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Abstract— This paper presents the first steps towards a
robust model-based controller design for two-link manipu-
lators using a Takagi Sugeno fuzzy descriptor form. Due to
the circumstances that this form is more similar to a given
original nonlinear equation as a Takagi Sugeno fuzzy state-
space system, it allows to reduce the conservatism of the
controller design by using common matrix structures. The
model-based control law here is equivalent to the well-known
parallel distributed compensation scheme. The challenge of
the investigated modelling and control problem in this case
is the highly nonlinear dynamics of the dual-actuator drive
powered by air-pressure that interacts with the dynamics of
the robot manipulator.

Keywords— Descriptor systems, Control oriented models,
Robotic manipulators, Fluid Power System

I. Introduction

For several years Takagi Sugeno (TS) fuzzy systems [13]
are widely used in a context of modeling for control de-
sign [1], [11], [14], [16]. Also the linear descriptor system,
which differs from a state-space representation, has gen-
erated a great deal of interest in control system design.
The descriptor system describes a wider class of systems
including physical models and nondynamic constraints [6].
The interest to choose descriptor system rather than clas-
sical state space representation particular for mechanical
systems based on
1. Reducing the number of rules → reducing conservatism,
see [2]
2. Using the natural model structure due to the inertia
matrix.
Then, the use of a descriptor representation is justified
to model a robot if the inertia matrix contains nonlinear
terms, i.e. if the structure of the considered robot is geo-
metrically variable, that is the case of the SCARA robot.
There exist a large number of papers on the stability anal-
ysis of TS fuzzy systems based on the state-space repre-
sentation and also some applications in the control design
process e.g. [3], [5], [9], [10]. But in contrast, the stability
analysis of TS fuzzy systems based on descriptor represen-
tation as weighted combinations of linear descriptor sys-
tems (from now called TS fuzzy descriptor systems) have

not been investigated until [15] and only once applied in
the context of observer design with applications in biome-
chanics [2]. The purpose of this work is to propose a robust
fuzzy controller design based on a first derived descriptor
form of a two-link robot manipulator powered by pneu-
matic actuators as a reasonable example of a highly non-
linear complex system.
This paper is organized as follows: First, for a class of se-
rial manipulators, the so-called SCARA-type robot manip-
ulators [12], a nonlinear state-space model is formulated by
the Newton-Euler equation of the manipulator arm coupled
with a reduced model of the actuators with two bounded
uncertainties. These uncertainties are caused by the influ-
ence of the model reduction on the differential equations
of the pressure evolution and the time-variable leakage air
flows between the actuator chambers.
Then the state-space model combined with dynamic con-
straints is transformed into a Takagi Sugeno fuzzy descrip-
tor form [15]. After this the complete dynamic model based
on a combination of the actuator models in descriptor form
and the robot arm dynamics in descriptor form is pre-
sented. It is shown by simulation results that this proposed
model is capable to represent the coupled nonlinearities
among the actuators and the manipulator arm, and the
uncertainties of the plant caused by time-variable leakage
air flows between the chambers. Finally, in a prospective
way, a global controller is designed based on the previously
derived model as a robust fuzzy gain-scheduler of state-
feedback gains. Here, a systematic design procedure for a
fuzzy controller is proposed through the parallel distributed
compensation (PDC) [1].

II. Physical System Modelling

In the following the dynamic model of a SCARA-type
robot manipulator is presented. The robot arm is powered
by an actuator mechanism based on tangential feed as the
main drive and an electric direct-drive as the actuator of
the second axis that is shown in Fig. 2. The main drive
consists of two rodless cylinders with pistons, two deflec-
tion rollers and a metal belt as a friction-locked connection
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Fig. 1. Reduced mechanical system of the robot manipulator arm in
the xy-plane.

between the rollers and the pistons (also called Belt-motor
[8]). The forces on the pistons caused by opposed pressure
differences in Actuator 1 and 2 are transmitted by the belt
to the deflection rollers, where the linear motion of the pis-
tons is converted to angular motion of the robot link 1. We
assume that the normal strain of the belt is negligibly small
(infinitely stiff) and the tangent stiffness is pure elastic.

A. Mechanical model of the manipulator dynamics

Consider the two-link planar arm shown in Fig. 1 that
represents a reduced mechanical system of the manipulator
in Fig. 2. The robot arm has two vertical revolute joints,
both joint axes are orthogonal to the xy-plane in Fig. 1.
Here, the masses of the actuator cylinders and the mass of
link 1 are combined to msp. Let me be the mass of the
rotor of the electric drive, and mt the mass of the tool and
vertical drive in the tool center point (TCP, see Fig. 2),
whereby the mass of link 2 is small in comparison to mt.
The distance of the centers of mass of msp and me to the
Joint-axis 1 is defined by l1/2, and l1 as the length of link 1.
The distance of the center of mass of mt to the joint-axis 2
is defined by l2 as the length of link 2. The equation of
motion for this mechanical system can be written in the
known matrix form [12] which represents the joint space
dynamics model:

H(q) q̈ + h(q, q̇) = τ (1)

where q = [ ψ ϕ ]T is the vector of generalized coordinates
with ψ as the angle of link 1 from the x-axis, and with ϕ
as the angle between link 1 and link 2. The inertia matrix

H(q) =
[
H11(q) H12(q)
H21(q) H22

]
(2)

depends on the current arm configuration with

H11(q) = IL1 +msp

(
l1
2

)2

+me l
2
1 + IL2

+mt

(
l21 + l22 + 2 l1 l2 cosϕ

)
,

H12(q) = H21(q) = IL2 +mt l2 (l2 + l1 cosϕ) ,
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Fig. 3. One cylinder of the dual-actuator with the accessory servo-
valve

H22 = IL2 +mt l
2
2 .

Note that for this application the assumption holds (the
links are made of carbon-fiber-reinforced plastic) that the
moments of inertias relative to the centers of mass of link
1 and link 2 as IL1 and IL1 can be neglected against the
other terms, such as

(
me l

2
1

)
. So we set in the following

considerations IL1 = IL1 = 0. The actuation torques in
(2) are represented by τ = [ τ1 τ2 ]T . Finally, the vector

h(q, q̇) =
[
h1(q, q̇)
h2(q, q̇)

]
(3)

in (1) represents the centrifugal effects and Coriolis effects
with

h1(q, q̇) = mt l1 l2 sinϕ (−ϕ̇2 − 2 ψ̇ ϕ̇) ,

h2(q, q̇) = mt l1 l2 sinϕ ψ̇2 .

B. Dual-Actuator model

The physical description of the main drive (see Fig.2)
based on the continuity and enthalpy balance equation of
the gas flow through the actuator and the constitutive re-
lations of the air. Whereby the most important aspect of
the actuator dynamics that interact with the robot arm is
described by the pressure evolution of each chamber. As-
suming isentropic behavior of the gas flow, the pressure
evolution in the chambers of actuator j, j = 1, 2 (see Fig.2)
is modeled by the equations

ṗIj (V0I +AK (xK − xK0)) =

κ
[
Rg TI

(
ṁ2 − ṁ1

)− pI AK ẋK

] (4a)

and

ṗIIj
(V0II −AK (xK − xK0)) =

κ
[−Rg TII

(
ṁ4 − ṁ3

)
+ pII AK ẋK

]
.

(4b)

The variables used in the above equations are:

pI , pII as the pressure in actuator chambers I, II
[N/m2],

xK as the actuator piston displacement [m],
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ṁn as the mass flow over the servovalve control edges
n = 1, 2, 3, 4 [kg/s]
(see Fig. 3),

TI , TII as the temperature in the chamber I, II [K],
and

TS as the temperature associated with the system
pressures pS and pR [K].

The model parameters are:

xK0 as the start position of the actuator piston [m],

V0I,0II as the start volume of the actuator chamber
I, II [m3],

AK as the actuator piston area [m3],

Rg as the gas constant [ J
kg·K ], and

κ as the adiabatic exponent of the gas [−].

The two variable volume chambers in each actuator
cylinder are connected to a four-way servovalve. The con-
figuration for one actuator cylinder in combination with
the servovalve is shown in Fig. 3. In this case the ser-
vovalve controls the air-mass-flow ṁ1, ..., ṁ4 by adjusting
four orifice areas between the constant pressure supply ps,
the exhaust pressure pR, and the chamber pressures pI,II .
The four orifice areas are continuously controlled by the
servovalve voltage uv. The equations for the mass flows

are

ṁ1 = −αD1 A1(xv) ψ
(
pR

pII

)
pI

√
2

Rg TII
(5a)

ṁ2 = αD2 A2(xv) ψ
(
pII

pS

)
pS

√
2

Rg TS
(5b)

ṁ3 = −αD3 A3(xv) ψ
(
pI

pS

)
pS

√
2

Rg TS
(5c)

ṁ4 = αD4 A4(xv) ψ
(
pR

pI

)
pI

√
2

Rg TI
(5d)

with the servovalve displacement xv and the orifice areas
of the control edges for n = 2, 4

An(xv) =
{
xv π dn for xv ≥ xün

0 for xv < xün

(6a)

and for n = 1, 3

An(xv) =
{
xv π dn for xv ≤ −xün

0 for xv > −xün

, (6b)

and the flow function

ψ

(
pa

pb

)
=


 ψ0

√
1−

(
pa
pb
−pkrit

1−pkrit

)2

for pa

pb
≥ pkrit

ψ0 for pa

pb
< pkrit

.

(6c)
The not yet defined model parameters are

αDn as the flow coefficient of the control edge
n = 1, ..., 4 ,

dn as the effective diameter of the control edge n [m],

Rg as the gas constant [ J
kg·K ],

κ as the adiabatic exponent of the gas [−],

pkrit as the critical pressure ratio [−],



ψ0 as the maximum value of the flow function ψ, and

xün as the valve overlap of the control edge n [m].

III. Reduced physical model in TS fuzzy

descriptor form

A. Reduced actuator model in descriptor form

The detailed physical description of the servo-pneumatic
actuators is reduced by simplification of the mass flow rela-
tions (5) and by linearization of the switching functions for
zero valve overlap (xün = 0 for n = 1, ..., 4). The influence
of the model reductions on the differential equation of the
chamber pressures pI , pII is condensed in two bounded un-
certainties as ∆B and ∆a. The remaining nonlinear terms
are transfered into TS fuzzy relations using the lemma of
Morère [7]. It leads to the following descriptor form

2∑
j=1

νj(xK)EP
j ẋP =

8∑
i=1

hi(ẋK , pI , pII)
[
AP

i xP + BP
i xv

]
+ ∆B xv + ∆a

(7)

with the state vector

xP = [ pI , pII ]T (8a)

and

EP
j =

[
V0I+AK(∗1−xK0)

κ 0
0 V0II−AK(∗1−xK0)

κ

]
,

∗1 ∈ {xK , x̄K}
(8b)

AP
i =

[
AK ∗2 0

0 AK ∗2
]

, ∗2 ∈ {ẋK , ¯̇xK} , (8c)

BP
i =

[
Rg TI αD π d ( ã02 + b̃02 ∗3 )
−Rg TII αD π d ( ã03 + b̃03 ∗4 )

]
,

∗3 ∈ {pI
, p̄I} , ∗4 ∈ {pII

, p̄II} .
(8d)

and the uncertainty terms

∆a =
[

∆pI

∆pII

]
, (8e)

∆B =
[

Rg TI αD π d∆ã2

−Rg TII αD π d∆ã3

]
. (8f)

B. Model of the manipulator dynamics in TS fuzzy descrip-
tor form

The equations (1),(2) can be directly written in the fol-
lowing ”exact” TS fuzzy descriptor form

2∑
j=1

νj(ϕ)ER
j ẋR =

4∑
i=1

hi(ϕ, ϕ̇, ψ̇)AR
i xR + BR

[
τ1
τ2

]

(9)

with

xR =
[
ψ , ϕ , ψ̇ , ϕ̇

]T

, (10a)

ER
j =


 I2×2 02×2

02×2

[
a+ 2 b ∗5 c+ b ∗5
c+ b ∗5 c

] 
 ,

∗5 ∈ {f1
, f̄1} ,

(10b)

AR
i =


 02×2 I2×2

02×2

[
2 b ∗6 b ∗6
−b ∗7 0

] 
 ,

∗6 ∈ {g1
, ḡ1} , ∗7 ∈ {g2

, ḡ2} ,
(10c)

and

BR =
[

02×2

I2×2

]
, (10d)

whereby

f1 = cosϕ ,

g1 = ϕ̇ sinϕ ,

g2 = ψ̇ sinϕ ,

a := msp

(
l1
2

)2

+me l
2
1 +mt ( l21 + l22 ) ,

b := mt l1 l2 ,

c := mt l
2
2 .

Based on the assumptions that, first, the piston area of
the actuators are equal AK1 = AK2 =: AK , and second,
the mass flow control of each actuator caused by opposed
pressure differences pLj = pIj − pIIj

, j = 1, 2 (see Fig. 2)
the magnitudes are

pL1 = pL2 =: pL , (11)

the driving torque of joint 1 can write as

τ1 = pL1 AK1

dr

2
+ pL2 AK2

dr

2
= pLAK dr , (12)

with dr as the roller diameter. In this consideration it is
assumed that the electric actuator of joint 2, see Fig. 2, be-
haves as a ideal torque-controlled generator, which gives a
proportional relation between the torque τ2 and the control
voltage um established by the motor constant km.

τ2 = km um (13)

C. Complete dynamic model in descriptor form

The complete dynamic model based on an combination
of the actuator model in descriptor form (7) and the robot
arm dynamics in descriptor form (9). It was derived by us-
ing the following algebraic constraints between the trans-
lational motion of the actuator piston and the rotational
motion of the deflection roller:

xK = ψ
dr

2
, ẋK = ψ̇

dr

2
. (14)



With the assumption that the piston areas are AK =
AK1 = AK2 and the mass flow control of each actuator
caused by opposed pressure difference in both actuators
the chamber pressures are

pI = pI1 = pI2 , pII = pII1 = pII2 ,

the driving torque in joint 1 is

τ1 = ( pI1 − pII1 )AK1

dr

2
+ ( pI2 − pII2 )AK2

dr

2
= ( pI − pII )AK dr .

(15)

So the complete dynamic model can be presented as

4∑
k=1

ν̃k(ψ, ϕ )Ek ẋ =
32∑

l=1

hl [ Al x + (Bl + ∆B )u ] + ∆ã

(16)

with Ek ∈ R
6×6, Al ∈ R

6×6, Bl ∈ R
6×2, ∆ã ∈ R

6×1, the
right hand side weighting function

hl = hl(ϕ, φ̇, ψ, ψ̇, pI , pII) , (17a)

the input vector

u = [xv , τ1 ]T , (17b)

and the state vector

x =
[
ψ , ϕ , ψ̇ , ϕ̇ , pI , pII

]T

. (17c)

In detail the matrices are

E1 =
[

ER
1 04×2

02×4 EP
1

]
, E2 =

[
ER

2 04×2

02×4 EP
1

]
,

(18a)

E3 =
[

ER
1 04×2

02×4 EP
2

]
, E4 =

[
ER

2 04×2

02×4 EP
2

]
,

(18b)

Al =




02×2 I2×2 02×2

02×2

[
2 b ∗6 b ∗6
−b ∗7 0

] [
AK dr −AK dr

0 0

]

02×2 02×2

[
AK ∗8 0

0 AK ∗8
]


 ,

(18c)

with ∗8 ∈ {ẋK , ¯̇xK} where ẋK = ψ̇ dr

2 , ¯̇xK = ¯̇ψ dr

2 and

Bl =




0 0
0 0
0 1
0 0

b5(∗3) 0
b6(∗4) 0




, ∆B =


 04×2

∆b5 0
∆b6 0


 (18d)

with

b5(∗3) = Rg TI αD π d ( ã02 + b̃02 ∗3 ) ,

b6(∗4) = −Rg TII αD π d ( ã03 + b̃03 ∗4 ) ,

∆b5 = Rg TI αD π d∆ã2

∆b6 = −Rg TII αD π d∆ã3

and finally

∆ã =


 04×1

∆pI

∆pII


 . (18e)

IV. Model-based controller design concept

The basic idea behind the investigated controller con-
cept is that the model base of the feedback loop controllers
will be increased so a less accurate knowledge of the sys-
tem model is required in the feedforward compensation. In
this paper we consider the special case of a structure with-
out a common feedforward compensation as an appropriate
starting point.

By defining x̃ = [ xT ẋT ], the fuzzy descriptor system
can be rewritten as

Ẽ ˙̃x =
32∑
l=1

4∑
k=1

hl ν̃k

[
Ãlk x̃ + ( B̃l + ∆B̃ )u

]
+ ∆˜̃a (19)

with hl = hl(ϕ, φ̇, ψ, ψ̇, pI , pII) and ν̃k = ν̃k(ψ, ϕ ) where

Ẽ =
[

I 0
0 0

]
, Ãlk =

[
0 I
Al −Ek

]
,

B̃l =
[

0
Bl

]
, ∆B̃ =

[
0

∆B

]
, ∆˜̃a =

[
0

∆ã

]
.

We propose a modified parallel distributed compensation
scheme (PDC)

u =
32∑
l=1

4∑
k=1

hl ν̃k F̃ lk
˙̃x (20)

with F̃ lk = [ F lk 0 ] to stabilize the fuzzy descriptor sys-
tem (19). The fuzzy controller design problem here is to
determine the local feedback gains using the local mod-
els {Ãlk, B̃l,∆B̃,∆˜̃a} that globally stabilize the fuzzy de-
scriptor system with uncertainties by (20). We currently
solve this problem using a novel LMI (Linear Matrix In-
equalities) condition derived in [4].

V. Simulation results

We will now consider the results of the simulation with
the global decriptor model of the plant (19), that is oper-
ated in closed loop. For the model validation purpose a
fixed linear state-space controller for the whole operating
space is used. It is worth to note that this controller is not
be able to handle the dominat nonlinearities in the plant.
The validation process is exemplified by a reference tra-
jectory shown in Fig. 5 that defines the desired tool center
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position (TCP), see Fig. 2, in the xy-plane of the work-
ing space. The corresponding joint angles in Fig. 4 have
been calculated by the well-known inverse kinematics of
a two-link planar arm [12]. The simulation model of the
dual actuators based on the descriptor form (7), but in the
first step without uncertainties. The influence of the air-
pressure evolution in the actuator cylinders that caused a
weakly damped dynamics is recognized in Fig. 5 where the
desired trajectory distinctly differ from the actual path.
The large tracking error at the corners of the rectangle
is an indication that the linear controller is not able to
handle the dynamics of the dual-actuator pneumatic drive
that interacts with the dynamics of the robot arm. This
fact is also a motivation for a nonlinear control design, for
instance based on (20).

VI. Conclusion

In this paper the possibilities of the use of a TS fuzzy
descriptor form to describe the dynamics of a two-link ma-
nipulators with dual-actuators were analysed. A complete
manipulator model using the combination of the actuator
models in descriptor form and the robot arm dynamics in
descriptor form was derived for a model-based control con-
cept. We must insist on the fact that this paper is a first
step dealing with TS modelization and a further paper will
present the TS control. We think this is an appropriate
starting point for a robot control concept that systemati-
cally take into consideration the influnce of model reduc-
tion by structured uncertainties.
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flous de type Takagi Sugeno. PhD thesis, University Valenci-
ennes, LAMIH-SF, France, 2001.

[8] K. Schillings. Servopneumatische Antriebssysteme und Hand-
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