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Abstract—Stabilization issue for discrete-time 
interconnected switched system is studied in this paper. A 
global large scale discrete-time system can be decomposed into 
a set of small interconnected switched subsystems. Thus, a 
decentralized switched state feedback controller is considered 
to stabilize the global large scale switched system. The stability 
conditions, obtained from a candidate multiple switched 
Lyapunov function, are proposed in term of Linear Matrix 
Inequality (LMI). A numerical example is given to illustrate 
the effectiveness of the proposed approach. 
 
Keywords—Discrete-time large scale switched system, 
interconnected switched systems, decentralized switched 
controller, multiple switched Lyapunov function, 

I. INTRODUCTION 
ANY real systems such as chemical control systems, 
navigation systems, etc., encompass both continues 

and discrete dynamics. In recent years, stability analysis and 
control problem of hybrid systems and specially switched 
systems have attracted growing attention [1] [2] [3] [4]. 
Indeed, switched systems are a particular class of hybrid 
dynamic systems which are composed of a set of 
continuous-time or discrete-time dynamical subsystems and 
a rule that governs the switching among them [1] [3] [5] [6]. 
Therefore, switching rule, in this kind of systems, can be 
considered arbitrary [7] [8] or can be constraint by a dwell 
time [9] [10]. The main concern of several researches, 
interested by the stabilization issue of switched systems 
under arbitrary switching law, is to obtain less conservative 
stability conditions. At first, many approaches use a global 
Lyapunov function for all the subsystems [11] [12]. 
However, these quadratic based approaches are very 
conservative since they need to check the existence of a 
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common Lyapunov matrix for a set of linear matrix 
inequalities (LMI) constraints. In order to reduce the 
conservatism, authors have proposed a multiple Lyapunov 
function [13] and reference therein. 

In other hand, many researches are interested recently in 
studying the stability and the stabilization of smoothed large 
scale dynamical systems; see e.g. [14]. Nevertheless, few 
investigations can be found in the literature dealing with the 
problem of large scale discrete time switched systems 
stabilization. The lack of previous results in this field has 
motivated the present study. Thus, this paper focuses on a 
decentralized controller design for a class of discrete-time 
interconnected switched systems and it is organized as 
follows. First, the studied class of interconnected discrete 
time switched system is presented. Then, a set of 
decentralized switched control laws is proposed. The design 
procedure is obtained from a multiple switched Lyapunov 
function through LMI conditions. Finally, a simulation 
example is provided to illustrate the efficiency of the design 
approach. 

II. INTERCONNECTED SWITCHED SYSTEM 
Consider the class of hybrid systems S  composed of n  
interconnected switched discrete subsystems iS  given as 
follows: 
 
For 1,...,i n= , 

( ) ( ) ( ) ( ) ( )
1 1

1
im n

i ij ij i ij i i j
j

i

x k k A x k B u k F x kα α
α
α

ξ
= =

≠

⎡ ⎤
⎢ ⎥+ = + +⎢ ⎥
⎢ ⎥⎣ ⎦

∑ ∑  (1) 

 
where ( ) in

ix k ∈ , ( ) im
iu k ∈  represent respectively the 

state and the input vectors associated to the thi  model. 
( ) nx k α

α ∈  denotes the state vector of the thα  model with 

1,..., nα =  and iα ≠ . im  is the number of modes of the thi  

model. n ni i
ijA ×∈ , n pi i

ijB ×∈  and n ni
i jF α
α

×∈  are 

constant matrices and i jFα  are matrices representing the 

interconnections expressing the influence of the thα  
subsystem on the thi  one. ( )ij kξ  are the switching rules, 
considered unknown but assumed to be real time available. 
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These are defined such that the thi  subsystem is active in 
the thl  mode as follow: 
 

( )
( )

1            if   

0            if   
ij

ij

k j l

k j l

ξ

ξ

⎧⎪ = =⎪⎪⎨⎪ = ≠⎪⎪⎩
 (2) 

 
In order to ensure the stabilization of the overall closed loop 
system S , a decentralized switched state feedback control 
law is proposed. The basic idea is to synthesize a global 
controller composed of n  local switched controller 
assuming that each local controller is able to ensure the 
stability of the subsystem iS  regarding to the 
interconnections among the others subsystems. Therefore, 
the set of decentralized controllers is proposed as: 
 
For all 1,...,i n= : 

( ) ( ) ( )
1

im

i ij ij i
j

u k k K x kξ
=

= ∑  (3) 

 
where ijK  are the gain matrices to be synthesized. 
 
Substituting (3) into (1), one obtains the overall closed-loop 
system S  described as,  
 
For all 1,...,i n= : 

( ) ( ) ( ) ( ) ( )
1 1

1
im n

i ij ij ij ij i i j
j

i

x k k A B K x k F x kα α
α
α

ξ
= =

≠

⎡ ⎤
⎢ ⎥+ = + +⎢ ⎥
⎢ ⎥⎣ ⎦

∑ ∑  (4) 

 
Now, the goal is to find the matrices ijK  for 1,...,i n= , 

1,..., ij m= , in order to guarantee the stability of the whole 
interconnected switched closed loop system (4).  
 
Note that the following lemma will be useful in the sequel. 
 
Lemma 1 [15] 
 
Let us consider A  and B  two matrices with appropriate 
dimensions, the following inequality holds: 
 

T T T TA B B A A A B B+ ≤ +  (5) 
 
As usual a star ( )*  indicates a transpose quantity in a 
matrix. 
 

I. DECENTRALIZED CONTROLLER DESIGN FOR 
INTERCONNECTED SWITCHED SYSTEMS  

In this section, we are interested in designing a 
decentralized switched controller able to stabilize the close 
loop interconnected switched system (4). The main result is 
given in the following theorem. 

Theorem 1: 

Assuming that the active mode is denoted by l  and the 
upcoming one by h . The closed loop system S  composed 
of n interconnected switched systems iS  described in (1) is 
stabilized by the set of n decentralized switched state 
feedback control laws described in (3) if there exist, for all 
combinations of 1,...,i n= , 1,..., ij m= , 1,..., il m= , 

1,...,nα =  and iα ≠ , the matrices 0T
ij ijX X= >  and ijY  

such that the following LMIs are satisfied: 

 

( ) ( ) ( )

( )

( )

1 1

* * *
1 0 0

10 02 1
0

10 0
2 1

il

il il il il ih

il il h

nil il nh

X

A X B Y X
n

F X X
n

F X X
n

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥+ −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− <⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥−⎢ ⎥⎣ ⎦
 (6) 
 
Then the controllers’ gain matrices are obtained from the 
following change of variable 1

il il ilK Y X −= . 
 
Proof: Let us consider the following candidate switched 
Lyapunov function: 

 
For 1,...,i n= , 

( )( ) ( ) ( ) ( )( )
1

,
im

T
i i ij i ij i

j

v k x k k x k P x kξ
=

=∑   (7) 

 
The interconnected closed-loop switched system (4) is 
stable if : 
 
For 1,...,i n= , 

( )( ) ( )( )1, 1 , 0i i i i iv v k x k v k x k∆ = + + − <  (8) 
 
This can be rewritten as: 
 
For 1,...,i n= , 

( ) ( ) ( )( )

( ) ( ) ( )( )
1

1

1 1 1

0

i

i

m
T

i ij i ij i
j

m
T

ij i ij i
j

v k x k P x k

k x k P x k

ξ

ξ

=

=

∆ = + + +

− <

∑

∑
  (9) 

 
Recall that the active mode is denoted by l  and the 
upcoming one by h . It means that: 
 



 
 

 

( )
( )

1 1            if   

1 0            if   
ij

ij

k j h

k j h

ξ

ξ

⎧⎪ + = =⎪⎪⎨⎪ + = ≠⎪⎪⎩
  (10) 

 

and 
( )
( )

1            if   

0           if   
ij

ij

k j l

k j l

ξ

ξ

⎧⎪ = =⎪⎪⎨⎪ = ≠⎪⎪⎩
 (11) 

 
Therefore, the inequality (9) can be rewritten as follow: 
 
For 1,...,i n= , 

( ) ( ) 0T T
i il ih il i il iv G P G x k P x k∆ = − <  (12) 

 

with ( ) ( ) ( )
1

n

il il il il i i l

i

G A B K x k F x kα α
α
α

=
≠

= + +∑ . 

 
Inequality (12) can be rearranged as  
 
For 1,...,i n= , 

( ) ( ) ( )( ) ( )

( ) ( ) ( )

( )( ) ( )

( ) ( )

1

1

1 1

T T T T
i il il il ih il il il il i

n
T T

i l ih il il il i

i

n
T T T T
i il il il ih i l

i

n n
T T

i l ih i l

i i

x k A K B P A B K P x k

x k F P A B K x k

x k A K B P F x k

x k F P F x k

α α
α
α

α α
α
α

α α β β
α β
α β

=
≠

=
≠

= =
≠ ≠

⎛ ⎞+ + − ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟+ + ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜+ + ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎜⎜⎜+⎜⎜⎜⎜⎝ ⎠

∑

∑

∑ ∑

0<

⎟⎟⎟⎟⎟⎟⎟⎟

 (13) 

 

Let us focus on the term ( ) ( )
1 1

n n
T T

i l ih i l

i i

x k F P F x kα α β β
α β
α β

= =
≠ ≠

∑ ∑  in 

(13). It is equivalent to 
 

( ) ( )

( ) ( )

( ) ( )
( ) ( )

1

1 1

1 1

n
T T

i l ih i l

in n
T T

T Ti l ih i l n n
i l ih i l

i i T T
i l ih i l

i i

x k F P F x k

x k F P F x k x k F P F x k

x k F P F x k

α α α α
α
α

α α β β
α α β βα β

α β
α β β β α α
α β

β α

=
≠

= =
≠ ≠

= =
≠ ≠

≠

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜= ⎟⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎜ ⎟+ ⎟⎜ ⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜+⎜ ⎟⎝ ⎠⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

∑

∑ ∑
∑∑

 (14) 
 
Applying lemma 1 and since 

( )
1 1 1

1
n n n

i i i

i i i

nα β α
α β α
α β α

β α

= = =
≠ ≠ ≠

≠

⎛ ⎞
⎜ ⎟
⎜ ⎟Ψ + Ψ = − Ψ
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ ∑ ∑ , (13) yields: 

 
For 1,...,i n= , 

( ) ( ) ( )( ) ( )

( ) ( ) ( )
( )( ) ( )

( ) ( ) ( )
1

0

2 3

T T T T
i il il il ih il il il il i

T T
i l ih il il il i

n
T T T T
i il il il ih i l

T Ti
i l ih i l

x k A K B P A B K P x k

x k F P A B K x k

x k A K B P F x k

n x k F P F x k

α α

α α
α
α

α α α α

=
≠

+ + −

⎛ ⎞+ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟+ + + <⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜+ −⎝ ⎠

∑
 (15) 

 
Then, using lemma 1, (15) is satisfied if: 
 
For 1,...,i n= , 

( ) ( ) ( )( ) ( )

( ) ( ) ( )
1

2 1 0

T T T T
i il il il ih il il il il i

n
T T

i l ih i l

i

x k n A K B P A B K P x k

n x k F P F x kα α α α
α
α

=
≠

+ + −

+ − <∑
 (16) 

 
Let us now define ( )2 1ia nα = −  if iα≠  and 0ia α =  if 

iα = ; (16) can be rewritten as   
 
For 1,...,i n= , 
 

( ) ( ) ( )( ) ( )

( ) ( )
1

0

T T T T
i il il il ih il il il il i

n
T T

i i l ih i l

x k n A K B P A B K P x k

x k a F P F x kα α α α α
α=

+ + −

+ <∑
 (17) 

 
witch is equivalent  
 
For 1,...,i n= , 
 

( )
( ) ( )

( )

( )
1

1 0
1

1

T T T
il il il ih il il iln

T
i i

T
il i il h il

n A K B P A B K
nx k x k

P a F P F
n

α
α α α α

=

⎛ ⎞⎛ ⎞ ⎟⎜ ⎟⎜ ⎟+ +⎟⎜⎜ ⎟⎟⎜⎜ ⎟⎝ ⎠−⎜ ⎟⎜ <⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟− +⎜ ⎟⎜ ⎟⎝ ⎠−

∑  (18) 

 
which is obviously satisfied, ( )

ix k∀ , if: 
 
For 1,...,i n= , 

( ) ( )
1

0
n

T T T T
il il il ih il il il il i il h iln A K B P A B K P a F P Fα α α α

α=

+ + − + <∑  

 (19) 
 
Then, applying the Schur complement, one obtains: 
 
For all 1,...,i n= :  



 
 

 

( ) ( ) ( )

( ) 1

1
1 1

1

1

* * *
1 0 0

10 0

0
10 0

il

il il il ih

il h
i

nil nh
ni

P

A B K P
n

F P
a

F P
a

−

−

−

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥+ −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− <⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥⎢ ⎥⎣ ⎦

 (20) 

 
Note that, in (20), the columns and the rows corresponding 
to iia  don’t exist. Multiplying the left and the right (20) by 

1
ildiag P I I−⎡ ⎤⎣ ⎦ , one obtains: 

 
For all 1,...,i n= :  

( ) ( ) ( )

( )

1

1 1

1 1
1 1

1

1 1

* * *
1 0 0

10 0

0
10 0

il

il il il il ih

il il h
i

nil il nh
ni

P

A B K P P
n

F P P
a

F P P
a

−

− −

− −

− −

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥+ −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− <⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

  

 (21) 
 

Now, with the changes of variables 1
ij ijX P−=  and 

1
il il ilY K P−= , the proof is completed.  ■ 

 

Remark 1: the intrinsic stability analysis of a set of 
autonomous (unforced) interconnected switched systems (1)
, with ( ) 0iu k = , can be easily done from theorem 1 by 
considering 0ijY =  in LMIs (6). 

II. NUMERICAL EXAMPLE 
 
In order to show the efficiency of the proposed switched 
decentralized controller design approach, let us consider the 
hybrid system S  composed of two interconnected discrete-
time switched subsystems 1S  and 2S : 
 
Subsystem 1 
 

( ) ( ) ( ) ( ) ( )
2

1 1 1 1 1 1 1 12 2
1

: 1 j j j j
j

S x k k A x k B u k F x kξ
=

⎡ ⎤+ = + +⎢ ⎥⎣ ⎦∑  

 (22) 

with 11 11 121

3 1 2 1 0
,  ,

2 1 1 1 1
A B F

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 defining mode 1 

and 12 12 122

-1 0 1 0.1 0
,  ,  

3 1 1 2 0.1
A B F

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 defining mode 

2. 
 

Subsystem 2 
 

( ) ( ) ( ) ( ) ( )
2

2 2 2 2 2 2 2 21 1
1

: 1 j j j j
j

S x k k A x k B u k F x kξ
=

⎡ ⎤+ = + +⎢ ⎥⎣ ⎦∑  

 (23) 
 

with 21 21 211

2 1 -1 1 0.2
,  ,

-1 2 1 1 0
A B F

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 defining mode 

1 and 22 22 212

2 1 3 0 0
,  ,  

0 0.3 2 0.2 0
A B F

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 defining 

mode 2. 

 

For simulation purpose, let us assume that the subsystems 
switch according to 11 11 120.9S x x= + , 12 11 12-0.2 9S x x= + , 

21 21 22-S x x= +  and 22 21 22- 2S x x= . 

Following remark 1, the intrinsic stability of the overall 
unforced interconnected switched systems S  has been 
investigate and no solution has been found from LMIs (6). 
Therefore, one can expect the system to be unstable. This 
point is confirmed in simulation. Figure 1 presents the states 
dynamics of the unforced overall system which show an 
unstable behaviour with initial states ( ) [ ]1 0 5 2 Tx =  and 

( )2 0 6 3 Tx ⎡ ⎤⎣ ⎦= − − . 

0 10 20 30 40 50 60
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5
x 10

20

x 11

0 10 20 30 40 50 60
-1
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1
x 10

21

x 12

0 10 20 30 40 50 60

-4
-2
0

x 10
20

x 21

0 10 20 30 40 50 60
-1
0
1
2

x 10
19

x 22

Iterations number  

Fig.1. States dynamics of the unforced discrete-time 
interconnected switched system. 

 
Then, using the Matlab LMI toolbox, a solution of theorem 
1 is obtained and leads to the synthesis of two local 



 
 

 

switched controllers of the form (3) given by the following 
gain matrices: 
 

[ ]8
11 10 -0.77 1.53K = − , [ ]8

12 10 0.26 -1.13K = , 

[ ]13
21 10 0.21 -0.11K −= , [ ]11

22 10 0.02 -0.11K −=  

8
11

0.82 -0.92
10

-0.92 5.46
X

⎡ ⎤
⎢ ⎥= ⎢ ⎥⎣ ⎦

, 8
12

0.68 -0.81
10

-0.81 5.75
X

⎡ ⎤
⎢ ⎥= ⎢ ⎥⎣ ⎦

, 

13
21

0.12 -0.04
10

-0.04 0.07
X − ⎡ ⎤

⎢ ⎥= ⎢ ⎥⎣ ⎦
 and 11

22

0.05 -0.19
10

-0.19 0.74
X − ⎡ ⎤

⎢ ⎥= ⎢ ⎥⎣ ⎦
. 

 

The close-loop subsystem dynamics are shown in Figure 2 
for initial states ( ) [ ]1 0 5 2 Tx =  and ( )2 0 6 3 Tx ⎡ ⎤⎣ ⎦= − − . 
Figure 3 shows the control signals as well as the switching 
modes’ evolution. As expected, the synthesized 
decentralized switched controller stabilizes the overall 
discrete-time switched system S .  
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Fig.2. States dynamics of the overall closed loop 
interconnected switched system. 
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e 
of
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Fig. 3. Control signals and switching modes evolution. 

III. CONCLUSION 

In this paper, a class of discrete-time large scale systems is 
considered. These are classically represented by a set of 

smaller interconnected discrete-time switched systems. 
Thus, a set of decentralized discrete-time switched control 
laws is proposed to stabilize the considered class of hybrid 
systems. Based on the Lyapunov theory, a multiple 
Lyapunov function is used to derive LMI conditions 
allowing the design of such decentralized controllers. 
Finally, to show the efficiency of the proposed control 
approach, a numerical example has been provided.  
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