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Abstract: This paper proposes, for nonlinear systems composed of interconnected Takagi-Sugeno fuzzy 
descriptors, a nonlinear H∞ based controller design. A set of decentralized non-Parallel-Distributed-
Compensations (non-PDC) control law is employed to ensure the stability of the overall closed loop 
system and to achieve the H∞ performance in order to minimize the interconnection effects between 
subsystems. Sufficient conditions are derived, based on the Lyapunov theory. These ones are written into 
Linear Matrix Inequalities (LMI). Finally, a numerical example is given to illustrate the efficiency of the 
proposed approach.  

Keywords: Interconnected Takagi-Sugeno fuzzy descriptors, non-quadratic Lyapunov function, H∞ 
controller. 

 
1. INTRODUCTION 

 
Among nonlinear control theory, Takagi-Sugeno (T-S) fuzzy 
systems have shown their significance in resolution of both 
control and modelling problems (Takagi et al., 1985). Their 
interest is that they allow extending some of the linear control 
concepts to the nonlinear cases. Within T-S fuzzy 
stabilization, the most commonly used controllers are based 
on the concept of parallel distributed compensation (PDC) 
(Wang et al., 1996). The main idea of such controllers is to 
associate compensators to each rule of the fuzzy system. 
More recently, a wider class of nonlinear T-S fuzzy systems, 
called descriptor systems, have been studied (Taniguchi et al, 
2000) and some applications have been proposed in robotics 
fields (Guelton et al., 2008), (Schulte et al., 2009). Only few 
of the existing approaches deal with stability and stabilisation 
of T-S fuzzy descriptors (Taniguchi et al. 2000), (Bouarar et 
al., 2007). These studies are based on the quadratic Lyapunov 
function. Nevertheless, these quadratic based approaches are 
very conservative since they need to check the existence of a 
common Lyapunov matrix for a set of linear matrix 
inequalities (LMI) constraints. There exist many ways to 
relax these conditions. For instance, relaxation schemes have 
been proposed (Tuan et al., 2001), (Liu et al., 2003). Moreover, 
another way is to use another type of Lyapunov function. Owing 
to that, less conservative stability conditions based on piecewise 
Lyapunov functions have been proposed (Johansen et al., 1999) 
but they do not provide major improvement when the considered 
T-S model is derived from the sector nonlinearity approach 
(Tanaka et al., 2001). On other hand, more relaxed conditions 
have been derived using a non quadratic-fuzzy Lyapunov 

function (Feng, 2006), (Guerra et al., 2004), (Rhee et al., 2006), 
(Tanaka et al., 2007), (Bouarar et al., 2008).  
 
In this paper, we are interested in stabilizing a set of non 
linear interconnected descriptors. Indeed, these are useful to 
deal with, for instance, large scale systems for which 
classical approaches failed to ensure the overall stability. One 
other interest should be to propose a distributed controller 
design for networked systems. Therefore, with the growing 
interest for large scale systems, many different studies have 
been proposed to stabilize T-S fuzzy interconnected systems 
(Akar et al., 2000), (Lin et al., 2006), (Taniguchi et al., 2007), 
(Tseng et al., 2001) (Wang et al., 2005). However, the 
decentralized control of T-S interconnected descriptors has 
been seldom treated in the literature. Indeed, T-S 
interconnected descriptor has been firstly studied by (Wang 
et al., 2001). In the latter, the proposed conditions are based 
on a quadratic Lyapunov function, and the left hand side of 
the considered descriptors is a LTI model ( ( ) ......Ex t =�  

instead of the general case ( )
1

......
li

k
k

k
v E x t

=

=∑ � ). In order to 

relax and to extend the previous work, a first non quadratic 
approach has been proposed in a preliminary work (Jabri et 
al., 2009). Nevertheless, in the latter, performances criterion 
had not been taking into account to optimize the closed loop 
dynamics. Thus, to minimize the effects of the 
interconnections between subsystems, we propose a 
methodology, based on a H∞ criterion, to design a set of 
decentralized T-S fuzzy controllers ensuring the closed-loop 
stability of the whole set of interconnected descriptors.  
 



 
 

     

 

This paper is organized as follows: First, the studied class of 
T-S fuzzy decentralized descriptors will be described. Then, a 
fuzzy state feedback decentralized controller is developed. 
Next, the problem position followed by the main result in 
terms of LMI is proposed. Finally, a simulation example is 
given to illustrate the efficiency of the design approach. 

 
2. T-S DECENTRALIZED DESCRIPTORS  

 
Let’s consider the class of nonlinear interconnected system 
S  composed of n  T-S fuzzy descriptor subsystems iS  
described as follows: 
 
for 1,...,i n= , 
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where ( ) in
ix t ∈\  is the thi  state vector, ( ) im

iu t ∈\  is the 
thi  control signal, ( ) ip

iz t ∈\  is the thi  premise vector and 

( ) nx t α

α ∈\  is the state vector of the thα  model with 
1,..., nα =  and iα ≠ . il  and ir  are respectively the number 

of fuzzy rules in the left-hand and right-hand side of the state 
equation (1). n nj i i

iE ×∈\ , n nk i i
iA ×∈\ , n mk i i

iB ×∈\  are 

constant matrices constituting the thi  T-S fuzzy subsystem 
and n nk i

iF α
α

×∈\  denotes the influence of the thα  subsystem 

on the thi  one. ( )( ) 0k
i ih z t ≥  and ( )( ) 0j

i iv z t ≥ are 
respectively the right-hand and the left-hand side 
membership functions verifying the convex sums propriety 

( )( )1
1il j

i ij
v z t

=
=∑ and ( )( )1

1ir k
i ik

h z t
=

=∑ . Note that, (1) 

may represent singular systems. In that case, one assumes 
that, in the sequel, (1) is regular and impulse free (Dai, 1989). 
 
To ensure the stabilization of the overall closed-loop system 
S , a decentralized non-Parallel Distributed Compensation 
(non-PDC) approach is proposed. The basic idea is to 
synthesize a decentralized controller composed of n  local 
controller. Each thi local fuzzy controller is able to guarantee 
the stability of the subsystem iS  while considering 
interconnections among the others subsystems. For more 
convenience, the local non-PDC control law ( )iu t  shares the 
same fuzzy sets with the T-S descriptor model of the 
subsystem iS . This set of decentralized non-PDC controllers 
is given by,  
 
For 1,...,i n= : 

( ) ( )( ) ( )( )

( )( ) ( )( ) ( )

1 1
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1
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i i
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where js

iK  are non-PDC gain matrices and 1 0js
iX >  are 

Lyapunov dependant gain matrices to be synthesized.  
For space convenience, in the sequel, the time t  as well as 
the premises ( )i tz  will be omitted when there is no 
ambiguity. 
Combining (2) and (1), the overall closed-loop system S  can 
be described by: 
 
For all 1,...,i n= , 

( )
1 1 1 1

,
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i i i i i

j j k s
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with  
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The objective is now to propose a convenient controller 
design methodology which ensure the stability of (3). Note 
that each subsystem i  is influenced by the other subsystems 

1,...,nα = , iα ≠ . In this study, one proposes the design of 
the controller (2) based on the minimization of a H∞  
performance related to attenuate exotic influences to each 
considered state ix , 1,...,i n= . 
 
Notations: 
To clarify the mathematical expression, the following 

notations will be used in the sequel: 
1

il
v j
i i

j

j
iE v E

=

= ∑ , 

1 1

i ir r
hh j k jk
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A star (*) in a matrix indicates a transpose quantity.  
 
The following lemma will be used in the next section to relax 
the LMI conditions. 
 
Lemma 1: (Tuan et al., 2001) 
The following propositions are equivalent: 
 
• For all 1,...,i q=  and 1,...,j q= , 0ijΓ <  
• For all 1,...,i q=  and 1,...,j q= ,  

( )
0,                               

1 1 0,
1 2

ii

ii ij ji j i
q

⎧Γ <
⎪
⎨ Γ + Γ + Γ < ≠⎪ −⎩

 

 
 
 
 
 



 
 

     

 

3. FUZZY LYAPUNOV LMI CONTROLLER DESIGN 
 

In this section, the main purpose is to design a decentralized 
controller ensuring the stability of the whole set of 
interconnected T-S descriptors and minimizing the effect of 
the interactions between subsystems using the following H∞  

criterion: 
 

0 0

2
f ft t

T T
i i i i i

t t

x x dt dtρ ϕ ϕ<∫ ∫  (4) 

 

with ( )
1 1

ir n
k k

i i i i
k

i

z h F xα α
α
α

ϕ
= =

≠

= ∑∑  and the H∞  performances iρ . 

To provide sufficient conditions for the existence of a 
decentralized controller minimizing the H∞  criterion (4) one 
proposes the following theorem. 
 
Theorem 1: Assume that, for 1,...,i n= , 1,..., ij l=  and 

1,..., is r= , ( )( )s s
i ih z t ϖ≥�  and ( )( )j j

i iv z t λ≥� . The closed-
loop system S  composed of n T-S interconnected descriptors 

iS  (1) is stabilized by the network of n non-PDC 
decentralized control laws (2) and guarantees the H∞  
performances iρ  if there exist, for all combination of 
{ 1,...,i n= , 1,..., ij l= , 1,..., ik r= , 1,..., is r= }, the matrices 

( )1 1 0
Tjs js

i iX X= > , 3
ks
iX , 4

ks
iX , and js

iK , such that the 
following LMIs are satisfied: 
 
Minimize iρ  such that: 
 
• 0jkk

iαΓ <  (5) 

• ( )1 1
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1 2
jkk jsk jks
i i i

ir
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−
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( )(1,1) 3 3 1 1
1 1

i ir lTjks ks ks s js j js
i i i i i i i

s s

X X X Xϖ λ
= =

Γ = + − −∑ ∑ , 

( )(2,1) 1 3 4

Tjks k js k js j ks ks
i i i i i i i iA X B K E X XΓ = + − + ,  

( ) ( )(2,2) 4 4

T Tjks j ks j ks
i i i i iE X E XΓ = − −  

and ( )( ) ( )2
(3,3) 1 2 3

Tk kk
i i iin n FFα ααρΓ = − − − . 

 

Proof : Let, for 1,...,i n= , 
TT T

i i ix x x⎡ ⎤= ⎣ ⎦� � , be an extended 
state vector. The H∞  criterion (4) can be rewritten as: 
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 (7) 

with 
0

0 0i

I
Q

⎡ ⎤
⎢ ⎥= ⎢ ⎥⎣ ⎦

. 

 
The overall closed-loop T-S fuzzy decentralized descriptor 
(3) can be expressed as: 
 

For all 1,...,i n= , ( )
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Let the candidate multiple fuzzy Lyapunov function be: 
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1

( )  0 
n

i i
i

V t V x t
=
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with ( )( ) ( ) ( ) ( )

1T vhh
i i i iiV x t x t E X x t

−
= � �� � . 

 

As usual, (9) needs ( ) ( )1
0

Tvhh vhh
i iE X X E

− −
= ≥� � � � . Leading to 

condition the Lyapunov matrix such that 

1

3 4

0vh
vhh i
i hh hh

i i

X
X

X X
⎡ ⎤
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⎣ ⎦

�  and ( )1 1 0
Tvh vh

i iX X= > . 

 
From (9), the closed loop system (3) is stable under the H∞  
criterion (7) if: 
 

( ) ( ) ( )( )2

1
0

n
TT

i i i i i i i i i
i

V t x Q x z zρ ϕ ϕ
=
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That is to say if: 
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This can be rewritten as: 
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Note that ( )
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Then, (14) is verified if:  
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Now, extending (16) with (17) and the matrices defined in (8)
and after applying the Schur complement, one obtains: 
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�  (18) 

 

with ( ) ( )(1,1) 3 3 1

Tvhh hh hh vh
i i i iX X XΓ = + −

i
suuuuut , 

( )(2,1) 1 3 4

Tvhh h vh h vh v hh hh
i i i i i i i iA X B K E X XΓ = + − + ,  

( ) ( )(2,2) 4 4

T Tvhh v hh v hh
i i i i iE X E XΓ = − −  

and ( )( )( )2
(3,3) 1 2 3

Th h h
i i i in n F Fα α αρΓ = − − − � � . 

Let us now focus on the term ( )1
vh
iX−
i

suuuuut  in (18). From the 
convex sum propriety, one can write: 
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Let, for 1,..., ij l= , 1,..., is r= , j

iλ  and s
iϖ  be respectively 

the lower bounds of ( )j
iv z�  and ( )s

ih z� . One can write: 

( )1
vh
i hvX− ≤ −Φ
i

suuuuut  with: 

1 1
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(18) is obviously satisfied, following lemma 1, if the LMI 
conditions (5) and (6) holds. And the proof is completed
 ■ 
Remark 1: For 1,..., ij l= , 1,..., ik r= , 1,..., is r= , ( )j

iv z  and 

( )s
ih z  are required to be at least 1C . This is obviously 

satisfied for fuzzy models constructed via a sector 
nonlinearity approach (Tanaka et al., 2001) or, for instance, 
when membership functions are chosen with a smoothed 
shape (Gaussian...). 
 

4. NUMERICAL EXAMPLE 
 
In order to illustrate the approach developed above, let us 
consider the following set of T-S descriptors S  composed of 
two subsystems 1S  and 2S  described by: 
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, ( )( ) ( )( )1 2
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and 
 

( )( ) ( )

( )( ) ( ) ( ) ( ){ }

2

2 2 2 2
1

2 2

2 2 2 2 2 2 21 1
1

:

j j

j

k k k k

k

v x t E x t
S

h x t A x t B u t F x t

=

=

+ +=

∑

∑

�
 (22) 

 

with 1
2

1 0.2
0 1

E
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 
1

2 1 0
0 1

E
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 1
2

1 1
0.839 0.931

A
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, 

2
2

1 1
0 0.931

A
−⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 1
2

0.47
0.4

B ⎡ ⎤
⎢ ⎥
⎣ ⎦

= , 2
2

0.47
0.8

B ⎡ ⎤
⎢ ⎥
⎣ ⎦

= , 

1
21

0 0
0.3 0

F ⎡ ⎤
= ⎢ ⎥

⎣ ⎦
, 2

21

0 0
0.5 0

F ⎡ ⎤
= ⎢ ⎥

⎣ ⎦
, ( )( ) ( )( )1 2

2 2 21cosv x t x t= , 

( )( ) ( )( )2 2
2 2 21sinv x t x t= , ( )( ) ( )( )1 2

2 2 21sinh x t x t= , 

( )( ) ( )( )2 2
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Remark: The stability of (21) and (22) cannot be established 
with the LMI conditions proposed in (Jabri et al., 2009).  
 
A set of decentralized H∞ controllers can be synthesized 
using theorem 1. The Matlab LMI toolbox is used to solve 
the LMI conditions provided in (5) and (6), the solution leads 
to the design of two decentralized non-PDC controllers with 
the following gain matrices: 
 

[ ]11
1 1.5968   1.8869K = − − , [ ]12

1 1.0805   1.4521K = − − , 

[ ]21
1 1.3858   1.5140K = − − , [ ]22

1 1.0176   1.5563K = − − , 

[ ]11
2 1.0781   9.6242K = − , [ ]12

2 1.3314   6.2205K = − , 

[ ]21
2 1.5534   6.2765K = − , [ ]22

2 1.2592   4.4276K = − , 
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and H∞  performances given by the scalars 1 3.7176ρ =  and 

2 4.4442ρ = . 
 
The close-loop subsystem dynamics and the control laws are 
given in Fig.1, for initial states ( )1 0 1 1 Tx ⎡ ⎤⎣ ⎦= −  and 

( )2 0 1 1 Tx ⎡ ⎤⎣ ⎦= − . As we show, the controller stabilized the 
overall system. 

 
5. CONCLUSIONS 

 
In this paper, a decentralized fuzzy H∞ based Takagi-Sugeno 
fuzzy controller design has been provided for n  
interconnected nonlinear T-S descriptors. The H∞ criterion 
has been considered to minimize the fuzzy structure 
interconnection effects between subsystems. The use of a 
multiple fuzzy Lyapunov function and a network of n  non-
PDC control laws lead to less conservativeness in the LMI 
conditions rather than the classical quadratic case. Finally, a 
numeric example has been given to illustrate the efficiency 
and the applicability of the proposed fuzzy approach. 
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Fig.1. State’s dynamics of the closed-loop interconnected 
descriptors and control signals, ( 11x , 21x , 1u ) dotted line, 

( 12x , 22x , 2u ) solid line. 
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