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Abstract— This paper presents stability conditions for 
Takagi-Sugeno (T-S) uncertain descriptors. These are based on 
a fuzzy Lyapunov approach and a non-PDC (Parallel 
Distributed Compensation) control scheme. To design the fuzzy 
controller, the stability conditions are derived into LMIs. 
Moreover, in order to reduce once more the conservatism of the 
proposed stability conditions, a relaxation scheme, allowing 
rewriting the triple summation structure, is introduced for T-S 
descriptors. A designed example illustrates the efficiency of the 
proposed approaches. 

I. INTRODUCTION 
Control approaches based on Takagi-Sugeno fuzzy 

modelling have been applied to various processes and in 
several engineering systems. Indeed, a T-S fuzzy model may 
represent a non linear one by a set of linear time invariant 
models interconnected together with nonlinear membership 
functions [1]. In the last few decades, stability analysis for 
T-S fuzzy control systems has attracted a great 
consideration. Several works exist in literature dealing with 
stability and stabilization of T-S systems. For example, 
quadratic stability conditions with Parallel Distributed 
Compensation (PDC) control law have been proposed in 
[2][3]. The latter conditions being conservative, relaxed 
approaches have been proposed. For instance, one can deal 
with piecewise Lyapunov approaches [4][5][6], non 
quadratic Lyapunov approaches [7][8] and more recently 
fuzzy Lyapunov approaches [5][9]. Note that, these results, 
derived from classical T-S models are not directly applicable 
to a wider class of systems such as, for instance, singular 
systems [10]. A wider class of T-S systems, called T-S 
descriptors have been firstly studied in the case of control 
[11][12] or more recently for observer design [13][22]. In 
addition, more extensively to singular systems, descriptors 
are also the natural way to describe mechanical systems with 
time varying inertia. Indeed, in the later case, a descriptor 
modelling approach leads to less computational cost when 
solving a set of LMIs [13][21]. Following the goal of 
extending the results for a wider class of systems, robust 
stability conditions considering parametric uncertainties 
[14][15], external disturbances [16] or both [17] have been 
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proposed. Nevertheless, [14] provides BMI conditions and 
[15][16][17] are based on a Lyapunov quadratic approach 
that still leading to conservative LMI conditions.  

In this paper, a fuzzy Lyapunov approach, extending our 
previous results in [15], is proposed to improve the 
conservatism of the LMI conditions. Moreover, a typical 
relaxation scheme is proposed for descriptor systems. 
Finally, a numerical example illustrates the efficiency of the 
proposed approach and the interest of the suggested 
relaxation scheme. 

II. USEFUL NOTATIONS, LEMMA AND COROLLARY 
The following notations, lemma and corollary will be used 

respectively to clarify the mathematical expression and to 
provide the LMI stability conditions. Let us consider, for 

{ }1, ,k l∈ …  and { }1, ,i r∈ … , the scalar functions ( )kv z  

and ( )ih z , the matrices kW , iG  and ikQ  with appropriate 

dimensions. We will denote ( )
1

l

v k k
k

W v z W
=

= ∑ , 

( )
1

r

h i i
i

G h z G
=

= ∑  and ( ) ( )
1 1

l r

hv k i ik
k i

Q v z h z Q
= =

= ∑∑ . As usual a 

star ( )∗  indicates a transpose quantity in a symmetric 

matrix. Moreover, a nonlinear matrix ( )( )X z t  in its general 

formulation will be denoted zX . 
 
Lemma 1 [18]: For real matrices with appropriate 
dimensions X , Y  and S , and a positive scalar δ , one has: 
 

1T T T TX Y Y X X X Y Yδ δ −+ ≤ +  (1) 
1T T T TX Y Y X X S X Y SY−+ ≤ +  (2) 

 
Corollary: For real matrices X , Y , T , R , M , and a 
regular matrix with appropriate dimensions 0Q > , we have: 
 

( ) 1

0 0
T T T

T

R YQ Y TR T XY
T M XQXT XY M

−⎡ ⎤ ⎡ ⎤++ < ⇒ <⎢ ⎥ ⎢ ⎥++⎢ ⎥ ⎣ ⎦⎣ ⎦
 (3) 
 
Proof: For real matrices X , Y , T , R , M and a regular 
matrix Q  with appropriate dimensions, let us consider:  
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( ) 0
0

0

T T T TR T Y XR T XY
T M XYT XY M

⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ = + <⎢ ⎥ ⎢ ⎥ ⎢ ⎥
+⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦

 

 
From (2), it exists a matrix 0Q >  such that: 
 

[ ]

[ ]1

0
0 0

0

0
0 0

0

T
T

T
T

Y
Y X

X

Y
Q X Q Y

X
−

⎡ ⎤⎡ ⎤ ⎡ ⎤+ ⎢ ⎥⎢ ⎥ ⎣ ⎦
⎣ ⎦ ⎣ ⎦

⎡ ⎤⎡ ⎤ ⎡ ⎤≤ + ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 

 
that leads to (3) and ends the proof. ■ 

III. CLASS OF STUDIED T-S DESCRIPTORS 
Let us consider the class of uncertain T-S descriptor 

systems described by: 
 

( )( ) ( ){ } ( )

( )( ) ( )( ) ( ) ( )( ) ( ){ }
1

1

l

k k k
k

r

i i i
i

v z t E E t x t

h z t A A t x t B B t u t

=

=

+ Δ =

+ Δ + + Δ

∑

∑

�
 (4) 

 

where l and r  represent respectively the number of fuzzy 
rules in the left and the right part of the state equation. 

( ) nx t ∈ \ , ( ) mu t ∈ \  represent respectively the state and 

the input vectors. ( ) fz t ∈\  is the premise vector. ( )( )kv z t  

and ( )( )ih z t  are positive membership functions associated 

to the fuzzy rules satisfying the convex sum proprieties 

( )( )
1

1
r

i
i

h z t
=

=∑  and ( )( )
1

1
l

k
k

v z t
=

=∑ . n n
kE ×∈\ , n n

iA ×∈\  

and n m
iB ×∈\  are real state matrices. ( ) n n

kE t ×Δ ∈\ , 

( ) n n
iA t ×Δ ∈\  and ( ) n m

iB t ×Δ ∈\  are unknown matrices 
containing the bounded uncertainties such that: 

 
( ) ( )i ai ai aiA t H t NΔ = Δ , ( ) ( )i bi bi biB t H t NΔ = Δ  

and ( ) ( )k ek e k ekE t H t NΔ = Δ  (5) 
 
with aiH , biH , ekH , aiN , biN , and ekN  are known 
constant matrices and ( )ai tΔ , ( )b i tΔ , ( )e k tΔ  are 
unknown matrices functions bounded as, for eη =  or a  or 

b  and kμ =  or i , t∀  we have: 
 

( ) ( )T t t Iημ ημΔ Δ ≤  (6) 
 

Let us consider the following non-PDC control law: 
 

( ) ( )( ) ( )( ) ( ) ( )11

1 1

r l

k j jk z
j k

u t v z t h z t S X x t
−

= =

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
∑ ∑  (7) 

 

As usual for descriptor systems, we consider the extended 
state vector ( ) ( ) ( ) TT Tx t x t x t⎡ ⎤= ⎣ ⎦� � . Thus, (4) can be 

rewritten with the above defined notations as: 
 

( ) ( ) ( )hv hEx t A x t B u t= +� �� �� �  (8) 
 

with 
0

0 0
I

E ⎡ ⎤
= ⎢ ⎥

⎣ ⎦
� , 

( ) ( )
0

hv
h h v v

I
A

A A t E E t
⎡ ⎤

= ⎢ ⎥+ Δ − − Δ⎣ ⎦
�

 
and 

( )
0

h
h h

B
B B t

⎡ ⎤
= ⎢ ⎥+ Δ⎣ ⎦

� . 

 
In the same way, the control law (7) can be rewritten as: 
 

( ) ( )hvzu t K x t= − � �  (9) 
 

with ( ) 11 0hvz hv zK S X
−⎡ ⎤= ⎢ ⎥⎣ ⎦

� . 

 
Substituting (9) into (8), the closed-loop uncertain T-S 
descriptor dynamics is given by: 
 

( ) ( ) ( )hv h hvzEx t A B K x t= −� �� � �� �  (10) 
 
The goal is now to provide LMI stability conditions 

allowing to find the matrices jkS  and 1
zX  stabilizing (10). A 

solution is proposed in the following section. 

IV. SUFFICIENT STABILITY CONDITIONS AND LMI 
FORMULATION 

The main result of this paper is summarized in the 
following theorem. 
 
Theorem 1: Assume that, ( )z t∀  { }1, ..., 1rξ ∈ −  

( )( )h z tξ ξφ≥�  and { }1,..., 1lψ ∈ − , ( )( )v z tψ ψθ≥� . The 
uncertain T-S descriptor systems (4) is globally 
asymptotically stable via the non-PDC control law (7), if 
there exist the matrices 1 1 0T

jk jkX X= > , 3
ijX , 4

ijX  and jkS , 
the positive scalars 1

ijkτ , 2
ijkτ , 3

ijkτ , 4
ijkτ  such that the 

following LMIs are satisfied:  
 

For all combinations of , 1,...,i j r=  and 1,...,k l= , 
0ijkΦ <  (11) 

 
with: 

( )
11

1 1

2

3 3

51 55
4 4

0
0 0
0 0 0

0 0 0 0

ijk

ai jk ijk

bi jk ijk
ijk

ek ij ijk

ijk ijk

ek ij ijk

N X I
N S I
N X I

N X I

τ
τ

τ

τ

Ω⎡ ⎤
⎢ ⎥− ∗⎢ ⎥
⎢ ⎥−

Φ = ⎢ ⎥
−⎢ ⎥

⎢ ⎥Ω Ω
⎢ ⎥

−⎢ ⎥⎣ ⎦

 (12) 



 
 

 

 
and 4 1 3

51
T

ijk ij i jk k ij i jkX A X E X B SΩ = + − − ,  

( ) ( )
1 1

3 3 1 1 1 1
11

1 1
,

r l
T

ijk ij ij k rk i ilX X X X X Xξ ξ ψ ψ
ξ ψ

φ θ
− −

= =

⎛ ⎞
Ω = + − − + −⎜ ⎟

⎝ ⎠
∑ ∑  

4 4 1
55

2 3 4

T T T
ijk ij k k ij ijk ai ai

T T T
ijk bi bi ijk ek ek ijk ek ek

X E E X H H

H H H H H H

τ

τ τ τ

Ω = − − +

+ + +
 

 
Proof: Let us consider the following candidate fuzzy 
Lyapunov function:  
 

( )( ) ( ) ( ) ( )1T
zV x t x t E X x t−= �� � �  (13) 

 
Note that, if it can be established that (13) is a Lyapunov 
functional, zX  is a non singular matrix and 1

zX −  exists. In 
the sequel, for space convenience, the time t  in a time 
varying variable will be omitted when there is no ambiguity. 
 
From (13), one needs: 
 

1 0T
z zEX X E− −= ≥� �  (14) 

 

Let us consider 
1 2

3 4
z z

z
z z

X X
X

X X
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, (14) implies 2 0zX =  and 

1 1 0T
z zX X= ≥ , 3

zX  and 4
zX  are free matrices. The closed-

loop system (10) is stable if: 
 

( ) 1 1 1 0T T T
z z zV x x EX x x EX x x EX x− − −= + + <� �� � � � �� � � � � � �  (15) 

 
According to (14) and (10), (15) yields: 

 

( ) ( )1 1 0
T T

hv h hvz z z hv h hvz zA B K X X A B K EX− − −− + − + <� �� � � � � �  (16) 
 
Multiplying left and right respectively by T

zX  and zX , and 
considering (14), (16) becomes: 
 

( ) ( ) 1 0T T T T
z hv hvz h hv h hvz z z z zX A K B A B K X EX X X−− + − + <� �� � � � � �   

 (17) 
 
Note that: 
 

{ }1 1 1 1

1 1 1 1 1

1 1

z z z z z

z z z z z z z

z z z

dX X X X X
dt

X X X X X X X

X X X

− − − −

− − − − −

− −

− = −

= + −

=

�

� � �
�

 (18) 

 
Thus (17) becomes: 

 

( ) ( ) 0T T T T
z hv hvz h hv h hvz z zX A K B A B K X EX− + − − <� �� � � � � �  (19) 

 
According to (5) and the matrices defined in (8), (19) can be 
rewritten as: 

 

( )3 3 1

21 22

0
T

z z zX X X⎡ ⎤+ − ∗
<⎢ ⎥Γ Γ⎣ ⎦

�
 (20) 

 

With 
4 1 3 1

21

3

T
z h z v z h hv ah ah ah z

ev ev ev z bh bh bh hv

X A X E X B S H N X

H N X H N S

Γ = + − − + Δ

− Δ − Δ
  

and 
4 4 4 4

22
T T T T T T

z v v z z ev ev ev ev ev ev zX E E X X N H H N XΓ = − − − Δ − Δ  
 
Applying lemma 1 and its corollary, (20) is satisfied if: 
 

( )1

4 1 3 0z
T

z h z v z h hv

X
X A X E X B S

⎡ ⎤Θ − ∗
<⎢ ⎥+ − − Ξ⎣ ⎦

�
 (21) 

 
with 

4 4 1 2

4 1 4 4 3 4

T T T T
z v v z hz ah ah hhv bh bh

T T T T
zv z ev ev z zv ev ev zv ev ev

X E E X H H H H

X N N X H H H H

τ τ

τ τ τ−

Ξ = − − + +

+ + +
 and 

3 3 1 1

2 3 3 3

1 1

1 1

T T
z z hz z ah ah

T T T T
hhv hv bh bh hv zv z ev ev z

T
zX X X N N X

S N N S X N N X

τ

τ τ

−

− −

Θ = + +

+

+ . 

 
Applying the Schur complement [19], one obtains: 
 

( )

1
11

1 1

2

3 3

51 55
4 4

0
0

0 0
0 0 0

0 0 0 0

z

ah z hz

bh hv hhv

ev z vz

ev z vz

X
N X I
N S I
N X I

N X I

τ
τ

τ

τ

⎡ ⎤Λ −
⎢ ⎥− ∗⎢ ⎥
⎢ ⎥−

<⎢ ⎥
−⎢ ⎥

⎢ ⎥Λ Λ⎢ ⎥
−⎢ ⎥⎣ ⎦

�

 (22) 

 
with  

3 3
11

T
z zX XΛ = + , 4 1 3

51
T

z h z v z h hvX A X E X B SΛ = + − −  and 
4 4 1

55
2 3 4

T T T
z v v z hz ah ah

T T T
hhv bh bh vz ev ev vz ev ev

X E E X H H

H H H H H H

τ

τ τ τ

Λ = − − + +

+ +
. 

 
Note that the minimal interconnection structure for (22) is a 
triple sum ( hhv ). Thus, a convenient way to run a less 
conservative LMI conditions is to choose: 
 

1 1 1

1 1

r l

z hv j k jk
j k

X X h v X
= =

= = ∑∑ , 3 3 3

1 1

r r

z hh i j ij
i j

X X h h X
= =

= = ∑∑ ,  

4 4 4

1 1

r r

z hh i j ij
i j

X X h h X
= =

= = ∑∑  and so 1 1
hz hhvτ τ= , 3 3

zv hhvτ τ=  and 

4 4
zv hhvτ τ= .  

 

In that case 1 1 1 1

1 1 1 1

r l r l

z hv j k jk j k jk
j k j k

X X h v X h v X
= = = =

= = +∑∑ ∑∑�� � � , can 

be rewritten with the convex sum property of the 
membership functions as: 
 



 
 

 

1 1 1

1 1 1 1

l r r l

hv j k k j
k j

X h v h X v Xξ ξ ψ ψ
ξ ψ= = = =

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑ ∑ ∑ ∑�� �   (23) 

 
Moreover, from the convex property of the membership 

functions, one can write ( )( ) ( )( )
1

1

r

rh z t h z tξ
ξ

−

=

= −∑� �  and 

( )( ) ( )( )
1

1

l

lv z t v z tψ
ψ

−

=

= −∑� � . Therefore, without loss of 

generality, one can rewrite (23) with less conservatism as: 
 

( ) ( )

1 1
1 1 1 1 1

1 1 1 1

1 1
1 1 1 1

1 1 1 1

l r r l

hv j k k r rk j l jl
k j

l r r l

j k k rk j jl
k j

X h v h X h X v X v X

h v h X X v X X

ξ ξ ψ ψ
ξ ψ

ξ ξ ψ ψ
ξ ψ

− −

= = = =

− −

= = = =

⎛ ⎞⎛ ⎞ ⎛ ⎞
= + + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞
= − + −⎜ ⎟

⎝ ⎠

∑∑ ∑ ∑

∑∑ ∑ ∑

� �� � �

� �

  

 (24) 
 

Note that, for 1,...,i r= , ( )( )ih z t  and, for 1,...,k l= , 

( )( )kv z t  are required to be at least 1C . This is obviously 

satisfied for fuzzy models constructed via a sector 
nonlinearity approach [2] if the system (4) is at least 1C  or, 
for instance when membership functions are chosen with a 
smoothed Gaussian shape. Thus, one can consider, for 

1,..., 1i r= − , iφ  the lower bounds of ( )( )ih z t�  and, for 

1,..., 1k l= − , kθ  the lower bounds of ( )( )kv z t� . According 

to that, one can write: 
 

( ) ( )
1 1

1 1 1 1 1

1 1 1 1

l r r l

hv j k k rk j jl
k j

X h v X X X Xξ ξ ψ ψ
ξ ψ

φ θ
− −

= = = =

⎛ ⎞
− ≤ − − + −⎜ ⎟

⎝ ⎠
∑ ∑ ∑ ∑�   

 (25) 
 
and so, from (22) and (25), one has: 
 

1 1 1

0
r r l

i j k ijk
i j k

h h v
= = =

Φ <∑∑∑  (26) 

 
with the ijkΦ  defined in (12) and (26).  
 
Thus, sufficiently, (26) is obviously satisfied if (11) is 
verified. That ends the proof.  ■ 

V. TYPICAL RELAXATION SCHEME FOR T-S DESCRIPTOR 
Note that, in most of the cases, stability conditions for T-S 

descriptor are sufficiently obtained from a triple sum 
interconnection structure such like (26) (see e.g. 
[11][15][17]). Indeed, the set of LMIs are obtained from (26) 
considering that all the “ ijkΦ s” should be negative. This 
obviously leads to conservatism. A way to improve the 

conservatism is to rewrite the triple sum structure. Note that 
this way is often followed to rewrite classical T-S models’ 
stability conditions that are written in a double summation 
structure [2]. Moreover, let us point out that, in our 
knowledge, there is no relaxation schemes dedicated to T-S 
descriptor systems. The following lemma provides a first 
purpose to achieve this point. 

 
Lemma 2: Let us consider { }min ,q r l= , the inequality 

1 1 1

0
r r l

i j k ijk
i j k

h h v
= = =

Ψ <∑∑∑  is satisfied if: 

 
0iiiΨ <  for 1,...,i q=  (27) 

0iikΨ <  for 1,...,i r= , 1,...,k l=  and k i≠  (28) 
0iji jiiΨ + Ψ <  for 1,...,i q= , 1,...,j r=  and j i<  (29)  

0ijk jikΨ + Ψ <  for , 1,...,i j r= , 1,...,k l= , j i<  and k i≠  
 (30) 
Proof:  
Let us consider the following proprieties: 
 

( )2

1 1 1 1 1

r r r r r

i j ij i ii i j ij ji
i j i i j

j i

h h h h hϕ ϕ ϕ ϕ
= = = = =

<

= + +∑∑ ∑ ∑∑  (31) 

1 1 1 1 1

ql r l r

k i ik i i ii k i ik
k i i k i

k i

v h v h v hϕ ϕ ϕ
= = = = =

≠

= +∑∑ ∑ ∑∑  (32) 

with ijϕ  are matrices with appropriate dimensions and 

{ }min ,q r l= . Developing (26) by (31), one obtains: 
 

( )
1 1 1

2

1 1 1 1 1

l r r

k i j ijk
k i j

l r l r r

k i iik k i i ijk jik
k i k i j

j i

v h h

v h v h h

= = =

= = = = =
<

Ψ

= Ψ + Ψ + Ψ

∑∑∑

∑∑ ∑∑∑
 (33) 

One more time, developing (33) by (32), one obtains: 
 

( ) ( )

1 1 1

2 2

1 1 1

1 1 1 1 1

l r r

k i j ijk
k i j

q l r

i i iii k i iik
i k i

k i

q r l r r

i i j iji jii k i i ijk jik
i j k i j

j i k i j i

v h h

v h v h

v h h v h h

= = =

= = =
≠

= = = = =
< ≠ <

Ψ

= Ψ + Ψ

+ Ψ + Ψ + Ψ + Ψ

∑∑∑

∑ ∑∑

∑∑ ∑∑∑

 (34) 

Thus, 
1 1 1

0
r r l

i j k ijk
i j k

h h v
= = =

Ψ <∑∑∑  is satisfied if (27), (28) , (29) 

and (30) are verified. That ends the proof.  ■ 

VI. SIMULATION EXAMPLE AND RESULTS 
Let us consider the following nonlinear descriptor: 
 



 
 

 

( )( ) ( ) ( )( ) ( ) ( )( ) ( )E x t x t A x t x t B x t u t= +�  (35) 
 

where ( ) ( ) ( )1 2

TT Tx t x t x t⎡ ⎤= ⎣ ⎦ , 

( )( ) ( )( )
( )( )

1

2
2

5 5sin

cos 4

x t
E x t

x t

⎡ ⎤−
= ⎢ ⎥

−⎢ ⎥⎣ ⎦
, 

( )( )
( )( )

( )( )
( )

1

2

2

1 5cos

sin
2

x t

A x t x t
x t

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
−⎢ ⎥

⎢ ⎥⎣ ⎦

,  

and ( )( ) ( )( )22
2

0
tanh

B x t
x t

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

. 

 
An exact T-S descriptor for (35) can be obtained using the 

sector non linearity approach [2]. In that case, one has to 
consider: 
- Two nonlinearities in the left part of (35): ( )1sin x  and 

( )2
2cos x , leading to 4l = .  

- Three nonlinearities in the right part of (35): ( )1cos x , 

( )2

2

sin x
x

 and ( )2
2tanh x , leading to 8r = .  

The number of LMI conditions that have to be satisfied in 
this case is 2 5 6  using theorem 1 and 1 5 4  after applying 
lemma 2. As a consequence, using actual solvers and 
computers, the computational cost would be considerable 
and in some cases doesn’t lead to a solution. In order to 
reduce the number of LMIs, one can choose to put all the 
nonlinear terms depending on the state variable 2x  into 
uncertainties. In this case, ( )1sin x  and ( )1cos x  are still to 
be splited using the sector nonlinearity approach. This leads 
to 2l =  and 2r =  and so 7 LMIs to be satisfied. Let us 
consider, for 1x ∈\ : 
 

( ) ( ) ( ) ( ) ( )1 1
1

1 sin sin 1
sin 1 1

2 2
x x

x
− +

= − +  (36) 

and ( ) ( ) ( ) ( ) ( )1 1
1

1 cos cos 1
cos 1 1

2 2
x x

x
− +

= − +  (37) 

 
Also for the uncertain part, one can write: 
 

( ) ( )2
2 1

1 1cos
2 2

x t= + Δ , (38) 

( ) ( )2
2

2

sin 1 1
2 2

x
t

x
λ λ− +

= + Δ , (39) 

( ) ( )2
2 3

1 1tanh
2 2

x t= + Δ , (40) 

with -0.2172λ = , the minimum value of ( )2

2

sin x
x

 for 

2x ∈\  and ( )1 tΔ , ( )2 tΔ  and ( )3 tΔ , uncertain bounded 

functions such that ( )2
1 1tΔ ≤ , ( )2

2 1tΔ ≤  and ( )2
3 1tΔ ≤ . 

 
According to (36), (37), (39), (38), (40), an uncertain T-S 
descriptor representation of (35) is given as: 

 

( ) ( ) ( )( )
2 2

1 1
k k k i i i i i

k i
v E E x h A A x B B u

= =

+ Δ = + Δ + + Δ∑ ∑� �  (41) 

 

with: 1

5 5
0.5 4

E
− −⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, 2

5 5
0.5 4

E
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, 

1

1 5
,12

2
A λ

−⎡ ⎤
⎢ ⎥= −⎢ ⎥−
⎣ ⎦

 2

1 5
12

2
A λ

⎡ ⎤
⎢ ⎥= −⎢ ⎥−
⎣ ⎦

, 1 2

0
0.5

B B ⎡ ⎤
= = ⎢ ⎥−⎣ ⎦

,  

 
and where ( ) ( )1e eE t H t NΔ = Δ , ( ) ( )2a aA t H t NΔ = Δ , 

( ) ( )3b bB t H t NΔ = Δ  with 
0 0

0.5 0eN ⎡ ⎤
= ⎢ ⎥

⎣ ⎦
,  

0 0
10

2
aN λ

⎡ ⎤
⎢ ⎥= +⎢ ⎥
⎣ ⎦

, 0.5bN = − , 
0
1bH ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 and  

1 0
0 1e aH H ⎡ ⎤

= = ⎢ ⎥
⎣ ⎦

, and finally ( ) ( )1
1

1 cos
2

x
h z

−
= ,  

( ) ( )1
2

cos 1
2
x

h z
+

= , ( ) ( )1
1

1 sin
2

x
v z

−
=  

and ( ) ( )1
2

sin 1
2
x

v z
+

= . 

 
Using the MATLAB LMI Toolbox [20], feasibility area 

obtained from the initial stability conditions (theorem 1) and 
the ones obtained from relaxed stability conditions (lemma2) 
for [ ]1 1 1θ ∈ −  and  [ ]1 2 1φ ∈ −  are compared in fig 1. 
Therefore, one can see the interest of the relaxation since the 
feasibility area of the relaxed stability conditions is broader 
than that of non-relaxed results. 

 

 
Fig 1: Feasibility areas of the stability conditions with and 

without relaxation. “o” indicate area of stability conditions 
(theorem 1) and “*” indicate area of relaxed stability 

conditions (lemma 2). 



 
 

 

 
 

Note that, in the present example, ( )( )E x t  is chosen 

well-define in order to facilitate numerical simulation. 
However the proposed LMI conditions are still workable for 
some descriptor systems where ( )( )E x t  is not invertible.  

Fig 2, illustrates the convergence of the state vector and the 
control signal when simulating (35) in closed loop after 
solving (via the Matlab LMI Toolbox [21]) the relaxed 
stability conditions (lemma 2) with 1 3.5φ = − , 1 5θ = −  and 

the initial state ( ) [ ]0 1.7 1.5 TTx = . Note that 1φ  (resp. 1θ ) 
have been chosen as a wider values (regarding to the lower 
bound of ( )( )h z t�  and ( )( )w z t� ) in order to illustrate the 

efficiency of the proposed approach. Moreover, note that an 
analytical method has been proposed to find the values of 
these bound [5]. 
 

 
Fig 2: simulation results 

VII. CONCLUSION  
In this paper, new stability conditions for uncertain T-S 

descriptor systems have been proposed. These are based on a 
fuzzy Lyapunov function and a non-PDC (Lyapunov 
dependant) control law. The proposed LMI stability 
conditions are less conservative than the quadratic case since 
they require a set of Lyapunov matrices instead of common 
one. In order to improve once more the proposed stability 
conditions a typical relaxation scheme for T-S descriptor 
systems was proposed. Finally, in order to illustrate the 
efficiency of the proposed fuzzy Lyapunov approach, and 
the interest of proposed relaxation scheme, an academic 
example has been studied. 
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