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H-infinity Takagi-Sugeno fuzzy control of a lower limbs 
rehabilitation device 

L. Seddiki, Student Member, IEEE, K. Guelton, B. Mansouri and J. Zaytoon 

  

Abstract—This paper deals with the nonlinear control of a 
lower limbs isokinetic rehabilitation device based on a Takagi-
Sugeno modeling. A Parallel Distributed Compensation control 
law is used to stabilize the closed-loop system in the whole 
operational space. The human force applied to the device’s arm 
is considered as an external disturbance to the system 
dynamics. To attenuate this disturbance, an H∞  criterion is 
considered and classical stability conditions were adapted for a 
class of external perturbed TS model. The voluntary control of 
the movement by the patient is finally proposed with the use of 
a discrete state machine. 

I. INTRODUCTION 

SOKINETICS devices are widely used in the field of knee 
rehabilitation. This kind of apparatus often solicits knee 

joints in the sagittal plane with one degree of freedom. 
Previous works in our research center led to the realization 
of the Multi-ISO rehabilitation device presented in fig. 1 [1].  
To obtain a good tracking behavior and to achieve the 
clinical goals defined for Multi-ISO [2], three control laws 
have been proposed. The first and the second control laws, 
based on proportional integral correctors, are used to control 
the angular position and the angular velocity of the 
rehabilitation device. A force controller allows realizing the 
same behavior as a weighted mechanical apparatus. 
Although the results obtained with these controllers are 
satisfying in terms of rehabilitation specifications, they are 
restrictive in terms of control performance, mainly because 
they do not theoretically guarantee a good behavior in all the 
state space and they do not ensure the rejection of external 
disturbances such as the patient force.  

The dynamics model of the rehabilitation device is 
presented in the next section. The aim of this paper is to 
propose a nonlinear controller that is adapted to the 
nonlinear model of the rehabilitation device and ensures the 
stability in the whole operational space while attenuating 
external disturbances. In order to comply with the desired 
control specifications, a fuzzy Takagi-Sugeno (TS) model is 
presented in section 3, together with a Parallel Distributed 
Compensation (PDC) control law [3]. The synthesis of the 
control law is presented in the section 4 and a H∞  criterion 
is employed to guarantee the attenuation of human 

uncontrolled disturbance. Theoretical stability conditions, 
based on the works of [4] are given in term of Linear Matrix 
Inequalities (LMI) for the considered class of perturbed 
nonlinear systems. In section 5, simulation results illustrate 
the efficiency of the nonlinear control law and, in the last 
section, a state machine is proposed to specify the human 
voluntary control of the rehabilitation device.  
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Fig 1. Multi-ISO lower limbs rehabilitation device 
 

II. DYNAMICAL MODELING OF MULTI-ISO 
Fig. 2 shows the mechanical scheme of Multi-ISO that 

consists in applying a torque produced by a synchronous 
motor to the lower limbs of the patient. This motorization 
can reach a nominal force of  applied by the patient 

at the end of the device’s arm and a speed of 

200daN
12 .rad sπ −  

under maximal load [2]. The Multi-ISO model, derived 
using Lagrange method, is given by: 
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Where mΓ  is the input torque, pf  is the force applied by the 
patient on the device arm, θ  is the angular position with 
respect to horizontal and the other parameters are described 
in table 1. 
 

Let us consider the following generic state space 
representation of a nonlinear perturbed model: 
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where, ( )x t  is the state vector,  and ( )u t ( )y t  are 

respectively the inputs and the outputs vector. ( )( )A x t , 

,  are the non-constant nonlinear model 

matrices and 

( )( )B x t ( )(C x t )
( )tφ  the vector of external perturbation. 

In the considered application, ( ) ( )( )
T

x t t tθ θ⎡= ⎣
� ⎤⎦  and 

the dynamical model (1) can be written as a nonlinear 
perturbed model (2) with a nonlinear matrix ( )( )A x t  and 

constant matrices , C . These matrices are given by: B
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The vector , where ( ) ( )pt Hf tφ = [ ]0 T
mH L J=  is 

constant, is considered as an external disturbance to the 
dynamical rehabilitation device model without human load.  
 

 
 

 
 

III. TS FUZZY MODELING OF MULTI-ISO 
Let us consider the generic state space representation of a 

nonlinear perturbed model (2). A fuzzy Takagi-Sugeno 
representative leads to a set of  linear time invariant (LTI) 
models that are interpolated with nonlinear functions [5]: 

r
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where iH  are the local transfer matrices of the external 
disturbance vector ( )tϕ  to the state vector: 
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The functions ( )( )ih z t , , are assumed to be 

positive, to use only measured variables  and to satisfy 

the convex sum property, i.e. . 
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In the following, for notation simplifications, we will use the 
notation ( ) [ ]xα α α∈  with ( )min

x
xα α=  and 
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x
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Fig. 2.  The rehabilitation device principle. 

The dynamical model of Multi-ISO (1) can be written in a 
TS form considering the following nonlinear functions 
involved in ( )( )A x t : 
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A TS representative model is obtained by splitting the 
nonlinear function as follows [6]: 

TABLE I 
NUMERICAL PARAMETERS OF THE DYNAMICAL MODEL OF THE 

REHABILITATION DEVICE MULTI-ISO 
Param. Designation Value Unit 

mJ  Arm inertia 33.8  2kgm  

mf  Viscous friction 103.6  ( ) 1/N rad s −
 

1M  Gravitational coefficient 110  N  

2M  Gravitational coefficient 31  N  

L  Arm’s length 0.5  m  

k  Coriolis coefficient 70  ( ) 1/Nm rad s −
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with { }1 2,f η η∈  and: 
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Note that, using this method, the number of rules r  is 

determined by the number  of the nonlinear function to be 

splitted. Thus, 

q

2qr =  and, considering the functions 1
fω  and 

2
fω  for { }1 2,f η η= , the TS modeling leads to the following 

4 fuzzy rules: 
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From (5), (6) and the 4 fuzzy rules, we obtain the simplified 
fuzzy TS model of the Multi-ISO device: 
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Note that ( )(2 )x tη  is singular on 0θ = . Therefore, for a 
convenient control and with respect to the required 
movement for a rehabilitation use, the operational state 
space is reduced to the compact space bounded by 

[ ]180 2 3 ( )radθ π π∈ . Moreover, according to technical 
capabilities of Multi-ISO, the velocity is bounded by 

[ ] 12 2 (rad sθ π π −∈ − ⋅� ) . 
 

IV. H∞  FUZZY CONTROL DESIGN 

Since the Multi-ISO TS fuzzy model is a particular case, 
with  and iB iH  commons, of the class of external perturbed 
TS model (2), generic stability conditions for this class of 
nonlinear systems are proposed in this section. 
Let us consider the following generic external perturbed TS 
model: 
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The Parallel Distributed Compensation (PDC) control law is 
defined as [3]-[7]-[8]: 
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The close loop system can be written as: 
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The goal is now to find the gain matrices jK  that ensure 
the stability of system (10) and attenuate the external 
disturbance ( )tϕ . This can be achieved using the following 
H∞  criterion: 
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Previous works have given the stability conditions for a 
class of external perturbed TS model that considers a 
common disturbance vector ( )tφ  [4]. In the following we 
adapt these conditions to the class of external perturbed TS 
model (8) where the external disturbance can be splitted for 

each LTI model, i.e. . The following 

theorem ensures the stability of the system (10) with respect 
to the criterion (11). 
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Theorem 1: The closed-loop fuzzy system (10) is 
quadratically stable if there exists , a positive 
constant 

0TP P= >
η  and feedback gains iK  that satisfy the following 

conditions: 
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The solutions of this theorem are not LMI [9]-[10]. 

Consequently, numerical solutions are difficult to obtain 
with classical convex optimization algorithms [11]-[12]. In 
order to obtain LMI conditions, some matrix transformations 
are necessary [8]. Then, after congruence with 1N P−=  and 
using the convenient bijective change of variable i iY K Ni= , 
(12) and (13) become respectively: 
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The application of the Schur complements on (14) and (15) 
leads to the following theorem with LMI conditions. 
 
Theorem 2: The closed-loop fuzzy system (10) is 
quadratically stable if there exists ,  and a 
positive constant 

0TN N= > iY
η  that satisfy the following conditions: 
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Note that these conditions are generic to the class of 

nonlinear systems (8). In the considered application, ,  
and 

iB iC

iH  are common matrices that subsequently simplify the 
computing of the LMI algorithms. 

 

V.  SIMULATION RESULTS 
Let us consider the control scheme proposed in fig. 3 

where ( )dy t  is the desired trajectory, ( ) ( )y t θ= t  is the 

output, i.e. Multi-ISO’s arm angular position, ( ) mu t = Γ  is 

the input torque and  is the force applied by the subject to 
Multi-ISO’s arm.  

pf

 
The inverse tracking matrix allows us to specify as input 

to the global closed-loop system a desired trajectory ( )dy t  

that is homogeneous to the output ( )y t . This matrix is 
adapted from classical linear control theory [13] to TS multi-
model control using the same membership functions ( )ih t  
structure as the PDC control law: 
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Fig. 3. Global Multi-ISO closed loop trajectory tracking control 

scheme.  
 

The first simulation goal is to show that the closed-loop 
system is stable, i.e. ( )y t  returns to a given position 

dy α=  from any position ( )0y t α≠ . To achieve this goal, 

the gain matrices iK  are computed from theorem 2 using the 
MATLAB® LMI Toolbox [11]. We set the system 
dynamics goal matrix [ ]1350 1300Q diag=  and the 
attenuation rate 0.5η =  to obtain a good dynamical 
behavior of the closed-loop system and to avoid oscillatory 
modes. Theorem 2 gives the following solution for the gain 
matrices that stabilize the TS fuzzy model of Multi-ISO: 
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Fig. 4 shows the results without disturbances, i.e. the 

external force ( ) 0pf t = , for a stabilization around 4θ π=  

from the initial position 0 2θ π= . The steady state position 
is reached in less than 0.3s . Note that this time response is 
constrained by the torque limitation to 100  due to the 
motor characteristics. Then, from  to t s

0 Nm
0t = 0.32= , the 

input torque mΓ  is saturated to this bound.  
 
To highlight the H∞  disturbance attenuation the same 

simulation is presented in fig. 5 but with a sinusoidal 
disturbance expressed as: 

 
( ) ( )200sin 4pf t tπ=  (19) 

 
This sinusoidal disturbance is chosen with a maximum of 

 to outperform the force characteristics that can be 
applied to Multi-ISO’s arm by a patient. The time response 
200 N



is negligently delayed to 0.35 s  and afterward the position 
reaches its steady state. This shows that the H∞  control law 
successfully attenuate the external disturbance by means of a 
compensation in the input signal . mΓ
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Fig. 6. Simulation following isokinetic trajectories with disturbances
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Fig. 4. State and torque simulation for a stabilization without 

disturbance.  
 

 
 
Fig. 6 shows the simulation of an isokinetic extension 

following by an isokinetic flexion trajectory. From 0t =  to 
1s , the rehabilitation device is in its initial position 

0 2 radθ π= . From , the angular position is 

decreases with a slope of 

1t = s
12 .rad sπ −−  until the position 

18radθ π=  is reached. This position is maintained up to 
. Afterward, angular position increases with a slope of 3t = s

12 .rad sπ −  until 2 radθ π=  is reached and then, the 
rehabilitation device arm remains immobile. The disturbance 
(19) is still applied and attenuated by the control law. 

 
Note that, in these simulations, where a trajectory is 

imposed to the rehabilitation device, the voluntary patient 
control is not taken into consideration. In the next section 
we propose a trajectory generator that allows the control of 
the isokinetic movement by the patient.  

 
 

VI. HUMAN CONTROLED TRAJECTORY GENERATOR 
In the previous sections, a PDC control law based on a 

Takagi-Sugeno Fuzzy modeling was synthesized to ensure 
the continuous stability of the rehabilitation device. 
Simulations were proposed but without any control of the 
patient. In this section, in order to allow the patient to be 
active with the control of the isokinetic movement, a 
trajectory generator is proposed where the desired trajectory 

( )dy t  is computed from the force ( )pf t  applied by the 

patient to the rehabilitation device arm. ( )pf t  is then 
considered both as a disturbance to be attenuated by the 
Multi-ISO continuous closed-loop system and as an input to 
impose the required movements, fig. 7.  

 

 
 
The trajectory generator has to allow both the eccentric 

and concentric flexion/extension of the lower limbs. Then 
the functioning principle can be represented by the state 
machine given in fig. 8. 
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Fig. 5. State and torque simulation for stabilization with sinusoidal 

disturbance.
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Fig. 7. Human controlled trajectory control scheme.
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Fig. 8. Trajectory scheduler state machine. 



Mode  constitutes the initial state where the 
rehabilitation device should remains immobile in its current 
position. In mode 2  and 3 , the rehabilitation device is 
required to perform, respectively, an eccentric (extension) 
isokinetic movement with a slope 

1

eα  and an concentric 
(flexion) isokinetic movement with a slope cα . These 

modes are activated if ( )pf t  is greater, respectively lower, 

than a threshold pf  and if the bounds of the angular 

position are not attained.  
 

Fig. 9 shows the simulation results of an extension-
flexion lower limb movement. The initial Multi-ISO angular 
position is 0 2θ π= . Between  to 0t = 1.75t s=  the 
simulated patient applies a positive force to the 
rehabilitation device (eccentric mode). Starting from 

, the patient applies a negative force to the 
rehabilitation device (concentric mode). When the force 

 exceeds the threshold 

1.75t = s

( )pf t pf  (that is set here at 

30pf N= ), the isokinetics extension is realized with a 

slope 13 .e rad sα π −= − . When the force  goes below 

the threshold 

( )pf t

pf− , the isokinetics flexion is realized with a 

slope 13 .c rad sα π −= . Note that the parameters eα , cα  
and pf  can be set by the clinician to ensure an adapted 

rehabilitation to each individual. 
 

 
 

VII. CONCLUSION 
The nonlinear dynamical model of the Multi-ISO 

rehabilitation device was expressed as a fuzzy Takagi-
Sugeno model on a compact of the state space. Based on this 
modeling, a PDC control law was proposed to stabilize the 
closed-loop rehabilitation device system. The human force 
applied to the rehabilitation device’s arm was considered as 
a disturbance to the system dynamics. Then, in a way to 

attenuate this disturbance, an H∞  criterion was considered. 
Stability conditions were adapted from the ones proposed by 
[4] for closed-loop disturbed Takagi-Sugeno’s models using 
H∞  criterion. Some convenient matrix transformations were 
used to write these conditions as LMI. Then, these 
conditions have been successfully applied, in simulation, to 
the Multi-ISO rehabilitation device. The results show that 
the closed-loop system is able to follow the isokinetic 
desired trajectories imposed to the patient. In this case, the 
patient behavior, considered as a sinusoidal disturbance, has 
been successfully attenuated by the control law. In order to 
allow the voluntary control of the isokinetic movement by 
the patient, a human controlled trajectory generator based on 
a discrete state machine was proposed. This kind of 
trajectory generator allows the whole systems to be moved 
only if the patient applies a force that is superior to a force 
threshold. The later can be tuned by the clinician to ensure 
an adapted rehabilitation to each individual.  
 

ACKNOWLEDGMENT 
The authors would like to thank L. Afilal, S. Moughamir, 

N. Manamani and G. Lessieur for their technical assistance 
relating to the Multi-ISO rehabilitation device. 

 

REFERENCES 
[1] S. Moughamir, “Conception et développement d’une machine 

d’entraînement et de rééducation des membres inférieurs,” Ph.D 
Thesis of University of Reims Champagne Ardenne, 1999. 

0 0.5 1 1.5 2 2.5 3 3.5
-200

0

200

f p (N
)

0 0.5 1 1.5 2 2.5 3 3.5
0

1

2

(ra
d)

yd(t)

y(t)

0 0.5 1 1.5 2 2.5 3 3.5
-500

0

500

Time (s)

Γ m
 (N

m
)

 
Fig. 9. Simulation of the whole system following the applied patient 
force to the rehabilitation device. 

[2] S. Moughamir, J. Zaytoon, N. Manamanni, and L. Afilal, “A system 
approach for control development of lower-limbs training machines,” 
Control Engineering Practice, vol. 10, 2002, pp. 287–299. 

[3] H. O. Wang, K. Tanaka, M. F. Griffin, “Parallel distributed 
compensation of nonlinear systems by Takagi-Sugeno Fuzzy Model,” 
IEEE Transaction on fuzzy systems ,  1995, pp. 531–537. 

[4] W. L. Chiang, T.W. Chen, M.Y. Liu, and C. J. Hsu, “Application and 
robust control of PDC fuzzy controller for nonlinear systems with 
external disturbance,” Journal of Marine Science and Technology, 
vol. 9, n°2, 2001, pp. 84–90. 

[5] T. Takagi, and M. Sugeno, “Fuzzy identification of systems and its 
applications to modeling and control,” IEEE trans. Syst. Man. Cybern. 
Vol. 15, 1985, pp. 116–132. 

[6] Y. Morère, “Mise en œuvre de lois de commande pour les modèles 
flous de type Takagi-Sugeno,” Ph.D Thesis, University of 
Valenciennes, France, 2001. 

[7] K. Tanaka, H. O. Wang, “Fuzzy control systems design and analysis. 
A linear Matrix Inequality Approach,” Willey-Interscience, 2001. 

[8] T. M. Guerra, F. Delmotte, L. Vermeiren, H. Tirmant, “Compensation 
and division control law for fuzzy models,” Fuzzy IEEE, Melbourne, 
Australia, 2001. 

[9] S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan, “Linear matrix 
inequality in systems and control theory,” 15, Studies in applied 
mathematics. SIAM, Philadelphia, 1994. 

[10] L. El Ghaoui, “LMI approach for control : an introduction.,” Control 
summer school Grenoble, Robust Identification and Control: LMI 
approach, 1997, pp. 1-25.  

[11] P. Gahinet, A. Nemirovski, A. Laub, M. Chilali, “LMI Control 
Toolbox,” The Mathworks Inc, Natick, MA, 1995. 

[12] R. Nikoukhah, F. Delbecque, L. El Ghaoui, “LMI tool: a package for 
LMI optimisation in scilab,” http://www-rocq.inria.fr/scilab/, 1995. 

[13] P. De Larminat, Automatique, commande des systèmes linéaires 
(Book Style). Hermes, Paris, 1993, pp. 163-172. 


