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Abstract— This paper deals with decentralized stabilization of 
large scale switched nonlinear systems under arbitrary switching 
laws. A global large scale switched system can be split into a set 
of smaller interconnected switched Takagi Sugeno fuzzy 
subsystems. Then, in order to stabilize the overall closed-loop 
system, a set of switched non-PDC controllers is employed. The 
latter is designed based on Linear Matrix Inequalities (LMI) 
conditions obtained from a multiple switched non quadratic like-
Lyapunov candidate function. A numerical example is proposed 
to illustrate the effectiveness of the suggested decentralized 
switched controller design approach. 

Keywords- switched fuzzy system, decentralized control, 
stabilizing non-PDC control law, arbitrary switching laws, multiple 
switched  non quadratic like-Lyapunov functional. 

I.  INTRODUCTION 
Among control theory, switched linear systems has grown 

interest since they provide a convenient modeling approach for 
many physical systems such as computer networks, embedded 
control systems, traffic control systems, automatic highway 
systems, chemical process [1-4]. This special class of hybrid 
system is represented by a family of time-invariant systems 
switching together in accordance to a stabilizing or an arbitrary 
law.  

In the past decades, many studies focused on the stability 
analysis and stabilization issue for both linear and nonlinear 
switched systems [5-10]. The main challenge in treating such 
problems is to guaranty the stability of the whole system at the 
switching time. Indeed, the well-know example in [11] show 
that the stability of each subsystem may not involve the 
stability of the whole switched system. Hence, switching 
between subsystems may introduce instable behavior. 

Attempting to solve this problem, several primary results 
dealing with switched linear systems propose to find a common 
quadratic Lyapunov function satisfying some linear matrix 
inequality (LMI) conditions [11]. Despite the simplicity of the 
obtained LMI formulation, finding a common Lyapunov 
function leads to conservatism. Thus, in order to reduce the 
conservatism, some relaxed approaches has been proposed by 
using piecewise quadratic Lyapunov functions [12] or multiple 
Lyapunov functions [13-16]. In [14], besides to the conditions 
ensuring the decreasing behaviors for each local Lyapunov 
function, an additional condition at the switching time to 
ensure the stability of the whole switched system. Some other 

works suggest verifying the decreasing behaviour of like-
Lyapunov function’s switching sequences, see e.g. [8] for more 
details.  

In this study, the problem of designing decentralized 
switched controllers ensuring the stability of continuous time 
large scale switched nonlinear systems is addressed. Based on 
the well-known universal approximator property of Takagi-
Sugeno (TS) fuzzy models for nonlinear problems [17,18], 
there is a growing attention on studying switched nonlinear 
systems based on TS fuzzy modeling, see e.g. [19]. This kind 
of systems, known as switched fuzzy systems, involves TS 
models to represent nonlinear continuous modes. This class of 
hybrid dynamical systems may be useful to describe precisely 
both continuous and discrete dynamics as well as their 
interactions in real-world systems [19,20]. Despite switched 
linear systems, few studies have been done in the switched 
nonlinear case. A common Lyapunov candidate function has 
been firstly employed to ensure the stabilization of switched 
fuzzy systems [11]. In [21], authors propose to employ a 
switched PDC controller as well as a switched fuzzy Lyapunov 
candidate function. However, the authors don’t mention any 
condition to guarantee the stability of the whole system at the 
switching times. 

According to the above described studies and since 
complex physical configuration and high dimension of many 
real systems, several works have dealt with stability and 
stabilization issues of large scale dynamical systems; see e.g. 
[22-26]. Nevertheless, few investigations can be found in the 
literature dealing with stability and stabilization problems of 
large scale switched systems [24,27,28]. In our previous works, 
one has proposed LMI based stabilization for large scale 
switched linear systems [24]. Moreover, to the best of the 
authors’ knowledge, the stabilization issue of interconnected 
switched nonlinear systems hasn’t yet been investigated.  

Note also that, regarding to TS based approaches, the fuzzy 
Lyapunov function remains one of the least conservative in 
terms of LMI. However, the appearance of the membership 
function derivatives is often considered as a drawback. For 
more details on some recent results in TS based nonquadratic 
state feedback controller design, one can refer to [29-31]. 
Nevertheless, the meaning of this paper is not to cope with this 
problem. Hence, the goal is to propose a LMI based 
methodology, in the nonquadratic framework, for the design of 
decentralized switched non-PDC controllers for a class of large 
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scale switched nonlinear systems under arbitrary switching 
laws.  

This paper is organized as follows: First, the studied class 
of continuous-time interconnected switched fuzzy systems will 
be described. Then, a set of decentralized switched non-PDC 
controller is proposed. Hence, LMI stability conditions are 
provided based on a switched fuzzy like-Lyapunov function 
candidate. Finally, a simulation example is proposed to 
illustrate the efficiency of the designed approach. 

II. PROBLEM STATEMENT 
Let us consider the class of nonlinear hybrid systems S  

composed of n  continuous time switched nonlinear subsystem 

iS  based on TS modelling. The n  state equations of the whole 
interconnected switched fuzzy system S  are given as follows: 

For 1,...,i n= : 

( ) ( ) ( )( ) ( ) ( ) ( ), ,
1 1 1

ji i

i j i j j ji i i i
i ji

rm n

i j s j s i s i i s
j s

i

x t t h z t A x t B u t F x tα α
α
α

ξ
= = =

≠

⎡ ⎤
⎢ ⎥= + +⎢ ⎥
⎢ ⎥⎣ ⎦

∑∑ ∑  

  (1) 

where ( ) i
ix t η∈ , ( ) i

iu t υ∈  represent respectively the state 
and the input vectors associated to the thi  subsystem; im  is the 
number of switching modes of the thi  subsystem; 

ij
r  is the 

number of fuzzy rules associated to the thi  subsystem in the 
th
ij  mode; for 1,...,i n= , 1,...,i ij m=  and 1,...,

i ij js r= , 
i i

jisA η η×∈ , i i

jisB η υ×∈  and , ,
i

jii sF αη η
α

×∈  are constant 
matrices describing the local dynamics of each polytops; 

, , jii sF α  express the interconnections between subsystems, i.e. 

the influence of the thα  subsystem on the thi  one; ( )
ij

z t  are 

the premises variables and ( )( )j iis jh z t  are positive 
membership functions satisfying the convex sum proprieties 

( )( )1 1ji

j j ii i

r
s s jh z t= =∑ ; ( )

ij
tξ  is the switching rules of the thi  

subsystem, considered arbitrary but assumed to be real time 
available, these are defined such that the active system in the 

th
il  mode lead to: 

 
( )
( )

1            if   

0           if   
i

i

j i i

j i i

t j l

t j l

ξ

ξ

= =⎧⎪
⎨

= ≠⎪⎩
 (2) 

In order to ensure the stabilization of the overall closed-
loop fuzzy switched S , a set of decentralized state feedback 
switched non-PDC control laws is proposed as:  

For 1,...,i n= : 

 ( ) ( ) ( )( ) ( )( ) ( )
1

1 1 1

j ji i i

i j i j j i ji i i i
i j ji i

r rm

i j s j k s j s i
j k s

u t t h z t K h z t X x tξ
−

= = =

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
∑∑ ∑

  (3) 

where 
jikK  and 0

j ji i

T
s sX X= >  are the gain matrices to be 

synthesized.  
 
Notations : The time t  will be omitted when there is no 
ambiguity. However, one denotes 

i ij j
t +→

 the switching instants 

of the thi  subsystem between the current mode ij  (at time t ) 
and the upcoming mode ij

+  (at time t+ ), therefore: 

 
( )
( )

1

0
i

i

j

j

t

t

ξ

ξ +

⎧⎪ =⎪⎪⎨⎪ =⎪⎪⎩
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0

1
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i

j

j
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t

ξ

ξ +

+

+
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In order to lighten the mathematical expression, the 
premises entries 

ij
z  will be omitted and the following 

notations will be employed in the sequel:  

 
1

ji

j j ji i i
ji

r

h s s
s

G h G
=

= ∑  and , ,
1 1

j ji i

j j j j j ji i i i i i
j ji i

r r

h h s k s k
s k

Y h h Y
= =

= ∑ ∑ . 

We will also distinguish, for a regular quantity 
jisΓ  of 

appropriate dimension: 

 ( )
1

1

1

ji

j j ji i i
ji

r

h s s
s

h
−

−

=

⎛ ⎞
Γ = Γ⎜ ⎟⎜ ⎟

⎝ ⎠
∑ . 

For matrices of appropriate dimensions we will denote : 

 ji

ji

h
h

dX
X

dt
=  and ( ) ( ) 1

1 ji

ji

h

h

Xd
X

dt

−
−
= .  

As usual, a star (*) indicates a transpose quantity in a 
symmetric matrix.  

The basic idea is to synthesize a global decentralized (3) 
controller composed of n  local switched non-PDC controllers 
ensuring the stability of each subsystem iS  regarding to the 
influence of the others subsystems’ dynamics. Hence, 
substituting (3) into (1), one expresses the overall closed-loop 
dynamics clS  described by: 

For 1,...,i n= : 

 ( ) 1
, ,

1 1

i

j j j ji ji i i i i
i

m n

h h h hi j i i h
j

i

A B K Xx x F xα α
α
α

ξ −

= =
≠

⎧ ⎫⎡ ⎤⎪ ⎪+= +⎨ ⎬⎣ ⎦
⎪ ⎪⎩ ⎭

∑ ∑  (5) 



                                      
 

The following lemma will be useful in the sequel. 

Lemma [32]: Let us consider two matrices A  and B  with 
appropriate dimension, the following inequality is satisfied 
with the scalar 0τ > : 

 1T T T TA B B A A A B Bτ τ −+ ≤ +  (6) 

III. LMI BASED DECENTRALIZED CONTROLLER DESIGN  
In this section, the goal is to propose a methodology for the 

design of decentralized switched non-PDC controller (3) 
ensuring the closed-loop stability of (5). The main result is 
given in the following theorem.  

Theorem : Assume that for each subsystem i  of (1), the active 
mode is denoted by ij  and, for 1,...,i ij m=  and 1,...,

i ij js r= , 

( )( )
j ji is sh z t λ≥ . The overall interconnected switched Takagi-

Sugeno system (1) is stabilized by a set of n  decentralized 
switched non-PDC control laws (3), if there exists, for all 
combinations of 1,...,i n= , 1,...,i ij m=  1,...,i ij m+ = , 

1,...,
i ij js r= , 1,...,

i ij jk r=  and 1,...,
i ij jl r= , the matrices 

( ) 0
j ji i

T

k kX X= > , ,j ji is kW , 
jikK  and the positive scalars, 1,iτ , 

… 1,i iτ − , 1,i iτ + ,…, ,n iτ  (excepted ,i iτ  which don’t exist since 
there is no interaction between a subsystem and himself), such 
that the LMIs described by (7), (8) and (9)are satisfied. 

 0
j ji ii i

k kj j
X Xμ +→

− ≤  (7) 

 , 0
j j ji i il s kX W+ >  (8) 

 

,

1,

1,

1,

,

0 0 0 0

0 0
0 0

0 0 0 0 0

0 0 0 0

0 0
0 0

0 0 0 0

j j j j j ji i i i i i

ji

ji

ji

ji

s k k k k k

k i

k i i

k i i

k n i

X X X X

X I

X I

X I

X I

τ

τ

τ

τ

−

+

Γ⎛ ⎞
⎜ ⎟

−⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

−⎜ ⎟ <
⎜ ⎟

−⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟−⎝ ⎠

  

  (9) 

with   
( )

( ) ( ) ( )
, ,

, , , , ,
1

j j j j j j j ji i i i i i i i

j j j j j ji i i i i i

T

s k k s s k s k

nT T T

k s s k i i s i s

i

X A A X

K B B K F Fα α α
α
α

τ
=
≠

Γ = + −Φ

+ + +∑
 

and ( ), ,
1

ji

j j j j j ji i i i i i
ji

r

s k l l s k
l

X Wλ
=

Φ = +∑ . 

Proof: Let us define the following multiple like-Lyapunov 
functional candidate: 

 ( ) ( )1 2
1 1

, ,..., 0
i

i i

i

mn

n j j i
i j

V x x x v xξ
= =

= >∑∑  (10) 

where  ( )
1

1

1

ji

i j j ji i i
ji

r
T T

j i h i i s s i
s

v x X x x h X x
−

−

=

⎛ ⎞⎟⎜ ⎟⎜= = ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
∑   

with  ( ) 0
j ji i

T

h hX X= > . 

According to the overview [15], the closed-loop 
interconnected switched system (5) is asymptotically stable if: 

 ( )1 2, , ,..., 0
i i

nj j
t t V x x x+→

∀ ≠ <  (11) 

and 

 ( ) ( )ii i i i i i i
jj j j j j j j

v t v tμ+ + + +→ → →
≤  (12) 

where 
i ij j

μ +→
 are positive scalars. 

First, let us focus on the inequalities (12). Their aim is to 
ensure the global behaviour of the like-Lyapunov function (10) 
at the switching time

i ij j
t +→

. These inequalities are verified if : 

For 1,...,i n= : 

 ( ) ( ) 11

jii iji
h hj j

X Xμ +
+

−−

→
≤  (13) 

 

which can be rewritten in its extended form as: 

For 1,...,i n= : 

 ( )
1 1

0
jji i

j ji i i ij ji i
ji ji

rr

s s s sj j
s s

h h X Xμ
+

+
+ +

+

→
= =

− ≤∑ ∑  (14) 

Inequality (14) is verified if (7) hold for all 
1,...,i n= , 1,...,i ij m= , 1,...,i ij m+ = , 1,...,

i ij js r=  and 
1,...,

i ij j
s r+ += . 

Now, let us deal with (11), with the above defined 
notations, it can be rewritten as, 

i ij j
t t +→

∀ ≠ : 

 ( ) ( ) ( ) 11 1

1

0
j j ji i i

n
T T T
i h i i h i i h i

i

x X x x X x x X x
−− −

=

⎡ ⎤+ + <⎢ ⎥⎣ ⎦∑ (15) 

Substituting (5) into (15), one can write, 
i ij j

t t +→
∀ ≠ : 



                                      
 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

11 1

1

1 1 1 1

1 1
, , , ,

1

0

j j j j ji i i i i
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n T
T
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i

T T
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n TT T
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i
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=
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=
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∑
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  (16) 

From (6), the inequality (16) can be bounded by, 

i ij j
t t +→

∀ ≠ : 

 

 

( ) ( ) ( ) ( ){
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

11 1

1

1 1 1 1
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  (17) 

where, for 1,...,i n= , 1,...,nα =  and iα ≠ , ,i ατ  are positive 
scalars (note that, ,i iτ  don’t exist). 

Since 1 1
, ,

1 1 1 1
1

n n n n
T T

i i i i
i i

i

x x x xα α α α
α α
α α

τ τ− −

= = = =
≠ ≠

=∑∑ ∑∑ , ix∀ , (17) is 

satisfied if, for 1,...,i n=  and 
i ij j

t t +→
∀ ≠ : 
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1
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T
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T T

h h h h h h h h

n T

i h i h i h h i

i

A X X A X

X K B X X B K X

X F F X Iα α α α
α
α

τ τ

−− −

− − − −

− − −

=
≠

+ +
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Left and right multiplying the inequalities (18) respectively 

by 
jihX  and since ( ) ( ) ( )1 1 1

j j j ji i i ih h h hX X X X
− − −

− = , it yields, for 

1,...,i n=  and 
i ij j

t t +→
∀ ≠ : 

 
( ) ( ) ( )

( ) 1
, , , , , ,

1
0

j j j j j j j j ji i i i i i i i i

j j j ji i i i

T T T
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i

X A A X X K B B K
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τ τ −

=
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 (19) 

Let us now focus on the term 
jihX  . Since the inequality 

(19) is a double sum (
i ij jh h ) and, by extension to the relaxation 

scheme proposed in [20], additional slack decision matrices can 

be introduced. Indeed, since the membership functions holds 

the convex sum property, one has 
1

0
ji

i

ji

r

j
s

h
=

=∑  and so 

,
1

0
ji

j j ji i i
ji

r

l h h
l

h W
=

=∑ . Therefore, one can write: 

 ( ),
1
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j j j j ji i i i i
ji

r

h l l h h
l

X h X W
=

= +∑  (20) 

Then, let us assume that, for 1,...,i n= , 1,...,i ij m= , 

1,...,
i ij js r= , 

jisλ  are the lower bound of 
jilh , one can write : 

 ,j j ji i ih h hX− ≤ −Φ  (21) 

with ( ), ,
1 1 1

j j ji i i

j j j j j j j ji i i i i i i i
j j ji i i

r r r

h h s k l l s k
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h h X Wλ
= = =

Φ = +∑ ∑ ∑  and : 

 , 0
j j ji i il s kX W+ >  (22) 

Thus, from (21) and applying the Schur complement, (19) 
is satisfied if, for 1,...,i n=  and 

i ij j
t t +→

∀ ≠ : 
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with 
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, ,

, , , , ,
1

j j j j j j j ji i i i i i i i

j j j j j ji i i i i i

T

h h h h h h h h
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Then, (22) and (23) are satisfied if respectively (8) and (9) 
hold. That ends the proof. ■ 

Remark: When 
i ij j

μ +→
 are unknown, conditions of theorem 

above are not LMI. In order to obtain LMI conditions, one may 
choose the positive decreasing rates 

i ij j
μ +→

 according to : 



                                      
 

 
1

1
i

i i
i

i i

m

j j
j
j j

μ +

+

→
=
≠
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IV. NUMERICAL EXAMPLE 
This section is dedicated to illustrate the efficiency of the 

proposed approaches. We consider the following system 
composed of two interconnected switched takagi-sugeno 
subsystems given by: 

Subsystem 1: 

 
1 1 1 1 1

1 1

2 2

1 1 1 1,2, 2
1 1

j j j j

j

j s s s s
j s

x h A x B u F xξ
= =

⎡ ⎤= + +⎣ ⎦∑∑  (25) 

with  
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1

12

x
x

x
⎡ ⎤

= ⎢ ⎥
⎣ ⎦ 111

-2 1
0.1 -2.1

A
⎡ ⎤

= ⎢ ⎥
⎣ ⎦
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112

-2 1
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A ⎡ ⎤
= ⎢ ⎥
⎣ ⎦
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-1 1
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A
⎡ ⎤
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⎣ ⎦
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-1 1
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A
⎡ ⎤
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⎣ ⎦
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0.01 0.01 0.1

F ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 
111,2,2

0.01 0.01 0.1
0.01 0.01 0.1

F ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 

211,2,1

0.01 0.01 0.01
0.07 0.2 0.2

F
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 
211,2,2

0.01 0.001 0.01
0.08 0.02 0.2

F
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

and the membership functions: 

( )( ) ( )( )
11

2
1 1 11sinh x t x t= , ( )( ) ( )( )

11

2
2 1 12sinh x t x t= , 

( )( ) ( )( )
2 11 11 1 1 11h x t h x t= − , and ( )( ) ( )( )

2 11 12 1 2 11h x t h x t= − . 

Subsystem 2:  

 ( ) ( ) ( )
2 2 2 2 2

2 2

2 2

2 2 2 2,1, 1
1 1

j j j j

j

j s s s s
j s

x h A x t B u t F x tξ
= =

⎡ ⎤= + +⎣ ⎦∑∑  (26) 

with  

21

2 22

23

x
x x

x

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

121

-2 2 0
0 -1 0
1 0.1 -1.1

A
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 
122

-2 2 0
0 -1 0
0 0.1 -2.1

A
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 

221

-2 1 0
1 -2 0
0 1.1 -1

A
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 
222

-2 1 0
1 -3 0
0 0.1 -1

A
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 
121

-0.1
0.5
0.1

B
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 

122

-0.1
0.5
1.1

B
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 
221

0.1
0.5
0.2

B
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 
222

0.1
0.5
1.2

B
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 
122,1,1

0.01 0.6
0.3 0.2
0.2 0.1

F
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 

122,1,2

0.01 0.6
0.3 0.2

0.02 0.1
F

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 
222,1,1

0.01 0.5
0.1 0.4
0.2 0.2

F
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 

222,1,2

0.01 0.5
0.1 0.04
0.2 0.2

F
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

  

and the membership functions  

( )( ) ( )( )
12

2
1 2 21sinh x t x t=  , ( )( ) ( )( )

12

2
2 2 22sinh x t x t= , 

( )( ) ( )( )
2 12 21 2 1 21h x t h x t= − , ( )( ) ( )( )

2 12 22 2 2 21h x t h x t= − . 

Let us assume that each subsystem switches under within 
the frontier defined by: 11 11 120.9x xΗ = + , 12 11 12-0.2 9x xΗ = + , 

21 21 22-x xΗ = +  and 22 21 22- 2x xΗ = .  

A set of decentralized switched controllers (3) is 
synthesized based on theorem 1 via the Matlab LMI toolbox. 
To do so, the decreasing rates are chosen as 

1 11 2
0.4μ

→
= , 

1 12 1
2μ

→
= , 

2 21 2
0.4μ

→
= , 

1 12 1
2μ

→
=  according to (24) and the 

lower bounds of membership functions as 
111 4λ = − , 

211 1λ = − , 

121 6.5λ = −  and 
221 1.5λ = − .  

The close-loop subsystem dynamics are shown in Figure 1 
for the initial states ( ) [ ]1 0 2 2 Tx =  and 

( )2 0 -1 1.5 -1 Tx ⎡ ⎤⎣ ⎦= .  
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Figure 1.   States dynamics of the overall closed-loop interconnected 

switched Takagi-Sugeno system. 

 

Figure 2 shows the control signals as well as the switching 
modes’ evolution. As expected, the synthesized decentralized 
switched controller stabilizes the overall large scale switched 
system composed of (25) and (26).  
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Figure 2.  Control signals and switched laws’ evolutions. 

 

Figure 3 shows that like-Lyapunov functions ( )1 1v x  and 

( )2v x  of both the subsystems, as well as the global like-
Lyapunov function 1 2( , ,..., )nV x x x , have a global decreasing 
behavior along the systems’ trajectories.  
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Figure 3.  Behaviour of the like-Lyapunov functions. 

 

Figure 4 provides the time evolution of the membership 
functions derivatives ( )( )

111 1h x t , ( )( )
112 1h x t , ( )( )

121 2h x t  and 

( )( )
122 2h x t . This shows that the assumed lower bounds are 

verified in simulation for the considered initial conditions.  

V. CONCLUSION 
This study has focused on large scale switched nonlinear 

systems where, due to their well-known universal approximator 
properties, each nonlinear mode has been represented by a 

fuzzy Takagi-Sugeno system. Hence, the considered class of 
hybrid dynamical systems is composed by a set of 
interconnected switched Takagi-Sugeno subsystems. To ensure 
the stability of the whole system in closed-loop, a set of 
decentralized switched non-PDC controllers has been 
proposed. Therefore, LMI based conditions for the 
decentralized controller design has been obtained through the 
consideration of a candidate multiple switched non quadratic 
like-Lyapunov functional. Finally, a numerical example has 
been proposed to show the effectiveness of the proposed 
approach. 
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Figure 4.  Evolution of membership functions derivatives.  
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