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Equation Chapter 1 Section 1  

Abstract—In this paper, stability conditions for a wide class 
of Takagi-Sugeno uncertain Descriptors are proposed. These 
are based on a quadratic Lyapunov candidate function. In 
order to solve the stability conditions with classical convex 
optimization algorithms, matrices transformations have been 
used to write these conditions in term of linear matrix 
inequality (LMI). A designed example illustrates the efficiency 
of the proposed approach.  

I. INTRODUCTION 

Takagi-Sugeno (T-S) fuzzy systems [1] have been widely 
used in the context of nonlinear models control. These 
consist on local linear time invariant (LTI) models blended 
together with normalized nonlinear membership functions. 
A lot of papers dealings with stability conditions for various 
class of classical state space representation of T-S fuzzy 
systems have been proposed, see e.g. [2][3][4] and 
references therein. An extended view of classical state space 
representation, called state space descriptor systems, has 
been first introduced by [5] as a wider class of systems. 
Fuzzy T-S descriptor systems have then been proposed by 
[6]. Since their introduction, the interest of nonlinear and/or 
fuzzy descriptors has increased for their ability to represent 
a large class of engineering systems such as singular systems 
[7], geometrically variable mechanical systems (i.e. with 
time varying inertia) [8][9], etc. For instance, they have 
already been used, for the joint torque estimation in human 
standing [8] and for modelling the pneumatic actuator 
nonlinearities of a two degree of freedom robot [9]. Since 
[6], few papers have been proposed in the literature dealing 
with the problem of stability of fuzzy descriptor systems. In 
fact, the stability of a particular class of uncertain fuzzy 
descriptor has been reported by [10][11]. Nevertheless, the 
above suggested stability conditions concern a restrictive 
class of descriptor systems that substantially reduce the 
range of their applicability.  Moreover, redundancy of 
descriptor representation have been also used to reduce the 
number of LMI to be satisfied [19][20].  

The aim of this paper is to propose stability conditions for 
a wider class of descriptor systems with parametric 
uncertainties via a quadratic Lyapunov function and a 
modified Paralleled Distributed Compensation (PDC) 
control law [6]. In order to solve the derived stability 
conditions by classical convex optimization algorithms [12], 
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these conditions are put into Linear Matrix Inequalities 
(LMI) [13]. Then, less conservative stability conditions will 
be proposed using a relaxation scheme [14]. Finally, a 
numerical example illustrates the efficiency of the proposed 
approach. 

II. USEFUL NOTATIONS, LEMMA AND COROLLARY 

A. Notations 
Let us consider the scalar functions ( )kv z  and ( )ih z  and 

the matrices kE  for { }1, ,k l∈ … , iY  for { }1, ,i r∈ …  and 

ikT  for { }1, ,k l∈ …  and { }1, ,i r∈ …  with appropriate 
dimensions, we will denote: 
 

( )
1

l

v k k
k

E v z E
=

= ∑ , ( )
1

r

h i i
i

Y h z Y
=

= ∑ ,

( ) ( )
1 1

l r

hv k i ik
k i

T v z h z T
= =

= ∑∑ .  

 
As usual a star ( )∗  indicates a transpose quantity in a 

symmetric matrix. 

B. Useful lemma and corollary   
The following matrix inequality lemma and corollary are 

needed to put and/or relax the further provided stability 
conditions into LMI. 

 

Lemma 1 [15]: for real matrices A  , B  and 0TS S= >  
with appropriate dimensions and a positive constant τ , we 
have: 
 

1T T T TA B B A A A B Bτ τ −+ ≤ +  (1) 
1T T T TX Y Y X X S X Y SY−+ ≤ +  (2) 

 
Corollary 1: for real matrices A , B , W , Y , Z  and a 
regular positive matrix Q  with appropriate dimensions we 
have 
 

1

0 0
T T T T T

T

Y W B A Y B Q B W
W AB Z W Z AQA

−⎡ ⎤ ⎡ ⎤+ +
< ⇒ <⎢ ⎥ ⎢ ⎥+ +⎣ ⎦ ⎣ ⎦

 (3) 

 
Lemma 2 [14]: 
Consider the proposition “For all combinations 
, 1, 2,...,i j r=  and 1,2,...,k l=  we have 0ijkγ < ”. 

This proposition is equivalent to: “For all combinations 
, 1, 2,...,i j r=  and 1,2,...,k l= , 0iikγ <  and  for 
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1 i j r≤ ≠ ≤ , we have ( )1 1 0
1 2iik ijk jikr

γ γ γ+ + <
−

”. 

III. CLASS OF DESCRIPTOR SYSTEMS  

A. Uncertain T-S descriptor models 
Let us consider the class of uncertain T-S descriptor 

system described by: 
 

( )( ) ( )( ) ( )

( )( ) ( )( ) ( ) ( )( ) ( ){ }
1

1

l

k k k
k

r

i i i i i
i

v z t E E t x t

h z t A A t x t B B t u t

=

=

+ ∆

= + ∆ + + ∆

∑

∑

�
 (4) 

 
where: l  and r  represent respectively the number of fuzzy 
rules for the left and the right part of the state equation. 

( ) nx t ∈ ℜ , ( ) mu t ∈ ℜ  represent respectively the state and 

the input vectors, ( )( )kv z t  and ( )( )ih z t  are the positive 
membership functions associated to the fuzzy rules 

satisfying the convex sum proprieties ( )( )
1

1
r

i
i

h z t
=

=∑  and 

( )( )
1

1
l

k
k

v z t
=

=∑ . n n
kE ×∈ℜ , n n

iA ×∈ℜ  and n m
iB ×∈ℜ  are real 

state matrices. ( ) n n
kE t ×∆ ∈ℜ , ( ) n n

iA t ×∆ ∈ℜ  and 

( )B n m
i t ×∆ ∈ℜ  contain the bounded uncertain terms which 

can be rewritten as: 
 

( ) ( )i ai ai aiA t H t N∆ = ∆ , ( ) ( )i bi bi biB t H t N∆ = ∆ ,  

and ( ) ( )k ek ek ekE t H t N∆ = ∆  (5) 
 
with aiH , biH , ekH , aiN , biN , and ekN  are known 
constant matrices and, ( )ai t∆ , ( )bi t∆  and ( )ek t∆  are 
unknown matrices functions bounded as: 
 
For all index ,a b or eξ =  and ,i or kθ =  1,...,i r=  and 

1,...k l= , one has ( ) ( )T t t Iξθ ξθ∆ ∆ ≤  (6) 
 
Comment: Let us point out that, in our opinion, LMI 
stability conditions for global uncertain T-S descriptors 
define by (4) do not exist in the previous literature. Indeed, 
the available studies consider the class of uncertain 
descriptor where the left part (i.e. ( ) ...Ex t =� ) is linear time 
invariant and not uncertain [10][11], that is to say the class 
of systems defined by: 
 

( ) ( )( ) ( )( ) ( ) ( )( ) ( ){ }
1

r

i i i i i
i

Ex t h z t A A t x t B B t u t
=

= + ∆ + + ∆∑� (7) 

 
That leads to solutions that are not useful for a large class of 
systems. For instance, as stated in [8][9], geometrically 
variable mechanical systems (i.e. with time varying inertia) 

should naturally be modelled as a descriptor with a 
nonlinear state dependant left part ( ( )( ) ( ) ...E x t x t =� ) 
leading to less conservative LMI based design in the case of 
T-S modelling. Moreover, the interest of taking into account 
uncertainties in the left member should be used in the case 
of mechanical systems, to model various complex systems 
where inertia are unknown or difficult to estimate. Note also 
that, in that way, the class studied in this paper (presented by 
equation (4)) are more general than the ones proposed in the 
literature. 

IV. STABILITY CONDITIONS AND LMI FORMULATION 

A. Sufficient stability conditions 
Let consider the modified PDC control law [6]: 

 

( ) ( )( ) ( )( ) ( )
1 1

r l

i k ik
i k

u t h z t v z t K x t
= =

= −∑∑  (8) 

 
where m n

ikK ×∈ℜ  are the local feedback gains. 
 
Theorem 1: The T-S uncertain descriptor system (4) is 
quadratically stable via the modified PDC control law (8) if 
there exists free matrices 1 1 0Tz z= > , 3z , 4z  and the gain 
matrices jkK  such that the following conditions are 
satisfied: 
 
For , 1, 2,...,i j r=  and 1, 2,...,k l= , 

( )

( ) ( )
( )

( )
( )

3 3

4 1 3 1 4 4

1 1 4

43

0

T

T T T
i k i jk k k

T T
i i jk k

kk

z z

z A z E z B K z z E E z

A t z B t K z z E t

E t zE t z

⎡ ⎤− − ∗
⎢ ⎥
⎛ ⎞+ + − ⎛ ⎞− −⎢ ⎥
⎜ ⎟ <⎜ ⎟⎢ ⎥
+∆ + ∆ − ∆⎜ ⎟ ⎜ ⎟⎢ ⎥

⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟ −∆+∆ ⎝ ⎠⎝ ⎠⎣ ⎦

 (9) 

 

Proof: Let ( ) ( ) ( ) TT Tx t x t x t∗ ⎡ ⎤= ⎣ ⎦� , then, the uncertain 
fuzzy descriptor (4) can be rewritten with the notation given 
in section 2 as: 
 

( ) ( ) ( )v hv hE x t A x t B u t∗ ∗ ∗ ∗ ∗= +�  (10) 
 

with 
0

0 0
I

E∗ ⎡ ⎤
= ⎢ ⎥

⎣ ⎦
, 

0
hv

h h v v

I
A

A A E E
∗ ⎡ ⎤

= ⎢ ⎥+ ∆ − − ∆⎣ ⎦
, 

0
h

h h

B
B B

∗ ⎡ ⎤
= ⎢ ⎥+ ∆⎣ ⎦

. 

 
According to the notations defined below, the modified PDC 
control law (8) can also be rewritten as: 
 

( ) ( )hvu t K x t∗ ∗= −  (11) 
 
where [ ]0hv hvK K∗ = . 
 



 
 

 

Substituting (11) into (10), the closed-loop system becomes: 
 

( ) ( )v hv h hvE x t A B K x t∗ ∗ ∗ ∗ ∗ ∗⎡ ⎤= −⎣ ⎦�  (12) 
 
Now, let us consider the following candidate Lyapunov 
function: 
 

( )( ) ( ) ( )T TV x t x t E Px t∗ ∗ ∗ ∗=    (13) 
 
with the needed symmetric condition 0T TE P P E∗ ∗= ≥  to 
be considered as a quadratic function. We consider 

1 2

3 4

P P
P

P P
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, where 1P , 2P , 3P , 4P  n n×∈ℜ  are constant 

matrices. The symmetric condition leads to: 
 

1 2 1 3

3 4 2 4

0 0
0

0 0 0 0

T T

T T

P PI IP P
P P P P

⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤
= ≥⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦
 (14) 

 
and then 1 1 0TP P= ≥ , 2 0P = , 3P  and 4P  are free matrices. 

 
(12) is stable if the Lyapunov function decreases, that is to 
say if: 
 

( )( ) ( ) ( ) ( ) ( ) 0T T T TV x t x t E Px t x t E Px t∗ ∗ ∗ ∗ ∗ ∗ ∗= + <� � �  (15) 
 
By substituting (12) into (15), one obtains: 
 

( )( ) ( ) ( ) 0T
hvV x t x t x t∗ ∗ ∗= Ψ <�  (16) 

 

with ( ) ( )T T
hv hv h hv hv h hvA B K P P A B K∗ ∗ ∗ ∗ ∗ ∗Ψ = − + −  

 
We consider the following change of variables 

 
1

11 1
1 1 1

3 44 3 1 4

00 zP
X P

z zP P P P

−
−

− − −

⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥−− ⎣ ⎦⎣ ⎦

 (17) 

 
And after multiplying 0hvΨ <  left by T TX P−=  and right 

by 1X P−=  we obtains: 
 

0T T T T T
hv hv h hv h hvX A X K B A X B K X∗ ∗ ∗ ∗ ∗ ∗− + − <  (18) 

 
(18) can be developed, with the matrices defined in (10) and 
(11)defined below, as follows: 
 

( )

( ) ( )
( )

( )
( )

3 3

4 44 1 3 1

1 1 4

3 4

0

T

T TT
v vh v h hv

T T
h h hv v

v v

z z

z E E zz A z E z B K z
A t z B t K z z E t

E t z E t z

⎡ ⎤− − ∗
⎢ ⎥

⎛ ⎞⎛ ⎞ − −+ + −⎢ ⎥
<⎜ ⎟⎜ ⎟⎢ ⎥+∆ + ∆ − ∆⎜ ⎟⎜ ⎟⎢ ⎥

⎜ ⎟⎜ ⎟⎢ ⎥+∆ −∆⎝ ⎠ ⎝ ⎠⎣ ⎦

 (19) 

 
which is obviously satisfied if conditions (9) hold. ■ 

B. LMI stability conditions 
The conditions provided by Theorem 1 are note easily 
solvable by classical convex optimization algorithms 
because of their BMI (Bilinear Matrix Inequality) structure 
and of the time dependant terms included in the uncertain 
part. The following theorem provides solvable LMI 
conditions. 

 
Theorem 2: The fuzzy uncertain descriptor system (4) is 
quadratically stable via the modified PDC control law (8) if 
there exists the matrices 1 1 0Tz z= > , 3z , 4z , jkM  and 

scalars 1τ , 2τ , 3τ  and 1
4τ −  such that the following 

conditions are satisfied: 
 
For , 1, 2,...,i j r=  and 1, 2,...,k l= , 

3 3

1 1

2

3 3

1
4 4

( ) ( ) ( ) ( ) 0
0 0 0 0

0 0 0 0
0

0 0 0 0
0 0 0 ( )

0 0 0 0

T

ai

bi jk

ek

ijk ik

ek

z z
N z I

N M I
N z I

N z I

τ
τ

τ

τ −

⎡ ⎤− − ∗ ∗ ∗ ∗
⎢ ⎥−⎢ ⎥
⎢ ⎥−

<⎢ ⎥
−⎢ ⎥

⎢ ⎥Ω Π ∗⎢ ⎥
−⎢ ⎥⎣ ⎦

 (20) 

 

with 
4 1

3

T
i

ijk k

i jk

z A z
E z
B M

⎛ ⎞+
⎜ ⎟

Ω = +⎜ ⎟
⎜ ⎟−⎝ ⎠

 and 
4 4

2 1
1

3 4

T T
k k

T T
ik bi bi ai ai

T T
ek ek ek ek

z E E z

H H H H

H H H H

τ τ

τ τ −

⎛ ⎞− −
⎜ ⎟

Π = + +⎜ ⎟
⎜ ⎟+ +⎝ ⎠

 

 
Proof: Starting from the conditions provided by the theorem 
1. With the bijective change of variables 1hv hvM K z= , one 
obtains: 
 

( ) ( ) ( ) ( ) ( )1 3 4 4

3 3

4 1 3 4 4

0 ( )

( )
0

TT
h v h hv v v

T

T T T
h v h hv v v

A t z E t z B t M z E t E t z

z z
z A z E z B M z E E z

∗⎡ ⎤
⎢ ⎥
∆ + ∆ + ∆ − ∆ −∆⎢ ⎥⎣ ⎦

⎡ ⎤− − ∗
+ <⎢ ⎥+ + − − −⎣ ⎦

 (21) 
 
Then, the uncertain terms are assumed to be bounded as 
described in (5), then (21) becomes 
 

( )
( )

( )

( )( )
( )

( ) ( )

1
4

3

4

3 3

4 1 3 4 4

0 ( )

( )
0

ah ah ah TT
ev ev ev

ev ev ev

ev ev ev
bh bh bh hv

T

T T T
h v h hv h v

H t N z
z H t N

H t N z
H t N z

H t N M

z z

z A z E z B M z E E z

∗⎡ ⎤
⎢ ⎥

∆⎛ ⎞⎢ ⎥⎛ ⎞⎜ ⎟ − ∆⎢ ⎥⎜ ⎟+ ∆⎜ ⎟⎢ ⎥⎜ ⎟− ∆⎜ ⎟ ⎝ ⎠⎢ ⎥+ ∆⎝ ⎠⎣ ⎦
⎡ ⎤− − ∗

+ <⎢ ⎥
+ + − − −⎢ ⎥⎣ ⎦

 (22) 

 
Let us now apply the Lemma 1 and its corollary 1 to major 
the uncertainties. Thus, the inequality (22) leads to: 



 
 

 

 

4 1

3

(*)

0
hhv

T
h

hv
v h hv

z A z
E z B M

δ

µ

⎡ ⎤
⎢ ⎥
⎛ ⎞ <+ +⎢ ⎥⎜ ⎟⎢ ⎥−⎝ ⎠⎣ ⎦

   (23) 

 

with 4 4 4 4 4 1

1
2 3 4

T T T T T
v v ev ev ah ah

hv T T T
bh bh ev ev ev ev

z E E z z N N z H H

H H H H H H

τ τ
µ

τ τ τ −

⎛ ⎞− − + +
= ⎜ ⎟⎜ ⎟+ + +⎝ ⎠

 and 

1
3 3 1 1 1

1 1
2 3 3 3

T T T
ah ah

hhv T T T T
hv bh bh hv ev ev

z z z N N z

M N N M z N N z

τ
δ

τ τ

−

− −

− − +
=

+ +

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

. 

Then, applying the Schur complement [13] on 
1

1 1 1
T T

ah ahz N N zτ − , 1
2

T T
hv bh bh hvM N N Mτ − , 1

3 3 3
T T

ev evz N N zτ −  and 

4 4 4
T T

ev evz N N zτ ,and according to the notations defined in 
section 2,  the conditions of theorem 2 hold.  ■ 

C. Relaxed LMI stability conditions 
The conditions provided by the theorem 1 and 2 are obtained 
considering that (19) holds, that is to say if: 
 

( ) ( ) ( )
11 1

0
l r r

hhv k j i ik
jk i

v z h z h z
== =

Ψ = Ψ <∑∑∑  (24) 

 
This means that for each , 1,...,i j r=  and 1,...,k l= , 

0ijkΨ < . Obviously, hvΨ  resulting of a blended sum of 

ijkΨ , it is possible to find a combination of ijkΨ  where 

some are positive and leading to 0hvΨ < . Consequently, the 
provided conditions are conservative. In order to relax these 
conditions, many scheme should be employed [14][16][17]. 
In our case, we choose to apply the relaxation scheme given 
in [14] and summarized by the lemma 2. Applying this 
lemma on the conditions given by theorem 2, we obtain the 
relaxed stability conditions given by the following theorem. 
 
Theorem 3: The fuzzy uncertain descriptor system (4) is 
quadratically stable via the modified PDC control law (8) if 
there exists the matrices 1 1 0Tz z= > , 3z , 4z , jkM  and 

scalars 1τ , 2τ , 3τ  and 1
4τ −  such that the following 

conditions are satisfied: 
 
• for 1, 2,...,i r=  and 1,2,...,k l= , 0iikϒ <  , 
• for 1, 2,...,i r= , 1 i j r≤ ≠ ≤  and 1, 2,...,k l= , 

 ( )1 1 0
1 2iik ijk jikr

ϒ + ϒ + ϒ <
−

 

with 

3 3

1 1

2

3 3

1
4 4

( ) ( ) ( ) ( ) 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 ( )

0 0 0 0

T
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bi jk
ijk

ek

ijk ik

ek

z z
N z I

N M I
N z I

N z I

τ
τ

τ

τ −

⎡ ⎤− − ∗ ∗ ∗ ∗
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⎢ ⎥−

ϒ = ⎢ ⎥
−⎢ ⎥

⎢ ⎥Ω Π ∗⎢ ⎥
−⎢ ⎥⎣ ⎦

, 

4 1

3

T
i

ijk
k i jk

z A z
E z B M

⎛ ⎞+ +
Ω = ⎜ ⎟⎜ ⎟−⎝ ⎠

 and 
4 4 2

1 3
1

4

T T T
k k bi bi

T T
ik ai ai ek ek

T
ek ek

z E E z H H

H H H H

H H

τ

τ τ

τ −

⎛ ⎞− − +
⎜ ⎟

Π = + +⎜ ⎟
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V. NUMERICAL EXAMPLE AND SIMULATION 
To illustrate the proposed approach, let us consider the 
example given by the following nonlinear descriptor:  
 

( )( ) ( ) ( )( ) ( ) ( )( ) ( )
( ) ( )( ) ( )

E x t x t A x t x t B x t u t

y t C x t x t

⎧ = +⎪
⎨

=⎪⎩

�
 (25) 

 

with: ( ) ( )
( )

1

2

x t
x t

x t
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, ( )( ) 2
2

1 1
1 cos ( ( ))

E x t
x t

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

, 

( )( )
2

2 2
1

2
2

21

10 cos ( ( ))
1 ( )

sin( ( ))11.5 3 1
( )1 ( )

x t
x t

A x t
x t

b
x tx t

⎡ ⎤−⎢ ⎥+⎢ ⎥= ⎢ ⎥⎛ ⎞
− − + +⎢ ⎥⎜ ⎟+⎢ ⎥⎝ ⎠⎣ ⎦

  

and ( )( ) 2
1

2
2

11
1 ( )

cos ( ( )) 2
x tB x t

a x t

⎡ ⎤+⎢ ⎥+= ⎢ ⎥
⎢ ⎥−⎣ ⎦

. 

A. Uncertain T-S descriptor modeling. 
Let us recall that there is a systematic way to go from the 
nonlinear descriptor (25) to one of its fuzzy T-S 
representation. This way is called the sector non linearity 
approach [2]. Thus, a T-S descriptor should match exactly 
the nonlinear model in a compact set of the state variables. 
Note also that infinity of T-S models can represent a single 
nonlinear model [18]. The number of LTI models 
constituting the nonlinear T-S fuzzy descriptor is 

2 2nl nrn l r= × = ×  where nl and nr  are respectively the 
number of nonlinearity to be treated in the left and right part 
of the descriptor (25). ( )( )E x t , for the left part, contains 

the nonlinearity 2
2cos ( ( ))x t  that leads to 2l = . In the same 

way, ( )( )A x t  and ( )( )B x t , for the right part, contain the 

nonlinearities 2
2cos ( ( ))x t , 2

2

sin( ( ))
( )

x t
x t

 and 2
1

1
1 ( )x t+

 that 

leads to 8r = . Hecne, the number of conditions to be solved 
in the LMI problems is . ( 1) / 2 72l r r + = , which could leads 
to very conservative and make impossible the resolution 
with actual solvers. Thus it is of high interest to obtain a T-S 
fuzzy representation of nonlinear models with a reduced 
number of rules. In order to rewrite (25) as a nonlinear 
uncertain descriptor, we propose to rewrite the terms 

2
2cos ( ( ))x t  and 2

2

sin( ( ))
( )

x t
x t

 as fellows: 

 

( )( ) ( )2
2 1

1 1cos
2 2

x t t= + ∆  (26) 



 
 

 

( )( )
( ) ( )2

2
2

sin 1 1
2 2

x t
t

x t
ρ ρ− +

= + ∆  (27) 

 

where 0.2172ρ ≈ −  is the minimum value of 
( )( )

( )
2

2

sin x t
x t

. 

 

The functions ( ) ( )( )2
1 22cos 1t x t∆ = −  and 

( )
( )( )

( )
2

2
2

sin1 2 1
1

x t
t

x t
ρ

ρ

⎛ ⎞
∆ = − +⎜ ⎟⎜ ⎟+ ⎝ ⎠

, included in (26) and 

(27), are bounded on ℜ  such as 
( ) ( )2 2

1 2, 1 1t t et t∀ ∈ ℜ ∆ ≤ ∆ ≤ . These functions are then 
considered as uncertainties to obtain an uncertain 
representation of (25) given by: 
 

( ) ( )
( )( ) ( )( ) ( ) ( )( ) ( ) ( )

E E t x t

A x t A x t x t B x t B t u t

⎡ ⎤+ ∆⎣ ⎦
⎡ ⎤ ⎡ ⎤= + ∆ + + ∆⎣ ⎦⎣ ⎦

� � �

� � � �
 (28) 
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1
1 ( )
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=
+
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Hence, the uncertain T-S fuzzy representation of (28) can be 
obtaining by splitting the nonlinearity ( )( )1f x t  such that: 
 

( )( ) ( )( ) ( )( )1 1 20 1f x t h z t h z t= × + ×  (29) 
 

with ( )( ) ( )( )1 11h z t f x t= − , ( )( ) ( )( )2 1h z t f x t=  and 

( ) ( )1z t x t≡ . 
 
Then, the uncertain fuzzy descriptor with two rules is given 
by : 
Rule 1: If 1( )x t  is ( )( )1h z t  Then 

 ( )( ) ( ) ( )( ) ( ) ( )( ) ( )1 1 1E E t x t A A t x t B B t u t+ ∆ = + ∆ + + ∆� �� � � ��  

Rule2: If 1( )x t  is ( )( )2h z t  Then  

( )( ) ( ) ( )( ) ( ) ( )( ) ( )2 2 2E E t x t A A t x t B B t u t+ ∆ = + ∆ + + ∆� �� � � ��  
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That is to say in its compact formulation: 
 

( ) ( ) ( )( )
( ) ( )

( ) ( )

2

1

i i

i
i i

A A t x t
E E t x t h z t

B B t u t=

⎧ ⎫⎡ ⎤+ ∆⎪ ⎪⎣ ⎦⎡ ⎤+ ∆ = ⎨ ⎬⎣ ⎦ ⎡ ⎤+ + ∆⎪ ⎪⎣ ⎦⎩ ⎭
∑

� �
� � �

� �
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To compute the conditions given in theorem 2 and 3, the 
uncertainties matrices have to be rewritten as: 
 

( ) ( )e e eE t H t N∆ = ∆ , ( ) ( )1 1 1 1a a aA t H t N∆ = ∆ ,

( ) ( )2 2 2 2a a aA t H t N∆ = ∆ and ( ) ( )b b bB t H t N∆ = ∆
 

 

with 1 2
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0 1e a aH H H ⎡ ⎤

= = = ⎢ ⎥
⎣ ⎦
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0
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1 2
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t
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1
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2
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0 0.5
0 1aN
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⎡ ⎤

= ⎢ ⎥+⎣ ⎦
 and  0.5bN a= . 

B. Simulation and results 
In order to illustrate the efficiency of theorems 3 compared 
to theorem 2, the feasibility field, solution of each theorem 
using the MATLAB LMI Toolbox [12], with the parameters 

[ ]2.5 1.5a ∈ −  and [ ]9 6b ∈ −  are presented in figure 1. 
 

 
Fig1: Feasibility fields  



 
 

 

As an example, the solution of theorem 3, for 1.5a = −  and 
1b = − , is given by the following set of scalars and matrices: 
[ ]11 0.9119  -1.2475K = , [ ]21 1.1639   -0.9451K = ,

1 21.1611τ = , 2 65.0254τ = , 3 11.5796τ = , 4 33.7578τ = ,

1

118.3405 -4.5515
-4.5515 23.6827

z
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 3

126.0740 -37.1366
-10.5783 20.0279

z
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 and 

4

107.4726 -81.9021
-22.4079 121.5464

z ⎡ ⎤
= ⎢ ⎥

⎣ ⎦
. 

 
Figure 2 illustrates the state variables and the input signal 
convergences when simulating the nonlinear system (25) 
stabilized by the modified PDC control law (8) (reduced to 

( ) ( )( ) ( )
2

1
1

i i
i

u t h z t K x t
=

= −∑ ) and the initial state 

( ) [ ]0 10 20 TTx = . One notices some fluctuations during 
the transient of the nonlinear system. Let us recall that the 
global nonlinear system (25) is stabilized via a control law 
synthesized with all the terms including the state variable 

( )2x t  as uncertain. Nevertheless, we claim the efficiency of 
the proposed approach since the stability is achieved after 
2s.  

 
Fig2: simulation results 

VI. CONCLUSION 
In this paper, stability conditions for a wide class of T-S 
uncertain descriptor have been proposed. These are based on 
a quadratic Lyapunov candidate function and a modified 
PDC control law. In order to solve the stability conditions 
with classical convex optimization algorithm, matrices 
transformations have been used to write these conditions in 
term of linear matrix inequality (LMI).These are given by 
theorem 2 which constitutes the main contribution of this 
study. A less conservative stability condition has been 
investigated and proposed in theorem 3 with the use of the 
relaxation scheme proposed by [14]. A design example has 
illustrated the efficiency of the proposed approach for T-S 

Uncertain Descriptor.  
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