for controller and observer design since
they can be efficiently solved by convex optimisation [8].
Stability analysis and controller design have been first
investigated via common quadratic Lyapunov functions.
However, these methodes require to find a common
Lyapunov matrix solution of a set of LMIs [2], [3]. This
obviously leads to conservatism and many studies have
focused on its reduction [9].
At first, LMI conditions being obtained through a double
sum fuzzy structure, relaxation schemes have been intro-
duced as sum relaxations [10], [11]. Other ways to re-
duce the conservatism consist on considering alternative
Lyapunov functions candidates. For instance, piecewise
quadratic Lyapunov functions have been employed [12].
However these are not accurate with T-S models, espe-
cially when they are obtained from the sector nonlinea-
rity approach [2].
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Other attempts considered switched approaches but in-
troducing non obvious modeling assumption regarding to
the choice of the switched regions [13], [14]. With more
adequacy to the fuzzy structure of T-S models, non qua-
dratic approaches considering fuzzy Lyapunov functions
have been investigated [4], [6], [15]. In the continuous-
time framework, the time derivative of the membership
functions appears in the stability conditions. Therefore
to lead to LMIs, the boundary of these derivative terms
have been often considered [4], [6], [16]. However these
bounds are difficult to obtain in practical applications,
especially in stabilization, priori to solve LMI conditions.
To overcome this drawback, local non quadratic stabili-
zation have been proposed [17], but leading to complex
LMI formulation.
To leave the LMI framework, some alternatives have
been proposed using sum-of-squares (SOS) optimization
algorithms [18], [19], [20]. Nevertheless these SOS-based
conditions require strong modeling assumption which
reduce their practical interest in stabilization.
Finally a less investigated way in the non quadratic
framework was introduced by Rhee and Won [5], who
proposed a line-integral Lyapunov function candidate.
Owing to convenient path-independency conditions [21],
[22], this approach presents the interest of avoiding the
appearence of the time-derivative of the membership
functions in the stability conditions. However, these first
results were given in terms of Bilinear Matrix Inequalities
(BMIs) in stabilization. Recent studies have been there-
fore conducted to provide LMI conditions [23], [24], [25],
[26]. In [23], LMI conditions are proposed but requiring
the introduction of a decision matrix with a particular
form. This reduces the pratical applicability of such
approaches when the membership functions depend on
several state variables or when the order of the system
increases. In [24], a solution to this problem was proposed
but requiring a two steps LMI algorithm.
More recently, non-PDC controller design has been pro-
posed in [25] and improved in [26]. However, these results
lead to LMIs for first and second orders T-S systems,
BMIs for third order systems, then more and more
complex as the order increases [26].
Summarizing, all the problems concerned above are un-
derstood as major drawbacks for non-PDC controller
design using non quadratic line-integral Lyapunov func-
tions. These have motivated the present study. In [27],
thanks to a dual system property, PDC controller design
has been proposed. Following this way, the conditions



proposed in the sequel improve the result by providing
LMI conditions for non-PDC controller design using
line-inegral Lyapunov functions without requiring any
systems order assumptions.

This paper is organized as follows : Section II
introduces some useful definitions, notations and
lemmas. Section III is devoted to the presentation of
the new LMI conditions for non quadratic stabilization
of T-S fuzzy systems. To illustrate the benefit of the
proposed approach in terms of conservatism, a second
ordre numerical example is provided and compared
with previous works. Then a fourth order benchmark
of a single link robot with flexible joint is considered
to highlight the efficiency of the proposed approach
for dynamical nonlinear systems of order upper than two.

II. DEFINITIONS, NOTATIONS AND USEFUL
LEMMAS

Consider the T-S fuzzy model given by :

ẋ(t) =
r∑
i=1

hi(ξ(t))(Aix(t) +Biu(t)) (1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is
the input vector, ξ(t) is the vector of premises, for
i ∈ {1, ..., r}, hi(ξ(t)) ∈ [0, 1] are convex membership
functions with

r∑
i=1

hi(ξ(t)) = 1, Ai ∈ Rn×n, and

Bi ∈ Rn×m are real constant matrices defining the
ith vertex.

Assumption 1 : The vector of premises ξ(t) only
depends on the state variables, i.e. on the component of
x(t).

Notations : In the sequel, if not explicitly stated,
matrices are assumed to have appropriate dimensions.
Moreover, when there is any ambiguity, the time t
argument will be omitted to lighten mathematical
expressions. M � 0 and I denote respectively a positive
definite matrix and an identity matrix with appropriate
dimensions. An asterisk (∗) denotes a transpose quantity
in a matrix or the transpose of its left-hand side term
for inline expressions. Consider a set of real matrices
Mi and Nij , for all (i, j) ∈ {1, ..., r}2 , one denotes
Mh =

r∑
i=1

hi(ξ)Mi, Nhh =
r∑
i=1

r∑
j=1

hi(ξ)hj(ξ)Nij .

Let us consider the non-PDC control law given by :

u(t) =
r∑
i=1

hi(ξ)Fi

 r∑
j=1

hj(ξ)Hi

−1

x(t) (2)

where Fi ∈ Rm×n and Hj ∈ Rn×n are constant gain
matrices to be synthesized.

From (1) and (2), the close-loop dynamics may be
expressed, with the above defined notations as :

ẋ(t) = G(x)x(t) (3)

with
G(x) = Ah +BhFhH

−1
h .

Therefore, the goal of this paper is to propose new
LMI based conditions allowing to design Fi ∈ Rm×n and
Hi ∈ Rn×n such that the closed-loop dynamics (3) is
stable. Let us consider the following line-integral Lya-
punov function candidate [5] :

v(x(t)) = 2
∫

Γ(0,x(t))
gT (ϕ)dϕ (4)

where Γ(0, x(t)) is the path from the origin 0 to the
current state x(t), ϕ ∈ Rn is a dummy vector for the
integral and assuming :

g(x) = Phx(t) (5)

with Ph satisfying the path independency conditions,
such that [5], [22] :

Ph = P0 +
r∑
i=1

hi(x)Di (6)

with



P0 =


0 p1,2 · · · p1,n

p1,2 0
. . .

...
...

. . . . . . pn−1,n
p1,n · · · pn−1,n 0



Di =


d
αi,1
1,1 0 · · · 0

0 d
αi,2
2,2

. . .
...

...
. . . . . . 0

0 · · · 0 d
αi,n
n,n


,

(p1,2, ..., pn−1,n) and
(
d
αi,1
1,1 , ..., d

αi,n
n,n

)
defined as in [5].

Substituting (6) in (5), (4) is a Lyapunov function
candidate and the closed-loop dynamics (3) is stable to
the origine if conditions (7), (8) and (9) hold :

P0 +Di � 0, (7)

for x(0) = 0, v(x(t)) = 0, (8)

∀x(0) 6= 0, v̇(x(t))< 0, (9)

Note that (7) is satisfied if, for all i = {1, ..., r},
P0 + Di � 0. Moreover, (8) is obviously verified when
considering (4). Then, LMI conditions satisfying (9) will
be the subject of the main result proposed in the next
section.



Lemma 1 [28] : Let x ∈ Rn, Q = QT ∈ Rn×n

and R ∈ Rm×n such that rank(R) < n. The following
statements are equivalent :

xTQx ≺ 0, ∀x ∈ {x ∈ Rn : x 6= 0, Rx = 0} , (10)

∃X ∈ Rn×m : Q+XR+RTXT ≺ 0, (11)

Lemma 2 [10] : Let Γij, for (i, j) ∈ {1, ..., r}2, be
matrices of appropriate dimensions. Γhh ≺ 0 is satisfied
if both following conditions hold :{ Γii ≺ 0, ∀i ∈ {1, ..., r}

2
r − 1Γii + Γij + Γji ≺ 0, ∀(i, j) ∈ {1, ..., r}2 /i 6= j

(12)

Property 1 : Let us consider the dual system of (3)
given by :

ż(t) = GT (z)z(t), (13)

if (13) is stable then (3) is stable.

Proof: Straightforward since, if the eigenvalues of
GT (z) (whatever z) are in the left hand-side of the
complex plan, the eigenvalues of G(x) (whatever x) also
belong to the left hand-side, see [29] for other dual-based
results in the LPV framework.

From property 1, if one can find the gain matrices Fi
and Hi for i ∈ {1, ..., r} such that (13) is stable, then
(2) is a non-PDC controller stabilizing the T-S model
(1). The main results are given in the following section.

III. Main results
Theorem 1 : The T-S model (1) is stabilized by the non-
PDC control law (2), i.e. the closed-loop dynamics (3) is
globally asymptotically stable, if there exist a scalar ε, the
matrices P0 and Di defined in (6), the gain matrices Fi
and Hi, such that, for all i ∈ {1, ..., r}, P0 +Di � 0 and
conditions (12) are verified with :

Γij =
[

Θij (∗)
Φij −ε(Hj +HT

j )

]
(14)

where
Θij = AiHj +HT

j A
T
i +BiFj + FTj B

T
i

Φij = P0 +Di −Hj + ε(AiHj +BiFj)T

Proof: Considering the path-independency condi-
tions, one can rewrite (9) from (4) as :

v̇(z) = żTPhz + zTPhż

=
[
z
ż

]T [ 0 Ph
Ph 0

] [
z
ż

]
<0

(15)

Moreover, from (13) one can write :

G(z)T z(t)− ż(t) = 0 (16)

which is equivalent to :[
G(x)T −I

] [ z
ż

]
= 0 (17)

Now, consider Uh and Vh, two slack decision matrices
with appropriate dimensions, one may apply lemma 1,
therefore (15) holds if the next inequality is satisfied :[

0 Ph
Ph 0

]
+[[

Uh
Vh

] [
G(x)T −I

]
+ (∗)

]
≺ 0

(18)

that is to say[
0 Ph
Ph 0

]
+[[

UhH
−T
h FTh B

T
h + UhA

T
h −U

VhH
−T
h FTh B

T
h + VhA

T
h −V

]
+ (∗)

]
≺ 0

(19)

Now, let Uh = HT
h and Vh = εHT

h , where ε is a positive
prefixed scalar, (19) becomes :[

Θhh (∗)
Φhh −ε(Hh +HT

h )

]
≺ 0 (20)

with
Θhh = AhHh +BhFh + FTh B

T
h +HT

h A
T
h

Φhh = Ph −Hh + ε(HT
h A

T
h + FTh B

T
h )

Now, applying lemma 2, one obtains the conditions
expressed in theorem 1.

Remark 1 : The conditions summarized in theorem 1
involve a parameter ε, which has to be fixed in advance.
Note that, following the proof of theorem 1, this parameter
is no longer required. Nevertheless, we let this parameter
in the LMI conditions since it may be useful to tune the
closed-loop dynamics performances. They are usually pre-
fixed values belonging to a logarithmically spaced family
of values such as ε ∈

{
10−6, 10−5, ..., 106}.

The following theorem, which improve LMI conditions
given in [27], is proposed as an alternative to Finsler’s
relaxation without using prefixed unknown parameters.

Theorem 2 : The T-S model (1) is stabilized by the non-
PDC control law (2), i.e. the closed-loop dynamics (3) is
globally asymptotically stable, if there exist the matrices
P0 and Di defined in (6), the gain matrices Fi and Hi,
such that, for all i ∈ {1, ..., r}, P0+Di � 0 and conditions
(12) are verified with :

Γij =
[
−2(P0 +Di) (∗)

σij −Hj −HT
j

]
(21)

with

σij = P0 +Di +HT
j +HT

j A
T
i + FTj B

T
i .

Proof: : Let S1 and S2 be any slack decision matrices
with appropriate dimensions, considering the Lyapunov



candidate function (4) and the path-independency condi-
tions (6), one can rewrite (9) as :

v̇(z) = żTPhz + zTPhż

=
[
z
ż

]T [
Ph ST1
0 ST2

] [
ż
0

]
+ (∗)<0

(22)

According to property 1, one can write :

−ż(t) +G(x)T z(t) = 0. (23)

Therefore, (22) is equivalent to :[
z
ż

]T [
Ph ST1
0 ST2

] [
ż

−ż +G(x)T z

]
+ (∗) ≺ 0 (24)

that can be rewritten as :[
z
ż

]T [[
Ph ST1
0 ST2

] [
0 I

G(x)T −I

]
+ (∗)

] [
z
ż

]
<0
(25)

which is satisfied, if ∀(z, ż) :[
Ph ST1
0 ST2

] [
0 I

G(x)T −I

]
+ (∗) ≺ 0 (26)

that is to say : [
Ξhh (∗)
Ψhh −S2 − ST2

]
≺ 0 (27)

with

Ξhh = AhS1 + ST1 A
T
h +BhFhH

−1
h S1 + ST1 H

−T
h FTh B

T
h

Ψhh = Ph −Hh +HT
h A

T
h + ST1 H

−T
h FTh B

T
h

Now, let S1 = S2 = Hh, (28) becomes :

[
AhHh +HT

h A
T
h +BhFh + FTh B

T
h (∗)

Ph −Hh +HT
h A

T
h + FTh B

T
h −Hh −HT

h

]
≺ 0
(28)

By congruence transformation of (28) with
[
I −I
0 I

]
,

one obtains :

Γij =
[

−2Ph (∗)
Ph +HT

h +HT
h A

T
h + FTh B

T
h −Hh −HT

h

]
(29)

Now, applying lemma 2, one obtains the conditions
expressed in theorem 2.

IV. Numerical Exemples
In this section, two numerical examples are proposed.

The first one, based on an academic second order T-S
model, is dedicated to compare the conservatism of the
results proposed above regarding to the previous recent
work [27]. Let us recall that, for T-S systems of order
upper than two, there were no previous LMI results for
non quadratic stabilization using a line-integral Lyapu-
nov function. Hence, the second example illustrates the
effectiveness of the above proposed LMI conditions on a
fourth order nonlinear benchamrk of a single link robot

with flexible joint [30].

A. Example 1
Let us consider the T-S fuzzy model with two rules [5] :

ẋ(t) =
2∑
i=1

hi(ξ(t))(Aix(t) +Biu(t)) (30)

where x(t) = [x1(t) x2(t)] and ξ ≡ x1. The normalized
MFs are given as{

h1(x1)) = (1− sin(x1))/2
h2(x1) = 1− h1(x1) (31)

The numerical values of the matrices Ai and Bi are as
follows :

A1 =
[

2 −10
2 0

]
B1 =

[
1
1

]

A2 =
[
a −5
1 2

]
B2 =

[
b
2

]
A non-PDC controller of the form 2 can be designed via a
line-integral candidate Lyapunov functions with P1 and
P2 having the following entries :

P1 =
[
d1

11 p12
p12 d22

]
, P2 =

[
d2

11 p12
p12 d22

]
(32)

as defined in (6) [5].

Figure 1 shows the feasibility fields computed, using
the MATLAB LMI Toolbox [31], from theorem 1 (with
ε = 0.1), theorem 2 proposed above and corollary 3 in
[27]. As one can see, the results proposed in theorem
1 and theorem 2 are always outperforming the ones
proposed in [27].

−20 −15 −10 −5 0 5 10 15 20
0

5

10

15

20

25

30

a

b

 

 

Theorem1

Theorem2

Corollary 3 in (Liu et al., 2013)

Fig. 1. Comparison of the feasibility fields obtained through
theorem 1, theorem 2 and corollary 3 in [27].

Let us illustrate the particular case a = 12, b = 27
and ε = 0.1 where no solution exist with corollary 3 in
[27]. The solution obtained from theorem 1 is given by



the following matrices :

P1 =
[

95.32 7.66
7.66 2.16

]
P2 =

[
674.99 7.66
7.66 2.16

]
H1 =

[
21.38 −4.96
6.26 1.47

]
H2 =

[
37.22 −12.34
9.83 0.51

]
F1 =

[
−52.5 5.69

]
F2 =

[
−39.12 4.80

]
Figure 2 shows the open-loop phase portrait of the T-

S fuzzy system (30). As one can see, this open-loop T-S
system is unstable. Figure 3 shows the closed-loop phase
portrait of the T-S system (30) stabilized by the designed
non-PDC controller. Let us notice that the closed-loop
system is now globally asymptotitally stable.
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Fig. 2. Open-loop phase portrait.

B. Example 2
Let us consider the well-known benchmark of a single

link robot with flexible joint depicted in Figure 4 and
described by the fourth order nonlinear state space model
[32] :



ẋ1(t) = x3(t)

ẋ2(t) = x4(t)

ẋ3(t) = 1
J1

[k(x2(t)− x1(t))−mgLf(x1(t))x1(t)]

ẋ4(t) = 1
J2

[u− k(x2(t)− x1(t))]
(33)

where J1, J2 are respectively the actuator and arm
inertials, m the arm mass, L the arm length, k the spring
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Fig. 3. Closed-loop phase portrait.

stiffness and f(x1(t)) = sin(x1(t))/x1(t) ∈ [ρ ; 1]. x1 and
x2 are respectively the angular position of the arm and
the actuator.

Fig. 4. Single link robot with a flexible joint [30].

Using the well-known sector nonlinearity approach, an
exact T-S model of (33) may be expressed as [2] :

ẋ(t) =
2∑
i=1

hi(x1(t))Aix(t) +Bu(t) (34)

with x(t) = (x1(t)x2(t)x3(t)x4(t))T , h1(x1(t)) =
(f(x1(t)) + ρ)/(1 + ρ), h2(x1(t)) = 1 − h1(x1(t)), ρ =
min(sin x1(t)/x1(t)) and :

A1 =


0 0 1 0
0 0 0 1

k−mgL
J1

k
J1

0 0
k
J2

k
J2

0 0



A2 =


0 0 1 0
0 0 0 1

k−mgLρ
J1

k
J1

0 0
k
J2

k
J2

0 0

 , B =


0
0
0
1
J2


The controller design have been done through theorem

1 using the MATLAB LMI toolbox [31]. The model
parameters are assumed as k = 100N.m.rd−1, m = 1kg,



g = 9.81m.s−2 and L = 1m. The solution of theorem 2
with ε = 0.1 are given by :

H1 =


98, 95 100, 38 −147, 27 −173, 52
100, 59 109, 53 −164, 11 −224, 09
−41, 06 −61, 48 864, 86 986, 34
−14, 94 −60, 36 463, 59 920, 47



H2 =


109, 17 113, 80 −180, 04 −177, 41
98, 21 108, 35 −177, 95 −218, 88
−47, 62 −109, 02 852, 68 1103, 53
52, 71 −25, 49 305, 99 935, 15f



P1 =


100, 82 100, 92 −89, 22 −67, 77
100, 92 106, 35 −134, 92 −131, 52
−89, 22 −134, 92 834, 59 679, 60
−67, 77 −131, 52 679, 60 996, 73



P2 =


101, 38 100, 92 −89, 22 −67, 77
100, 92 106, 35 −134, 92 −131, 52
−89, 22 −134, 92 834, 59 679, 60
−67, 77 −131, 52 679, 60 996, 73


F1 =

[
−849, 5 −325, 1 1754, 2 −5159, 7

]
F2 =

[
−2184, 7 −1460, 2 4762, 4 −4238, 4

]
Figure 5 shows the closed-loop trajectories of the

stabilized nonlinear system (33) and its dual. As one can
notice, the non-PDC controller being designed through
the dual system, the stabilization of the latter leads
to the stabilization the original nonlinear system. To
confirm this dual property, the eigenvalues (over the
system trajectories) of the original nonlinear system and
its dual are plotted on Figure 6. Of course, eigenvalues
of both systems belong to the left hand-side of the
complex plan.

V. Conclusion
In this paper, non quadratic stabililty of T-S system

has been considered. To overcome the drawback of clas-
sical non quadratic approach, i.e. the occurrence of the
time derivatives of the membership functions in the sta-
bility conditions, a line-integral Lyapunov function has
been considered [5]. The limits of previous non quadratic
works using such Lyapunov functions remain the BMI
formulation of controller design condition (LMI for first
and second order systems only). To unlock this important
problem, the results proposed in this paper have been
obtained through a dual system property without any
order assumption. Hence, from now, the way is open
for more complex control problems using line-integral
Lyapunov functions such as performance specification,
robustness, and so on.
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Fig. 5. Closed-loop trajectories : (a) Original nonlinear system
(33) and (b) dual system.
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Fig. 6. Eigenvalues over the systems trajectories : (a) Original
nonlinear system (33) and (b) dual system.
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