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Abstract: This paper deals with the design of an H∞  fuzzy controller for uncertain T-S 
fuzzy descriptor with external disturbances. The control scheme is based on the modified 
PDC control law and an H∞  criterion to attenuate external disturbances. Stability 
conditions are obtained via a quadratic Lyapunov function and are given in terms of LMI. 
To illustrate the efficiency of the proposed approach, a design example is provided with 
the simulation of a planar two degrees of freedom robot. Copyright © 2007 IFAC 
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1. INTRODUCTION 

 

Many results about stability conditions and robust 
stability conditions for classical Takagi-Sugeno (T-S) 
fuzzy systems (Takagi and Sugeno, 1985) have 
already been obtained in the literature, see e.g. 
(Tanaka and Wang, 2001), (Sala, et al., 2005) and 
reference therein. On other hand, T-S fuzzy 
descriptor systems were first introduced by 
(Taniguchi, et al., 1999). These ones depict a wider 
class of systems because of the extensive application 
in many engineering systems, such as singular 
systems (Dai, 1989), joint torques estimation in 
human standing (Guelton, et al., 2006) or for the 
modelling of a two degrees of freedom pneumatic 
robot (Schulte and Guelton, 2006). Since the 
introduction of T-S fuzzy descriptor systems by 
(Taniguchi, et al., 1999), few works have been 
devoted to the study of their stability conditions. For 
instance, stability conditions for T-S fuzzy descriptor 
with parameters uncertainties has been reported by 
(Ma and Sun, 2004)(Yue and Lam, 2004). Moreover, 
the design of an H∞  controller without uncertainties 
was also considered by (Yoneyama and Ichikawa, 
1999). Nevertheless, in the above mentioned studies, 
the suggested stability conditions have been obtained 
for restrictive classes of descriptors systems in order 
to obtain LMI or BMI conditions. Indeed, the left 
part ( ( ) ...Ex t = ) was considered as linear time 

invariant and wasn’t take into account the uncertain 
term. Thus, these are not suitable for a wide class of 
engineering systems. For instance, mechanical 
systems with time varying inertia (at least two degree 
of freedom) can be “naturally” modelled as a 
descriptor (with ( )( ) ( ) ...E x tx t = ) (Guelton, et 
al., 2006)(Schulte and Guelton, 2006). Moreover, 
introducing uncertainties in the left part is also 
enlarging the class of complex systems studied. For 
instance, dynamical models where inertias are 
unknown or difficult to estimate can be considered 

( ( )( ) ( )( ) ( ) ...E E x tx t t =+ ∆ ). In this way the 

class of fuzzy descriptor systems studied in this paper 
is more general than the ones already studied in 
literature. The aim of this paper is to propose a 
controller design based on an H∞  criterion for 
uncertain fuzzy descriptor with external disturbances 
presented in section 2. Then, stability conditions, 
formulated in terms of bilinear matrix inequalities, 
are obtained via a quadratic Lyapunov function and a 
modified PDC control law. Afterward, in order to be 
solved by classical convex optimization algorithms, 
an approach is proposed to put these conditions into 
LMI added to a relaxation scheme proposed by 
(Tuan, et al., 2001). Finally, in section 3, a design 
example will illustrate the efficiency of the proposed 
approach. 



     

2. LMI STABILITY CONDITIONS 
FORMULATION 

 

2.1 Considered class of uncertain and disturbed T-S 
descriptors  

 

Takagi and Sugeno have propose an elegant way to 
approximate nonlinear affine systems as a collection 
of Linear models blended together by nonlinear 
functions. In that way, a T-S formulation of uncertain 
and disturbed non linear descriptor system can be 
described by the following state space equation: 
 

( )( ) ( ) ( )
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( )
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where ( ) nx t ∈  is the state vector, ( ) mu t ∈  is the 

control input vector, ( ) pz t ∈  is the premises 

vector, ( ) ntφ ∈  denote the unknown disturbances 

with a known upper bound ( )up tφ φ≥ , l  and r  
represent respectively the number of the fuzzy rules 
at the left and right side of the state representation, 
and the state matrices n n

kE ×∆ ∈ , n n
iA ×∆ ∈ , 

n m
iB ×∆ ∈  contain all the modelling uncertainties of 

n n
kE ×∈ , n n

iA ×∈ , n m
iB ×∈ . 

We suppose that the uncertainties are bounded as 
described in (Zhou & Khargonekar, 1988) such that 

( ) ( )k ek ek ekE t H t N∆ = ∆ , ( ) ( )i ai ai aiA t H t N∆ = ∆ , and 

( ) ( )i bi bi biB t H t N∆ = ∆ , where ekH , aiH , biH , ekN , 

aiN  and biN  are known constant real matrices with 
appropriate dimensions, ( )ek t∆ , ( )ai t∆  and ( )bi t∆  
are unknown matrices functions which are bounded 
such that t∀  and the index ,e aξ =  or b  and iϖ =  
or k , ( ) ( )T t t Iξϖ ξϖ∆ ∆ ≤ . 
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and satisfy the convex sum propriety 
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2.2 Basic stability conditions 
 

Let us consider the modified PDC control law 
(Taniguchi, et al., 1999): 

( ) ( )( ) ( )( ) ( )
1 1

r l

i k ik
i k

u t h z t v z t K x t
= =

= −∑∑  (2) 

 

where m n
ikK ×∈  are the local feedback gains. 

The closed-loop uncertain and disturbed T-S 
descriptor can be obtained, combining (2) and (1). 
This one is given by: 

( )( ) ( ) ( )

( )( ) ( )( ) ( )( ) ( ) ( )

1

1 1 1

l
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k
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i j k ijk
i j k
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 (3) 
with ( ) ( )ijk i i i i jkA A t B B t KΓ = + ∆ − + ∆⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ . 
 

Recall that the state representation (3) takes into 
account the modelling uncertainties. Since, the 
system is subject to external disturbances ( )tφ , we 
propose to attenuate them using H∞  performance. 
Thus, the problem treated below leads to a complete 
robust control approach.  
Let us consider the H∞  criterion given by : 

( ) ( ) ( ) ( )
0 0

2
f ft t

T T

t t

x t Qx t t t dtη φ φ≤∫ ∫   (4) 

 

where ft  is the final control time, Q  is a positive 
definite weighting matrix and η  is the prescribed 
attenuation level. 

According to this criterion, basic robust stability 
conditions for the closed loop system (3) are 
summarized in the following theorem. 
 

Theorem 1: The T-S uncertain and disturbed system 
(1) is quadratically stable via the modified PDC 
control law (2) and the H∞  criterion (4) if there exist 
matrices 1 1 0TZ Z= > , 3Z , 4Z , an attenuation level 
η  and the gain matrices jkK  such that the following 
conditions are satisfied: 

For , 1, 2,...,i j r=  and 1,2,...,k l= , 
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with ( ) ( )4 4
TT

k k k k kE E Z Z E Eχ = − + ∆ − + ∆  and 
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4 1

1 3
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. As 

usual, a star ( )∗  in a symmetric matrix indicates a 
transpose quantity. 
 

Proof: In order to clarify the mathematical 
expressions, we will use the following notations. Let 
us consider the positive scalar functions ( )( )kv z t  for 

{ }1, 2,...,k l∈ , ( )( )ih z t  for { }1, 2,...,i r∈  and the 

matrices kE  for { }1, 2,...,k l∈ , iY  for { }1, 2,...,i r∈  

and ikΤ  for { }1, 2,...,i r∈  and { }1, 2,...,k l∈ . We 

will denote ( )( )
1

l

v k k
k
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=
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Y h z t Y
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and ( )( ) ( )( )
1 1

l r

hv k i ik
k i

v z t h z t
= =

Τ = Τ∑∑ . 

Now, let us consider the extended state vector 

( ) ( ) ( ) TT Tx t x t x t⎡ ⎤= ⎣ ⎦ , (3) becomes: 

( ) ( ) ( ) ( )v hv h hvE x t A B K x t tφ= − +  (6) 
 

with 
0

0 0
I

E ⎡ ⎤
= ⎢ ⎥

⎣ ⎦
, 0

hv
h h v v

I
A

A A E E
⎡ ⎤

= ⎢ ⎥+ ∆ − − ∆⎣ ⎦
, 

0
h

h h

B
B B

⎡ ⎤
= ⎢ ⎥+ ∆⎣ ⎦

, 0hv hvK K= ⎡ ⎤⎣ ⎦  and 

( ) ( )10
TT

nt tφ φ×⎡ ⎤= ⎣ ⎦ .  

By extension, (4) can be rewritten as: 

( ) ( ) ( ) ( )
0 0

2
f ft t

T T

t t

x t Qx t dt t t dtη φ φ≤∫ ∫  (7) 

 

with [ ]0Q diag Q= . 

Now, consider the following quadratic Lyapunov 
function candidate 

( )( ) ( ) ( )T TV x t x t E Px t=  (8) 
 

with the following needed symmetric condition to be 
considered as a quadratic Lyapunov function 
candidate. 

0T TE P P E= ≥  (9) 
 

Let 1 2

3 4

P P
P

P P
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, where 1P , 2P , 3P  and 4P n n×∈ . 

The symmetric condition (9), leads to 1 1 0TP P= ≥ , 

2 0P = , 3P  and 4P  are free matrices. The stability of 
the closed-loop model (6) is satisfied under the H∞  
performance (7) with the attenuation level η  if: 

( )( ) ( ) ( ) ( ) ( )2 0TV x t x t Qx t t tη φ φ+ − ≤  (10) 
 

That is to say if: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )2 0

T T T T

T T

x t E Px t x t E Px t

x t Qx t t tη φ φ

+

+ − ≤
 (11) 

 

By substituting (6) into (11), one obtains: 
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( )

( )
( )2

0
T T

hvx t x tP
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φ φη
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with ( ) ( )T T T T
hv hv hv h hv h hvA K B P P A B K Qζ = − + − +  

Thus, (12) is equivalent to: 

0
2
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P I
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 (13) 

 

We consider the following change of variables: 

1
1 11
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After multiplying (13) left and right respectively by 
Tdiag X I⎡ ⎤

⎣ ⎦  and [ ]diag X I , one obtains: 
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Then, substituting (14) and the matrices hvA , hB , 

hvK  and Q  defined bellow into (15), it yields: 
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with ( ) ( )4 4
TT

v v v v vE E Z Z E Eχ = − + ∆ − + ∆  and 

( )
( ) ( )

4 1

1 3

T
h h

hhv
h h hv v v

Z A A Z

B B K Z E E Z

⎛ ⎞+ + ∆
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which is obviously satisfied if the condition (5) 
holds. ■ 
 

2.3 LMI formulation of stability conditions 
 

The conditions provided by theorem 1 are formulated 
in terms of BMI (bilinear matrix inequalities). In 
order to be solved by classical convex optimisation 
algorithms (Gahinet, et al., 1995), they have to be put 
into LMI. Moreover, these conditions are 
conservative. In order to relax them, many schemes 
can be employed (Tuan, et al., 2001), (Tanaka, et al., 
1998), (Liu and Zhang, 2003). In our case, we choose 
to apply the relaxation scheme given in (Tuan, et al., 
2001) since it seems to be the most efficient for most 
of the cases. 
 

Lemma 1 (Tuan, et al., 2001): For , 1,2,...,i j r=  
and 1,2,...,k l= , we have 0ijkϒ < . These conditions 
are equivalent to: 

• For 1, 2,...,i r=  and 1,2,...,k l= , 0iikϒ <  
• For 1, 2,...,i r= ,1 i j r≤ ≠ ≤  and 1,2,...,k l= , 

( )1 1 0
1 2iik ijk jikr

ϒ + ϒ + ϒ <
−

 
 

In order to put the provided stability conditions into 
LMI, we also need the following lemma and 
corollary. 
 

Lemma 2 (Zhou and Khargonekar, 1988): For real 
matrices X  and Y , with appropriate dimensions and 
a positive scalar τ , one has : 

1T T T TX Y Y X X X Y Yτ τ −+ ≤ +  
 



     

Corollary: for real matrices , , , ,A B W Y µ  and a 
regular matrix 0Q >  with appropriate dimensions 
one has: 

1
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T T T

T T

T

Y W B A
W AB

Y B Q B W

W AQA

µ
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−
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+⎢ ⎥⎣ ⎦

 

 

Now, the following theorem summarizes the 
sufficient LMI stability conditions. This constitutes 
the main contribution of this work. 
 

Theorem 2: The T-S uncertain and disturbed system 
(1) is quadratically stable via the modified PDC 
control law (2) and the H∞  criterion (4) if there exist 
matrices 1 1 0TZ Z= > , 3Z , 4Z , jkM , positive 

scalars 1
1σ − , 2σ , 3σ  and 4σ  and an attenuation 

level 2δ η=  such that the following conditions are 
satisfied: 

• For 1, 2,...,i r=  and 1, 2,...,k l= , 0iikΨ <  (17) 
• For 1, 2,...,i r= , 1 i j r≤ ≠ ≤  and 1,2,...,k l= , 
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1 2iik ijk jikr
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−

 (18) 
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 and 

4 1 3
T
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Proof: Let us start from equation (16). With the 
bijective change of variables 1hv hvM K Z= , 2δ η=  
and substituting ( )vE t∆ , ( )vA t∆ , ( )vB t∆  by their 
bounded quantities as described in (Zhou and 
Khargonekar, 1988) (see below equation (1)), (5) can 
be rewritten as: 
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with 
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and with the notations: for ,e aξ =  or b  and hϕ =  

or v , { } ( )( ) ( )( )
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i i i
i

H N z t H t Nξ ξ ξ ξ ξ ξϕ
ϕ
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In order to major the uncertain terms ( )i tξ∆  
contained in (19), the lemma 2 and the corollary 
defined bellow will be used. Then, considering that 

( ) ( )T
i it t Iξ ξ∆ ∆ ≤ , the inequality (19) yields to: 
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Then, applying successfully the Schur complement 
on hhvλ  and hvΩ , the conditions of theorem 2 hold.■ 
 

3. EXAMPLE AND SIMULATION OF A PLANAR 
TWO DEGREES OF FREEDOOM ROBOT  

 

In order to illustrate the efficiency of the proposed 
approach, we consider the planar two degrees of 
freedom robot presented in Figure 1. The dynamic 
equation of this robot is given by: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),M q q t C q q q t G q q t Ru t tφ+ + = +   
 (21) 
where, 1θ , 2θ , 1θ , 2θ  denotes respectively the 
angular positions and the angular velocities. 

[ ]1 2
Tq θ θ=  is the vector of generalized 

coordinates, ( )tφ  is the vector of external 

disturbances, ( ) ( )
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is the inertia matrix, 
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Coriolis anti-symetric matrix, 
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 is the gravitational 

matrix and 
1 1
0 1

R
−⎡ ⎤

= ⎢ ⎥
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 is the matrix linking joint 

torque to the generalized torque ( ) [ ]1 2
Tu t u u= , 

and with 2 2 2
1 1 2 1 1a m K L m L I= + + , 2

2 2 2b m L I= + , 

2 1 2c m L L= , ( )2 1 1d m m K gL= + , 2 2e m gL=  and 



     

1 1.4m kg= , 2 0.7m kg= , 1 0.6L m= , 2 0.3L m= , 
0.5K = , 29.81g m s−= , 2

1 2 0.25I I kg m= = . 
 

1 1 1, ,m L I

2 2 2, ,m L I

1θ

2θ

2u

1u
1 1 1, ,m L I

2 2 2, ,m L I

1θ

2θ

2u

1u
 

Fig.1. Planar two degrees of freedom robot. 
 

Let 1 2 1 2x θ θ θ θ⎡ ⎤= ⎣ ⎦  be the state vector of the 
planar robot. The dynamical model (21) can be 
rewritten as a non linear descriptor as: 

( )( ) ( ) ( )( ) ( ) ( ) ( )E x t x t A x t x t Bu t tφ= + +  (22) 
 

with ( )( ) ( )( )
0

0
I

E x t
M x t

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
, 

0
B

R
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 

( )( ) ( )( ) ( )( )
0 I

A x t
G x t C x t

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

and ( ) ( )
0

t
t

φ
φ

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
. 

Note that (22) contains one non linear term 
( ) ( )1 2cose xη θ θ= −  in ( )( )E x t  and four ones in 

( )( )A x t : ( ) 1
1

1

sin
a x

θ
η

θ
= , ( ) 2

2
2

sin
a x

θ
η

θ
= , 

( ) ( )3 2 1 2sina xη θ θ θ= − and ( ) ( )4 1 1 2sina xη θ θ θ= − . 
Using the sector nonlinearity approach (Tanaka & 
Wang, 2001), this leads to 2l =  and 16r =  rules for 
the left and the right part of the T-S fuzzy model. 
Then, to ensure the stability of the descriptor system, 
. .( 1) / 2 272l r r + =  LMI conditions have to be 

verified. Consequently, this should be conservative 
with classical stability conditions for T-S descriptors 
(Taniguchi, et al., 1999). In order to reduce the 
conservatism, some non linear terms will be put to 
uncertainties. Indeed, the motion of the system being 
physically restricted, the velocities can be considered 
as bounded such that ( )( )3a x tη α<  and 

( )( )4a x tη β<  with 12 rad sα β π −= = ⋅ . The non 
linear descriptor (22) becomes: 

( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )E x t x t A x t A t x t Bu t tφ⎡ ⎤= + ∆ + +⎣ ⎦
 (23) 

with ( ) ( )( )
( )( )

1

2

0 0 1 0
0 0 0 1

0 0 0

0 0 0
a

a

A x d x t

e x t

η

η

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 and 

( ) ( )
( )

3

4

0 0 0 0
0 0 0 0
0 0 0
0 0 0

a

a

A t
c t

c t
η

η

⎡ ⎤
⎢ ⎥
⎢ ⎥∆ =
⎢ ⎥−
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 

( )( )1a x tη  and ( )( )2a x tη  being bounded by 1 and  

( )( )( )1min a x tρ η= , one can write: 

( )( ) ( )( ) ( )
( )( ) ( )

11 12

1 1
1

1
1

1 1
a a

a

w w

x t x t
x t

η ρ η
η ρ

ρ ρ
− −

= +
− −

 (24) 

( )( ) ( )( ) ( )
( )( ) ( )

21 22

2 2
2

1
1

1 1
a a

a

w w

x t x t
x t

η ρ η
η ρ

ρ ρ
− −

= +
− −

(25) 

 

Finally, the uncertain and disturbed T-S model of the 
planar two degrees of freedom robot is: 

( )( ) ( )

( )( ) ( ){ } ( ) ( ) ( )

2

1

4

1

k k
k

i i
i

v z t E x t

h z t A A t x t Bu t tφ

=

=

=

⎡ ⎤+ ∆ + +⎣ ⎦

∑

∑  

with 1

1 0 0 0
0 1 0 0
0 0
0 0

E
a c
c b

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 2

1 0 0 0
0 1 0 0
0 0
0 0

E
a c
c b

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥−
⎢ ⎥

−⎣ ⎦

, 

1

0 0 1 0
0 0 0 1

0 0 0
0 0 0

A
d

e

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 , 2

0 0 1 0
0 0 0 1

0 0 0
0 0 0

A
d

eρ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

,  

3

0 0 1 0
0 0 0 1

0 0 0
0 0 0

A
d

e
ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 4

0 0 1 0
0 0 0 1

0 0 0
0 0 0

A
d

e
ρ

ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 

 

To apply the LMI given by the theorem 2, one have 
to rewrite the uncertain matrix as 

( ) ( )a a aA t H t N∆ = ∆  with 

0 0 0 0
0 0 0 0
0 0 0
0 0 0

aN
c

c
β

α

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦

, 

aH I=  and ( ) ( )
( )

1

2

0 0 0 0
0 0 0 0
0 0 0
0 0 0

a t
t

t

⎡ ⎤
⎢ ⎥
⎢ ⎥∆ =
⎢ ⎥∆
⎢ ⎥

∆⎢ ⎥⎣ ⎦

. 

The solutions of the conditions given by theorem 2 
are now derived for the planar robot using the 
MATLAB LMI Toolbox (Gahinet, et al.,1995). The 
theoretical attenuation level is 0.7501η =  for a 
weighting matrix:  

1.0e-3 *[14 0 0 0;0 9.89 0 0;0 0 9.82 0;0 0 0 16];Q =  

The obtained gain matrices are given by: 

11

2403 522
3344.5 4595.5

523 114
3456 4749

T

K

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 
12

1852 303
3350.8 5222

402 66
3462 5396

T

K

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

,  



     

21

2403 522
3344.3 4595.3

523 114
3456 4749

T

K

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

,
22

1852 303
3350.6 5221.7

402 66
3462 5396

T

K

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

,

31

2393 522
3344.5 4595.5

523 114
3456 4749

T

K

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

,
32

1852 303
3350.8 5222

402 66
3462 5396

T

K

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 

41

2393 522
3344.3 4595.3

523 114
3456 4749

T

K

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

,
42

1842 303
3350.6 5221.7

402 66
3462 5396

T

K

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 

The simulation of the non linear system (21) 
controlled via the obtained modified PDC control law 
was performed with the initial state conditions 

( ) [ ]0 0 0 ( )Tx radπ π=  and the external 
disturbances vector given by: 

( ) ( ) ( )0 0 20 sin 7 25sin 7
T

t t tφ π π⎡ ⎤= ⎣ ⎦  
 

Figure 2 illustrates the convergence of the state 
vector and the evolution of the control signals. The 
stability is achieved in less than 10  Sec. and the 
external disturbances are successfully balanced by 
the control signal. 
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Fig. 2. Simulation results 
 

CONCLUSION 
 

In this paper, a fuzzy H∞  controller design for a 
general class of uncertain fuzzy descriptor with 
external disturbances is proposed. The stability 
conditions have been obtained via a quadratic 
Lyapunov function and the modified PDC control 
law. The LMI formulation has been provided and a 
relaxation scheme due to (Tuan, et al., 2001) has 
been applied. At last, a practical example has 
illustrated the efficiency of the proposed approach. 
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