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Abstract—This paper addresses the stabilization issue based 
on decentralized Static Output Feedback (SOF) non-Parallel-
Distributed-Compensation (non-PDC) controllers for large 
scale nonlinear descriptors. The overall nonlinear plant is 
represented by interconnections between n Takagi-Sugeno (T-
S) fuzzy descriptors. In order to avoid the appearance of 
crossing terms between local controllers and T-S subsystems, 
the closed-loop dynamics is written using a descriptor 
redundancy formulation. The stability conditions, obtained 
from a multiple fuzzy Lyapunov function (MFLF) candidate, 
are proposed in term of Linear Matrix Inequality (LMI). 
Finally, an academic example is provided to illustrate the 
efficiency of the proposed approach. 
 
Keywords— Takagi-Sugeno, descriptors, Large scale 
systems, Multiple fuzzy Lyapunov function, Decentralized 
control, Static output feedback controller. 

I. INTRODUCTION 
his paper deals with decentralized output feedback 
stabilization for nonlinear large-scale system 

represented by a network of  n  T-S fuzzy interconnected 
descriptors. Static output feedback (SOF) controller design is 
one of the challenging issues in control engineering. Indeed, 
in many practical situations, it is sometimes impossible to 
access to all the system’s state variables. Moreover, in the 
case of large-scale systems, in some circumstances, it can be 
prohibitively expensive or impossible to collect all the 
process variables. Therefore, only partial information, from 
measured outputs, is available. In that case, SOF controllers 
appear as a suitable solution and lead to reduce controllers’ 
online computational costs in practical implementations [1]-
[5].  
Recently, Takagi-Sugeno (T-S) fuzzy systems [6] have 
shown their significance in both the modelling and control 
of nonlinear systems. Unlike conventional modelling 
techniques which use a single nonlinear model to describe 
the behaviour of a global system, T-S system is a fuzzified 
set of linear polytops [6]-[7]. Therefore, based on the sector 
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non linearity approach, T-S systems may represent exactly a 
wide class of nonlinear systems on a compact set of the state 
space [7]. In this case, some of the linear concepts, such as 
stability analysis through Linear Matrix Inequalities (LMI), 
can be extended to nonlinear systems [8]. Furthermore, 
Parallel Distributed Compensation (PDC) control laws [9] 
have shown their usefulness since they share the same 
membership functions as the TS system to be stabilized. 
Output feedback control for TS systems has been firstly 
studies based on observers and estimated state feedback 
[10]-[12]. Other studies have focused on dynamic output 
feedback controllers (DOFC) design [13]-[17]. Note that a 
DOFC can be regarded as an extended SOF controller [1]. 
Therefore, it is clear that studying SOF controllers design 
arouse control engineers’ interest. Most of the papers dealing 
with SOF controller design are based on quadratic Lyapunov 
functions, which often lead to bilinear matrix inequalities 
constraints. However, these latter remain conservative [18]. 
Non quadratic approaches have been proposed for the design 
of non-PDC state feedback controllers based on fuzzy 
Lyapunov approaches [19]-[21]. In [21], a descriptor 
property, called redundancy, has been employed to reduce 
and make easier LMI formulation of T-S control problems in 
the non quadratic framework. The main interest of such 
approache is that it allows decoupling input matrices and 
controller gains matrices and avoiding crossing terms in the 
closed-loop dynamics formulation. Following this way, the 
descriptor redundancy has been used to propose non 
quadratic SOF and DOFC LMI based controller design 
respectively in [5] and [17]. 
On the other hand, as a natural prospect to the complexity of 
the real systems, the stabilization of large scale systems has 
attracted many researches in the last decade. Using T-S 
modelling, the overall system is decomposed as a set of 
interconnected T-S subsystems [22]-[26]. Then, the 
stabilization of such interconnected systems can be obtained 
using a set of decentralized Parallel Distributed 
Compensation (DPDC) state feedback controllers [19]-[24]. 
However, to the best of authors’ knowledge, decentralized 
SOF controller synthesis for the T-S interconnected 
descriptors hasn’t been discussed in the literature, which 
motivates this study.  
This paper is organised as follows: first, the considered class 
of the T-S interconnected descriptors and the suggested 
decentralized non-PDC controllers are given. Then, LMI 
based non quadratic stability conditions are proposed 
through a multiple Lyapunov function candidate using the 
descriptor redundancy property. Finally, an academic 
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example is given to prove the effectiveness of the designed 
SOF non-PDC controller. 

II. PROBLEM STATEMENT 
Consider the class of large-scale nonlinear descriptors  S  
composed of  n  T-S fuzzy interconnected descriptors 

 
Si  

described as follows: 
 
For   i = 1, ..., n , 

   

vi
j z

i
t( )( )E

i
j !x

i
(t)

j=1

li

! = hi
k z

i
t( )( ) A

i
k x

i
(t) + B

i
ku

i
(t) + F

i"
k x" (t)

"=1
"#i

n

!
$
%
&

'&

(
)
&

*&
k=1

ri

!

y
i

t( ) = hi
k z

i
t( )( ) C

i
k x

i
t( ) + D

i
ku

i
t( )( )

k=1

ri

!

$

%

&
&&

'

&
&
&
 (1) 
 

where 
  
xi t( )!!ni , 

  
ui t( )!!mi , 

  
yi t( )!!qi , 

  
zi t( )!! pi  

represent respectively the state, the input, the output and the 
premises vectors associated to the  ith  descriptor. 

  
x! t( )"!n!  denotes the state vector of the  !

th ,  ! " i , 

descriptor.  li  is the number of fuzzy rules associated to the 

left-hand side of the state equation (1). So, for   j = 1,..., li , 

  
Ei

j !!ni "ni  are constant matrices, if necessary singular, 

and 
  
vi

j (zi ) ! 0  are the left-hand side membership functions 

verifying the convex sum property 
  

vi
j zi t( )( ) = 1

j=1

li

! . In the 

same way,  ri  is the number of fuzzy rules associated to the 

right-hand term in (1). Thus, for   k = 1,..., ri  
  
Ai

k !!ni "ni , 

  
Bi

k !!ni "mi , 
  
Fi!

k "!ni #n! , 
  
Ci

k !!qi "ni , 
  
Di

k !!qi "mi  

are constant matrices and 
  
hi

k (zi ) ! 0  are the membership 
functions associated to the right hand side fuzzy rules 

satisfying the convex sum propriety 
  

hi
k zi t( )( ) = 1

k=1

ri

! . Note 

that 
 
Fi!

k  are interconnection matrices expressing the 

influence of the  !
th  subsystems on the  ith  one. 

 
To ensure the stabilization of the overall descriptor  S , a 
decentralized non-PDC SOF controller is proposed. The 
basic idea is to synthesize a global controller composed of  n  
local SOF controllers assuming that each local controller is 
able to ensure the stability of the subsystem 

 
Si  regarding to 

the interconnections among the others subsystems. For more 
convenience, the local non-PDC SOF controller shares the 
same fuzzy sets with the subsystem 

 
Si . The  ith  

decentralized non-PDC SOF controller is given by: 
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for all   i = 1, ..., n , where  Ki

j  are non-PDC gain matrices and 

  
W11i

js  are Lyapunov dependant non singular gain matrices to 
be synthesized.  
 

Remark 1: One assumes that the premises vectors 
 
zi t( )  are 

only depending on the inputs 
 
ui t( ) , the output 

 
yi t( )  or 

measurable state variables. 
 

A. Notations 
To clarify the mathematical expression, the following 
notations will be used in the sequel:  
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A star (*) in a matrix indicates a transpose quantity. For 
space convenience, the time  t  as well as the premises 

 
zi t( )  

will be omitted when there is no ambiguity. 
 
In [5], the design of a SOF controller has been proposed 

for classical T-S systems based on a descriptor redundancy 
approach. Following this way, to take advantage of a 
descriptor redundancy formulation in the case of 
decentralized SOF design for interconnected T-S descriptors, 
(1) and (2) can be rewritten with the above defined notations 
respectively as: 
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For   i = 1, ..., n : 

  
0 = !ui t( ) + Ki

vihi( ) W11i
vihi( )!1

yi t( )  (4) 
 
Let’s now consider the extended state vector 
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, with  ! = i  or ! . 

Substituting (4) into (3), the overall closed-loop dynamics 
may be written as: 
 
For all   i = 1, ..., n , 
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III. DECENTRALIZED SOF CONTROLLER DESIGN 
The main purpose of this paper is to provide a design 
methodology for a decentralized SOF controller in order to 
stabilize nonlinear interconnected descriptors described by 
(1). The following lemmas will be used in the sequel. 

Lemma 1 [27]: 
Let us consider  A  and  B  two matrices of appropriate 
dimensions and a positive constant  ! > 0  : 
 

  A
T B + BT A ! "AA+ "#1BB  (6) 

 
The main result is summarized in the following theorem. 
 

Theorem 1: Assume that, for   i = 1,..., n ,   j = 1,..., li  and 
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descriptor  S  composed of n interconnected T-S descriptors 

 Si  described by (1) is stabilized by the network of n non-
PDC decentralized control laws described by (2) if there 
exists, for all combinations of   i = 1,..., n ,   j = 1,..., li , 

  k = 1,..., ri ,   s = 1,..., ri ,   ! = 1,..., li "1  and   ! = 1,..., ri "1 , the 
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jks  defined below and 
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Proof: Let the multiple fuzzy Lyapunov function candidate 
be: 
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with 
  
W1i

vihi( )T
= W1i

vihi > 0 . 
 
From (10), the closed-loop system (5) is stable if: 
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That is to say if: 
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Using lemma 1, (13) can be bounded by: 
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Extending (18) with the matrices defined in (5) and (11), one 
obtains  ! i

vihihi  defined below. Note that (18) is not LMI. 
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From the convex sum propriety, one can write [28]: 
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Therefore, from (19), if (7), (8) and (9) hold, (17) and so 
(12) are verified. That ends the proof. ■ 
 
Remark 1: For   i = 1,..., n ,   j = 1,..., li ,   k = 1,..., ri ,   s = 1,..., ri , 

 
vi

j z( )  and 
 
hi

s z( )  are required to be at least   C1 . This is 

obviously satisfied for fuzzy models constructed via a sector 
nonlinearity approach [21] or, for instance, when 
membership functions are chosen with a smoothed shape. 
 
Remark 2: In theorem 1 the lower bounds of the membership 
functions derivatives have to be a priori known. 
Nevertheless, as suggested in [5], these bounds can be 
arbitrarily fixed (negatives) in advance and then post 
verified in simulation. Therefore, a trial and error procedure, 
acceptable since it is made offline, gives a fine 
approximation of these bounds but leads to a local solution 
depending on the chosen initial state for the simulation. 
Another way to run to strict LMIs is to set   W1i  common 
inside each LMIs (9), but, in this case, the price to pay is 
leaving the proposed multiple non quadratic framework to a 
more conservative quadratic one. Let us point out that the 
goal of this paper is not to give a solution to this point. 
Moreover, a recent study has dealt with this point [29]. 
Nevertheless, the latter remains to complex LMI conditions 
in the simplest case of standard T-S model local stability 
analysis. Therefore, it will necessitate further strong research 
effort before being suitable for the class of systems depicted 
by (1). 

IV. NUMERICAL EXAMPLE 
In this section, an academic example is provided to illustrate 
the efficiency of the proposed decentralized SOF controller 
design methodology. Let us consider the following set of T-
S descriptors  S  composed of two subsystems   S1  and   S2  
described respectively by: 
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Assume that the lower bound of the derivative membership 
functions are  !1

1 =! 2
1 = "1

1 = "2
1 = #2  (post verified in 

simulation). The Matlab LMI toolbox is used to solve the 
LMI conditions provided in theorem 1 leading to the 
synthesis of a set of two decentralized SOF controllers (2) 
with: 
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The closed-loop subsystem dynamics, the output signals, the 
membership function derivatives evolution and the control 
signals are presented in Fig.1 for initial states 

  
x1 0( ) = 3 !3"
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T

 and 
  
x2 0( ) = 2 !5"

#$
%
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T

. As it is 



 
 

 

shown, the overall system is stabilized by the synthesized set 
of decentralized SOF controllers.  

 

Fig.1. Simulated signals of the stabilized interconnected 
descriptors. 

V. CONCLUSION 

In this paper, the design of a decentralized non-PDC static 
output feedback controller has been proposed for stabilizing 
a network of  n  interconnected T-S descriptors. Based on a 
multiple fuzzy Lyapunov function, LMI based non quadratic 
stability conditions have been obtained thanks to the 
descriptor redundancy. Indeed, this property avoids 
appearance of crossing terms in the closed-loop dynamics 
formulation. Finally, to show the efficiency of the proposed 
control approach, a numerical example has been provided. 
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