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Abstract: In this paper, a new step on fuzzy relaxation for nonlinear systems’ stability analysis is 
addressed. Inspired from non-quadratic Lyapunov functions (NQLF), regarding to quadratic ones (QLF), 
a new polynomial fuzzy Lyapunov function (PFLF) is proposed as an extension to the polynomial 
Lyapunov function (PLF) [22]. Following the latter post-LMI challenge, the obtained stability conditions 
are written in terms of a sum-of-squares (SOS) optimization problem. The proposed PFLF includes the 
well-studied NQLF ones as a special case. Moreover, the proposed SOS based stability conditions don’t 
require unknown parameters as well as guarantee, when a solution exists, the global stability. 
Keywords: Polynomial fuzzy systems, Polynomial fuzzy Lyapunov function, Stability, Sum of squares 
(SOS), Global non-quadratic stability, Relaxed stability conditions. 

 

1. INTRODUCTION 

Since their introduction in 1985 (Takagi and Sugeno, 1985), 
Takagi-Sugeno (TS) models have been the subject of 
numerous works regarding to their stability analysis and 
stabilization. Due to their universal approximator skills, 
interesting TS modeling based results have been provided for 
analyzing nonlinear systems. Indeed, using the well-known 
Sector Nonlinearity approach (Tanaka and Wang, 2001), a 
TS model is able to match exactly a smooth nonlinear system 
on a compact set of its state space. Using Quadratic 
Lyapunov Functions (QLF), Linear Matrix Inequality (LMI) 
based stability/stabilization criterion have been derived in 
various cases, see e.g. (Tanaka and Wang, 2001; Sala et al., 
2005) and references therein. Although QLF approach is still 
mainly employed, it is well known that it suffers from 
conservatism. Indeed, it requires checking the existence of 
some common decision matrices, which have to be solution 
of a set of LMI constraints, see (Sala, 2009) for a detailed 
review of sources of conservatism. 

This work is concerned with relaxation in the sense of the 
choice of the most convenient Lyapunov Function candidate. 
Regarding to LMI based Piecewise Lyapunov Function 
(PWLF) approaches; some interesting results have been 
provided in terms of conservatism (Johensen et al., 1999; Xie 
et al., 1997), especially when the conclusion parts of the 
considered TS model are not simultaneously activated all 
together. However, TS models obtained from the sector 
nonlinearity approach lack this property. Complementary to 
the latter works and with more adequacies to the fuzzy 
structure of TS models, many research efforts have been 
recently done in the non-quadratic framework. Indeed, 
several works employing Non-quadratic Lyapunov Function 

(NQLF) candidates have been proposed (Blanco et al., 2001; 
Tanaka et al., 2003; Guerra and Vermeiren, 2004; Feng, 
2006). These ones are convenient with TS fuzzy models since 
NQLF shares the same membership functions (MFs). 
However, some drawbacks appear in the continuous time 
case since the time derivatives of MFs occurs when applying 
the direct Lyapunov method to obtain LMI based global 
stability conditions. Therefore, the most commonly used 
technique is to bound MFs time derivatives (Tanaka et al., 
2003). However, these bound are difficult to estimate a priori, 
in practice, before solving LMI conditions. To overcome this 
problem and to cope with the non-quadratic framework, a 
first way has been proposed in (Rhee and Won, 2006). The 
idea was to employ a Line-Integral Lyapunov Function 
(LILF). Nevertheless, the obtained conditions are LMIs in 
stability and Bilinear Matrix Inequalities (BMI) when dealing 
with stabilization. Moreover, as discussed in (Guelton et al., 
2010), the LILF requires some constraining path-
independency conditions that are significantly reducing its 
applicability. Recently, an interesting step has been addressed 
with LMI based NQLF stability conditions to avoid any 
knowledge on MFs’ dynamics (Bernal and Guerra, 2010). 
Nevertheless, these approaches have been obtained by 
reducing the global stability analysis to a local one.  

Nowadays, despite the success and popularity of LMI based 
stability conditions for TS fuzzy models, the drawbacks 
described above are understood as a limit of these 
approaches, especially in the non-quadratic framework. 
Therefore, a challenging change of perspective has to be 
considered and this paper tends to add a step in this way. 
Very recently, an alternative to LMIs appears by considering 
polynomial approaches. Indeed, it has been shown that some 
convex optimization problems, such like LMI problems, can 



 
 

     

 

be recasted as more general Sum Of Square (SOS) 
decomposition problems. Therefore, with the first SOS based 
stability conditions, TS model analysis has just passed an 
important milestone (Tanaka et al., 2009; Narimani and Lam, 
2010).  

In this paper, the goal is to extend the stability conditions for 
polynomial fuzzy systems proposed in (Tanaka et al., 2009) 
by the use of a new Polynomial Fuzzy Lyapunov Function 
(PFLF) candidate. Indeed, the Polynomial Lyapunov 
Function (PLF) proposed in (Tanaka et al., 2009) don’t take 
into account MFs knowledge and, similarly to the QLF 
approach, it requires to find a common PLF to a set of SOS 
conditions. Thus, similarly to the extension of QLF by 
NQLF, the proposed PFLF shares the same MFs structure as 
the TS fuzzy model to be analyzed. Moreover, it is to be 
pointed out that the following proposed PFLF based SOS 
stability conditions do not require unknown bounds of MFs 
dynamics and guarantee the global stability when a solution 
to the optimization problem holds. 

 

2. PROBLEM STATEMENT 

Consider the following nonlinear system: 

( ) ( )( )x t f x t=  (1) 

where f  is a smooth nonlinear function and 

( ) ( ) ( )1
n

nx t x t x t= ∈ℜ⎡ ⎤⎣ ⎦  is the state vector. 

Using the well-known sector nonlinearity approach (Tanaka 
and Wang, 2001), it has been shown that (1) can be rewritten 
(globally or semi-globally) as a polynomial fuzzy system 
such that (Tanaka et al., 2009):  

( )( ) ( )( ) ( )( )
1

ˆ
r

i i
i

x h z t A x t x x t
=

= ∑  (2) 

where ( ) ( ) ( )1
p

pz t z t z t⎡ ⎤= ∈ℜ⎣ ⎦  is the premise vector, 

( )( )iA x t  are polynomial matrices in ( )x t , 

( )( ) ( )( ) ( )( )1ˆ ˆ ˆ N
Nx x t x x t x x t⎡ ⎤= ∈ℜ⎣ ⎦  is a vector of 

monomials in ( )x t and, for 1,...,i r= , ( )( )ih z t  are positive 
fuzzy membership functions holding the convex sum 

property ( )( )
1

1
r

i
i

h z t
=

=∑ . 

In (Tanaka et al., 2009) , a common PLF 
( )( ) ( )( ) ( )( ) ( )( )ˆ ˆTV x t x x t P x t x x t=  has been employed to 

investigate the stability of fuzzy systems described by (2). 
This approach remains conservative since it requires 
checking the existence of a common polynomial Lyapunov 
matrix ( )( ) N NP x t ×∈ℜ  regarding to the fuzzy 
interconnection structure of (2). Therefore, in order to 
provide less conservative stability criterion for the class of 
systems depicted by (2), one proposes the following 
polynomial fuzzy Lyapunov function candidate (PFLF), 

which shares the same fuzzy structure as the TS model to be 
analyzed: 

( )( ) ( )( ) ( )( ) ( )( ) ( )( )
1

ˆ ˆ
r

T
i i

i

v x t x x t h z t P x t x x t
=

= ∑  (3) 

where ( )( ) N N
iP x t ×∈ℜ  are polynomial fuzzy Lyapunov 

matrices in ( )x t . 

The goal is now to propose new stability conditions for the 
class of polynomial fuzzy systems (2) based on the PFLF 
candidate (3). 

 

3. SOS BASED FUZZY POLYNOMIAL STABILITY 
CONDITIONS 

In this section, one presents new Sum-of-Square based 
stability conditions for TS polynomial Fuzzy systems 
depicted by (2). To do it, one considers a PFLF candidate (3). 
For more clarity of further mathematical proofs, before 
presenting the main results, some useful preliminaries 
(notations, assumption and lemma) are presented. 

 

3.1 Preliminaries: 

Notations: When there is no ambiguity, the time t  will be 
omitted as entry for simplifying mathematical expressions 
and I  will denote an identity matrix of appropriate 
dimension. Moreover, let ( )k

iA x  be the thk  row of ( )iA x , 
from (2) one can write, for 1,...,k n= : 

( ) ( ) ( )
1

ˆ
r

k
k i i

i
x h z A x x x

=

= ∑  (4) 

 

Assumption 1: For 1,...,i r= , each ( )ih z  is assumed 
continuously derivable within each states variables kx , 

1,...,k n= . 

 

Remark 1: In previous non-quadratic studies, the bounds of 
the MFs derivatives ( )i ih z θ≤  are required priori to solve 
LMI conditions, see e.g. (Tanaka et al. 2003, Guelton et al., 
2009). This is often point out as a criticism of LMI based 
non-quadratic approaches. However, let us recall that: 

( ) ( )
1

n
k

i i k
k

h z g z x
=

= ∑  (5) 

with ( ) ( )ik
i

k

h z
g z

x
∂

=
∂

. Therefore, despite the bounds of 

( )ih z  which are difficult to be obtained in practice, under 

assumption 1, the bounds of ( ) 1 2. ,  k k k
i i ig α α⎡ ⎤∈ ⎣ ⎦  may be easily 

obtained on a compact set Ω . For example, consider 



 
 

     

 

( )1 1cosh z x= , the MFs derivatives are ( )1 1 1sinh z x x= , 
depending on the state dynamics 1x  and so making difficult 

obtaining the bound ( )1 1h z θ≤  without restrictive 
assumptions on the whole T-S model dynamics. However, 

the bounds of ( ) ( )11
1 1

1

sin
h z

g z x
x

∂
= =

∂
 are always known. 

This property will be used in the sequel to obtain convex 
SOS based conditions. 

 

Lemma 1 (Tuan et al., 2001): The inequality 

( ) ( )
1 1

0
r r

i j ij
i j

h z h z
= =

Γ <∑∑  is satisfied if, for all combinations 

of , 1, 2,...,i j r= , 0iiΓ <  hold and, for 1 i j r≤ ≠ ≤ , 

( )1 1 0
1 2ii ij jir

Γ + Γ + Γ <
−

 hold. 

 

3.2  Main result: 

Theorem 1: The polynomial fuzzy system (2) is globally 
asymptotically stable if there exists, for all combinations of 

1,...i r= , 1,...,j r= , j i≠ , 1,...,p r= , 1,...,q n=  and 
1, 2s = , the symmetric polynomial matrices ( ) N N

iP x ×∈ℜ  

and ( ) N N
iR x ×∈ ℜ  such that (6), (7) and (8) are satisfied, 

with the polynomials ( )1 0i xε >  for 0x ≠ , ( )2 0i xε ≥  and 

( )3 0ij xε ≥  for all x . 

( ) ( ) ( )( ) ( )1ˆ ˆT
i ix x P x x I x xε−  is SOS (6) 

( ) ( ) ( )( ) ( )2ˆ ˆT q
iips ix x x x I x xε− ϒ +  is SOS (7) 

( ) ( ) ( ) ( )( ) ( ) ( )3
1 1ˆ ˆ

1 2
T q q q

iips ijps jips ijx x x x x x I x x
r

ε⎛ ⎞− ϒ + ϒ + ϒ +⎜ ⎟−⎝ ⎠
 

is SOS (8) 

with ( ) ( ) ( ) ( ) ( ) ( ) ( )(
( )( )

( ) ( ) ( )
1

1

ˆ ,

q T T
ijps i j j i

n
j k q

i ijps
k k

x A x T x P x P x T x A x
nr

P x t
A x x x

x t
ϕ

=

ϒ = +

⎞∂
+ +⎟⎟∂ ⎠
∑

 

( )( ) ( ) ( ) ( )( )ˆq q q
ijps ps i p jA x t x x P x R xϕ α= +  and where 

( ) N nT x ×∈ℜ  is a polynomial matrix in x  such that 

( ) ( )x̂ x T x x= , i.e. whose ( ), thi j  entry is given by 

( ) ( ) ( )
,

ˆi
i j

j

x x
T x

x
∂

=
∂

. 

 

Proof: Let us consider the PFLF candidate (3). The 
polynomial T-S system (2) is stable if: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1

1 1

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ 0

r
T T

i i i
i

r r
T T

i i i i
i i

v x h z x x P x x x x x P x x x

h z x x P x x x h z x x P x x x

=

= =

= +

+ + <

∑

∑ ∑
 (9) 

Let, for 1,...,i r=  and 1,...,k n= , ( ) ( )ik
i

k

h z
g z

x
∂

=
∂

. Under 

assumption 1, ( ) 1 2, ,  k k k
i i it g z α α⎡ ⎤∀ ∈ ⎣ ⎦ . Therefore, using the 

sector nonlinearity decomposition one can write: 

( ) ( ) ( )1 1 2 2
k k k k k
i i i i ig z v z v zα α= +  (10) 

with 1 0k
iv ≥ , 2 0k

iv ≥  and ( ) ( )1 2 1k k
i iv z v z+ = .  

Now, from (4) and (10) one can write, for 1,...,i r= : 

( ) ( )

( ) ( ) ( ) ( )

1

2

1 1 1

ˆ 

n
i

i k
k k

r n
k k k

j is is j
j k s

h z
h z x

x

h z v z A x x xα

=

= = =

∂
=

∂

=

∑

∑∑∑
 (11) 

Then, the inequality (9) can be rewritten as: 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

1

1

ˆ ˆ

ˆ ˆ

ˆ ˆ 0

r
T T T

i i i
i

r
T

i i
i
r

T
i i

i

h z x T x P x x x x x P x T x x

h z x x P x x x

h z x x P x x x

=

=

=

+

+

+ <

∑

∑

∑

 (12) 

Considering (2), it yields: 

( ) ( ) ( ) ( ) ( ) ( )(

( ) ( ) ( )) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1

1

1

ˆ

ˆ

ˆ ˆ

ˆ ˆ 0

r r
T T T

i j i j
i j

j i

r
T

j j
j

r
T

j j
j

h z h z x x A x T x P x

P x T x A x x x

h z x x P x x x

h z x x P x x x

= =

=

=

+

+

+ <

∑∑

∑

∑

 (13) 

Moreover, using the above defined notations, one can write: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1 1

1 1 1

ˆ

r r n
j

j j j k
j j k k

r r n
j k

i j i
i j k k

P x
h z P x h z x t

x
P x

h z h z A x x x
x

= = =

= = =

∂
=

∂

∂
=

∂

∑ ∑ ∑

∑∑ ∑
 (14) 

By extension to the way shown in (Mozelli et al., 2009) in 
the LMI based non-quadratic context, since the membership 

functions hold the convex sum property ( )
1

1
r

i
i

h z
=

=∑ , one has 



 
 

     

 

( )
1

0
r

i
i

h z
=

=∑  and so, for any fuzzy polynomial matrices 

( ) ( )
1

r

j j
j

h z R x
=

∑  in x , one can write: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )( ) ( )

( )( ) ( ) ( ) ( ) ( )

1

1 1

2

1 1 1 1 1

ˆ ˆ

ˆ ˆ

ˆ ˆ

r
T

j j
j

r r
T

j p p j
j p

r r r n
q T q

i j ps ijps
i j p q s

h z x x P x x x

h z h z x x P x R x t x x

h z t h z v z x x x xϕ

=

= =

= = = = =

= +

=

∑

∑∑

∑∑∑∑∑

 (15) 

with ( )( ) ( ) ( ) ( )( )ˆq q q
ijps ps i p jA x t x x P x R xϕ α= +  

Therefore, from (14) and (15), inequality (13) is satisfied if: 

( ) ( ) ( ) ( ) ( ) ( )
2

1 1 1 1 1

ˆ ˆ 0 
r r r n

q T q
i j ps ijps

i j p q s

h z h z v z x x x x x
= = = = =

ϒ <∑∑∑∑∑  (16) 

with 

( ) ( ) ( ) ( ) ( ) ( ) ( )(
( )( )

( ) ( ) ( )
1

1

ˆ

q T T
ijps i j j i

n
j k q

i ijps
k k

x A x T x P x P x T x A x
nr

P x t
A x x x

x t
ϕ

=

ϒ = +

⎞∂
+ +⎟⎟∂ ⎠
∑

 

Finally, since for all ,p q  and s  one has ( ) 0q
psv z ≥ , 

applying lemma 2, one obtains the conditions of theorem 1.  

 

Remark 2: From (6), (7) and (8), choosing as special case 
( ) ( )jP x P x=  a common polynomial Lyapunov matrix as 

well as ( ) ( )jR x P x= − , one obtains the PLF based stability 
conditions proposed in (Tanaka et al., 2009). Thus, theorem 
1’s conditions are less conservative. 

 

Remark 3: As quote in (Tanaka et al., 2009), the second order 
PLF remains to the quadratic Lyapunov function 

( ) TV x x Px=  with n nP ×∈ℜ . Similarly, the PFLF (3) is 
equivalent, at the second-order, to the well-known Non-

quadratic ( ) ( )
1

r
T

i i
i

V x h z x Px
=

= ∑  (Tanaka et al., 2003).  

Let us recall that the main drawback of previous LMI based 
fuzzy Lyapunov results was that, to study the global stability 
of a T-S model, some unknown parameters (e.g. lower 
bounds of membership function derivatives) have to be 
known in advance (to solve LMI problem). A LMI based 
alternative to this problem has been proposed in (Benal and 
Guerra, 2010) but it leads to complex LMI formulation and 
necessitate reducing the global stability analysis goal to a 
local point of view. What is important to highlight with the 
proposed SOS based approach is that, the conditions of 
theorem 1 provide, as a special case, an alternative to the 
above quoted problems of non-quadratic approaches since it 

stands for global stability analysis of T-S systems without 
requiring unknown parameters regarding to the MFs 
dynamics. 

 

3. NUMERICAL EXAMPLE 

In order to compare and illustrate the benefit of the proposed 
approach in terms of conservatism regarding to previous 
results, let us consider the following nonlinear system 
corresponding to example 2 in (Tanaka et al., 2009) : 

( ) ( )
( ) ( ) ( ) ( ) ( )

1 2

2 1 2 12

x t x t

x t x t x t g t x t

=

= − − −
 (17) 

where [ ]( ) 0,g t k∈  for all t  and which can be exactly 
represented by the following T-S fuzzy model: 

( ) ( )( ) ( )
2

1
i i

i

x t h z t A x t
=

= ∑  (18) 

where ( ) ( )z t g t= , 1

0 1
2 1

A ⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

, 1

0 1
2 1

A
k

⎡ ⎤
= ⎢ ⎥− − −⎣ ⎦

, 

( )( ) ( )
1

k g t
h z t

k
−

=  and ( ) ( )
2

g t
h t

k
= . 

As quoted in (Tanaka et al., 2009) , the quadratic stability 
conditions (Tanaka and Wang, 2001) guarantees the stability 
of (18) for 3.82k ≤ , the piecewise quadratic approach (Xie 
et al., 1997) guarantees the stability for 4.7k ≤ . 

Let us now consider x̂ x= , we can apply the proposed PFLF 
approach (theorem 1) on the fuzzy system (18) as well as the 
PLF based ones (Tanaka et al., 2009). The results, 
summarized in Table 1 for the second and the sixth order 
polynomial Lyapunov functions, are obtained using 
SOSTOOLS for Matlab (Prajna, 2009) from theorem 1 with 
the following tuning:  

- The order of polynomials in ( )R x  is the same as the ones 

of ( )P x  (respectively 0 and 4). 

- For all 1,...,i r=  and 1,...,j r= , ( )1i xε , ( )2i xε  and 

( )3ij xε  are set as second-orders positive polynomials to be 
optimized by SOSTOOLS algorithm. 

As expected, regarding to table 1, the proposed PFLF sum-
of-square based stability conditions are outperforming the 
other approaches in terms of conservatism. Moreover, for 
each of these different values, the obtained PFLF has the 
form: 

( ) ( ) ( )
2

1
i i

i

V x h z p x
=

= ∑  (19) 

where ( )1p x  and ( )2p x  are given for the second order by: 



 
 

     

 

( ) 2 2
1 1 1 2 233.452 8.688 8.826p x x x x x= + +  

and ( ) 2 2
2 1 1 2 235.71 8.142 7.771p x x x x x= + + , 

and for the sixth order by: 

( ) 6 5 1 4 2
1 1 1 2 1 2

3 3 2 4 5 6
1 2 1 2 1 2 2

323.119 110 269.29

121.9 76.63 100 3.1533

p x x x x x x

x x x x x x x

= + +

+ + + +
  

and ( ) 6 5 1 4 2
2 1 1 2 1 2

3 3 2 4 5 6
1 2 1 2 1 2 2

323.79 103 269.806

126.406 77.27 18 3.1533 .

p x x x x x x

x x x x x x x

= + +

+ + + +

 

  

Table 1. Maximal value of k  

 2nd order 
polynomials 

6th order 
polynomials 

PFLF 
(Theorem 1) 4.48k ≤  6.30k ≤  

PLF 
(Tanaka et al., 2009) 3.82k ≤  6.17k ≤  

PWLF 
(Xie et al., 1997) 4.7k ≤  

QLF 
(Tanaka and Wang, 2001) 3.82k ≤  

 

Fig. 1 shows the behaviors of the obtained PFLF (19) at their 
respective feasible limits. These numerical simulations have 
been done for an initial condition ( ) [ ]0 8 0Tx = . Moreover, 
for scale compatibility the results have been normalized 
before being plotted. As expected, the obtained PFLF are 
monotonously decreasing. 

 
Fig. 1. Time transient of the obtained PFLF (example 1). 

 

 

 

6. CONCLUSIONS 

In this paper, a new step on fuzzy relaxation for nonlinear 
systems stability analysis has been addressed. Inspired from 
non-quadratic Lyapunov functions regarding to quadratic 
ones, a new polynomial fuzzy Lyapunov function has been 
proposed extending the polynomial Lyapunov function 
(Tanaka et al., 2009). Following the latter post-LMI 
challenge, the obtained stability conditions have been written 
in terms of a sum-of-squares optimization problem. The 
proposed polynomial fuzzy Lyapunov function includes the 
well-studied non-quadratic ones as a special case. Moreover, 
the proposed SOS based stability analysis doesn’t require 
unknown parameters to be known in advance as well as 
guarantee, when a solution to the SOS based optimization 
problem hold, a global asymptotical stability. Therefore, 
some drawbacks of classical LMI based non-quadratic 
approaches are overcame. Further prospect will naturally be 
to provide sum-of-squares controller design conditions based 
on polynomial fuzzy Lyapunov function candidates (work in 
progress).  
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