
HAL Id: hal-01759560
https://hal.univ-reims.fr/hal-01759560v1

Submitted on 5 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Toward an immersion platform for the World Wide Web
using autostereoscopic displays and tracking devices

Olivier Nocent, Sylvia Piotin, Aassif Benassarou, Maxime Jaisson, Laurent
Lucas

To cite this version:
Olivier Nocent, Sylvia Piotin, Aassif Benassarou, Maxime Jaisson, Laurent Lucas. Toward an im-
mersion platform for the World Wide Web using autostereoscopic displays and tracking devices. the
17th International Conference, Aug 2012, Los Angeles, United States. �10.1145/2338714.2338724�.
�hal-01759560�

https://hal.univ-reims.fr/hal-01759560v1
https://hal.archives-ouvertes.fr


Toward an immersion platform for the World Wide Web
using autostereoscopic displays and tracking devices

Olivier Nocent
CReSTIC SIC

Sylvia Piotin
CReSTIC SIC

Aassif Benassarou
CReSTIC SIC

Maxime Jaisson
GRESPI

Laurent Lucas
CReSTIC SIC

CReSTIC EA3804 / GRESPI EA4301 - Université de Reims Champagne-Ardenne - France ∗

Figure 1: Autostereoscopic technology allows 3D images popping out of the screen while natural interaction provides a seamless manipula-
tion of 3D contents.

Abstract

A few years ago, the introduction of the WebGL API has allowed
displaying 3D content in web browsers very efficiently by using
the power of 3D accelerators. Nowadays, 3D web applications,
from games to medical imaging, tend to compete with their desk-
top counterparts. Among the main factors that can improve the feel-
ing of presence in terms of impressiveness, immersion and natural
interaction play a prominent role in enhancing the quality of the
user experience. Both immersion and natural interaction rely on
dedicated hardware like 3D displays and tracking devices. Unfor-
tunately, browser makers do not supply JavaScript mechanisms for
accessing hardware for security reasons. In this paper, we propose
a plugin-free solution using the new features of HTML5 (WebGL
and WebSockets) in order to handle autostereoscopic displays and
widespread tracking devices like IR depth sensors for providing im-
mersion and natural interaction within the web browser.

CR Categories: I.3.1 [Computer Graphics]: Hardware
Architecture—Three-dimensional displays; I.3.2 [Graphics Sys-
tems]: Distributed/network graphics—; I.3.3 [Computer Graphics]:
Picture/Image Generation—Display algorithms; I.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism—Virtual
reality; J.3 [Life and Medical Sciences]: Medical information
systems—;

Keywords: Web graphics, 3D perception, autostereoscopic dis-
plays, natural interaction

∗Centre de Recherche en Sciences et Technologies de l’Information et
de la Communication, Rue des crayères BP1035, 51687 REIMS Cedex 2
(France). URL: http://crestic.univ-reims.fr, contact: olivier.nocent@univ-
reims.fr

1 Introduction

A recurrent and key issue for 3D technologies resides in immer-
sion. 3D web technologies try to reach the same goal in order to
enhance the user experience. Interaction and depth perception are
two factors that significantly improve the feeling of immersion. But
these factors rely on dedicated hardware that can not be addressed
through JavaScript for security reasons. In this paper, we present
an original way to interact with hardware via a web browser, us-
ing web protocols by providing an easy-to-use immersion platform
for the World Wide Web. This plugin-free solution leveraging the
brand new features of HTML5 (WebGL, WebSockets) allows to
handle autostereoscopic displays for immersion and different type
of tracking devices for natural interaction (Figure 2). Because We-
bGL is a low-level API, we decided to develop the WebGLUT (We-
bGL Utility Toolkit) API on top of WebGL. WebGLUT enhances
WebGL by providing extra features like linear algebra data struc-
tures (vectors, matrices, quaternions), triangular meshes, materials,
multiview cameras to handle autosteroscopic displays, controllers
to address different tracking devices, etc. WebGLUT was created at
the same time (and with the same philosophy) as WebGLU [DeLillo
2010] and SpiderGL [Di Benedetto et al. 2010].

Our contribution is written as follows: Section 2 presents related
work to 3D content on the web and on 3D displays. Section 3 de-
scribes the autostereoscopic display technology by providing equa-
tions and algorithms to generate multiple views. Section 4 is ded-
icated to our network-based tracking system. Finally, we mention
very shortly in Section 5 a case study related to medical imaging
using our immersion platform.



Web Server

IRUSB

Web Browser

Autostereoscopic display

N images
WebGLUT API

UDP UDP

WebSocket

Figure 2: Global structure of our immersion platform for the World Wide Web

2 Related work

Web browsers have acquired over the past years the ability to effi-
ciently incorporate and deliver different kinds of media. 3D content
can be considered as the next evolution to these additions although
requirements of 3D graphics in terms of computational power and
unifying standard are more restrictive than still images or videos.
Several technologies have been developed to achieve this integra-
tion. The Virtual Reality Markup Language (VRML) [Raggett
1994] replaced afterward by X3D [Brutzman and Daly 2007] was
proposed as a text-based format for specifying 3D scenes in terms
of geometry and material properties and for the definition of basic
user interaction. Even if the format itself is a standard, the rendering
within the web browser usually relies on proprietary plugins. But
the promising X3DOM [Behr et al. 2009] initiative aims to include
X3D elements as part of the HTML5 DOM tree. More recently,
the WebGL [Khronos Group 2009] API was introduced to provide
imperative programming mechanisms to display 3D contents in a
more flexible way. As its name suggests, WebGL is the JavaScript
analogous to the OpenGL

∣∣ES 2.0 API for C/C++. It provides capa-
bilities for displaying 3D content within a web browser which was
previously the exclusive domain of desktop environments. Leung
and Salga [Leung and Salga 2010] emphasize the fact that WebGL
gives the chance to not just replicate desktop 3D contents and ap-
plications, but rather to exploit other web features to develop richer
content and applications. In this context, web browsers could be-
come the default visualization interface [Mouton et al. 2011].

Even if real-time 3D rendering has become a common feature in
many applications, the resulting images are still bidimensional.
Nowadays, this limitation can be partly overcome by the use of
3D displays that significantly improve depth perception and the
ability to estimate distances between objects. Therefore, the con-
tent creation process needs to be reconsidered For computer gen-
erated imagery, the rendering system can seamlessly render one or
more related views depending on the application [Abildgaard et al.
2010; Benassarou et al. 2011]. 3D contents are obviously clearer
and more usable than 2D images because they doe not involve any
inference step. Finally, 3D contents can also address new emerg-
ing devices like 3D smartphones [Harrold and Woodgate 2007] and
mobile 3DTV, offering new viable platforms for developing 3D web
applications.

3 Autostereoscopic technology

The term stereoscopy denotes techniques where a separate view is
presented to the right and left eye, these separate views inducing a
better depth perception. Different solutions exist for the production
of these images as well as for their restitution. For image restitution
with non time-based techniques, one can use anaglyph and colored
filters, polarizing sheets with polarized glasses or autostereoscopic

displays [Halle 1997]. The technology of autostereoscopic displays
presents the great advantage to allow multiscopic rendering with-
out the use of glasses. Therefore, the spectator can benefit from a
stereoscopic rendering more naturally, and this is especially true for
3D applications in multimedia.

3.1 Multiple view computation

The geometry of a single camera is usually defined by its posi-
tion, orientation and viewing frustum as shown in Figure 3. But in
stereo rendering environments, we need two virtual cameras, one
for each left/right eye. And for multiview autostereoscopic dis-
plays [Prévoteau et al. 2010], we need up to N virtual cameras.
Each virtual camera has a given offset position and its own off-axis
asymmetric sheared viewing frustum, the view direction remaining
unchanged. The near/far planes are preserved, and a focus plane
has to be manually defined where the viewing zones converge. The
choice of the focus distance will determine if the objects appear
either behind or in front of the screen, providing or not a pop-out
effect. Given a perspective projection matrix P, the following cal-
culations allow to identify six parameters l, r, b, t, n, f as defined in
the OpenGL glFrustum command: l and r are the left and right
coordinates of the vertical clipping planes, b and t are the bottom
and top coordinates of the horizontal clipping planes, n and f are
the distances to the near and far depth clipping planes. First, the
distances n and f (refer to Figure 3 for the geometric signification
of these terms) are given by Equation 1.

n =
1− k
2k

P34 f = nk where k =
P33 − 1

P33 + 1
(1)

In order to compute l, r, b and t, we need to define the half-width
wF (respectively wn) of the image at the focus distance F (respec-
tively at the near distance n) from the horizontal field of view α:

wF = tan(α/2)F wn = tan(α/2)n (2)

where tan(α/2) = P−1
11 according to the definition of the projec-

tion matrix P.

The viewing frustum shift for the camera j for j ∈ {1, . . . , N} in
the near plane, denoted as sjn is given by Equation 3 where d is the
interocular distance and ws the physical screen width.

sjn =
dwn

ws

[
(j − 1)− N − 1

2

]
(3)

Finally,

l = −wn + sjn r = wn + sjn t = ρwn b = −t (4)

where ρ is the viewport aspect ratio. The camera position offset
along the horizontal axis is given by sjF , the viewing frustum shift



Near clipping plane

Far clipping plane

Camera plane

Focus plane

α

wf

wn

View direction

n

F

f

Near clipping plane

Far clipping plane

Camera plane

Focus plane

Figure 3: Geometry of a single camera (left) and multiple axis-aligned cameras (right).

in the focus plane.

sjF =
dwF

ws

[
(j − 1)− N − 1

2

]
(5)

3.2 Autostereoscopic image rendering

Thanks to the computations presented in the previous section we
are able to produce N separate perspective views from N different
virtual cameras. The use of these images depends on the chosen
stereoscopic technology. One of the simplest cases relies on quad-
buffering, where the images are rendered into left and right buffers
independently, the stereo images being then swapped in sync with
shutter glasses. Other techniques, which are not time-based, need
the different images to be combined in one single image.

Let Ij for j ∈ {1, . . . , N} be the image generated by the virtual
camera j, the color components Ifinal

c (x, y) for c ∈ {R,G,B} of
the pixel (x, y) in the final image are given by:

Ifinal
c (x, y) = IM(x,y,c)

c (x, y) c ∈ {R,G,B} (6)

whereM is a mask function and R, G, B stand for red, green and
blue channels. As Lenticular sheet displays consist of long cylin-
drical lenses that focus on the underlying image plane so that each
vertical pixel stripe corresponds to a given viewing zone, the func-
tion M does not depend on the color component c and is simply
given by Equation 7.

Ifinal
c (x, y) = Ix mod N

c (x, y) (7)

It is worth noticing that Equation 7 clearly shows that the horizontal
resolution of the restituted image is reduced by a factor 1/N com-
pared to the native resolution m of the display. This resolution loss
is one of the main drawbacks of autostereoscopic displays, even if
it is only limited to 3m/N while using wavelength-selective filters
because each pixel’s RGB components correspond to three different
view zones [Hübner et al. 2006]. Technically speaking, the WebGL
implementation of the autostereoscopic image rendering is a two-
step rendering process using deferred shading techniques.

Pass #1 (multiple images rendering) renders N low-resolution
images by shifting the viewport along the y-axis. The N im-
ages are vertically stored in a single texture via a FrameBuffer
Object (FBO).

Pass #2 (image post-processing) renders a window-aligned quad.
Within the fragment shader, each color component of the out-
put fragment is computed according to Equation 7 where the
N images are read from an input 2D texture.

These two rendering passes are encapsulated in the method
shoot() of the MultiViewCamera object.

4 Tracking system

Another characteristic of our immersion platform for the World
Wide Web resides in the use of tracking devices in order to interact
with a 3D scene in a straightforward way. Our aim is to address a
large range of tracking devices like mouses, 3D mouses, flysticks or
even more recent devices like IR depth sensors (Microsoft R© Kinect,
ASUS R© Xtion Pro). In the same fashion we handle autostereo-
scopic displays, we propose a plugin-free solution to interact with
ad-hoc tracking devices within a web browser by using HTML5
WebSockets [W3C R© 2012]. The proprietary ART R© DTrack track-
ing system is an optical tracking system which delivers visual infor-
mation to a PC in order to be processed. The resulting information,
3D position and orientation of the flystick is then broadcast on ev-
ery chosen IP address, using the UDP protocol. A PHP server-side
script, which can be seen as a WebSocket Server, is running on the
web server. The WebSocket server is waiting for UDP datagrams,
containing locations and orientations, from the DTrack system. At
receipt, the data is parsed and sent via WebSocket to the client us-
ing the JSON format. Thanks to this networked architecture, we are
able to stream JSON encoded data coming from the tracking system
to the web browser. The location and the orientation of the flystick
are then used to control the WebGLUT virtual camera.

Using the same approach, we have also imagined a more affordable
solution to interact with a 3D scene in an even more straightfor-
ward way. Indeed, we use recent IR depth sensors like Microsoft R©

Kinect and ASUS R© Xtion Pro to perform Natural Interaction. Just
like the ART R© DTrack system, our C++ program acts as a UDP
server and, at the same time, collects information about the lo-
cation and the pose of a user facing an IR depth sensor. Thanks
to the OpenNI framework [OpenNITM 2010], we are able to track
the user’s body and detect characteristic gestures. This informa-
tion, streamed over the network using our hardware/software ar-
chitecture can be used to interact with a 3D scene: move the vir-
tual camera, trigger events, etc. These aspects are exposed within
the WebGLUT API through the concept of Controller. A
Controller can be attached to any type of Camera. This
controller is responsible for updating the properties of the cam-
era (position, orientation, field of view, etc.) depending on its
state change. At the time of writing, we manage three types
of controllers: MouseController, DTrackController and
KinectController.



5 Case study: ModJaw R©

The ModJaw R© (Modeling the Human Jaw) project has been devel-
oped by our research team and Maxime Jaisson who is preparing a
PhD thesis in odontology related to the impact of Information Tech-
nology on dentistry practice and teaching. ModJaw R© [Jaisson and
Nocent 2010] aims to provide 3D interactive educational materi-
als for dentistry tutors for teaching mandibular kinematics. There
exist several similarities with a former project called MAJA (Mod-
eling and Animation of JAw movements) [Reiberg 1997]. One main
difference between ModJaw R© and MAJA consists in the data na-
ture. Indeed, we use real-world data obtained by motion capture
and CT scanners. In this way, students are able to study a wide
variety of mandible motions according to specific diseases or mal-
formations. Among the future works, Jörg Reiber wanted to add an
internet connection to MAJA. In this way, ModJaw R© can be seen
as an enhanced up-to-date version of MAJA relying on real-world
data sets and cutting edge web technologies exposed by the brand
new features of HTML5 (WebGL, WebSockets, etc.). The choice
of web technologies to develop this project was mainly dictated by
the following constraints:

Easy-to-use: users just have to open a web browser to access to
the software and its user-friendly graphical interface. As it
is fully web-based, ModJaw R© also incorporates online docu-
mentation related to anatomy, mandibular kinematics, etc.

Easy-to-deploy: the framework does not require any install, it can
be used from all the computers within the faculty or even from
your home computer if you use a HTML5 compatible web
browser. Since the software is hosted on a single web server,
it is really easy to upgrade it.

6 Conclusion

In this paper, we have presented an original solution for provid-
ing immersion and natural interaction within a web browser. The
main benefits of our contribution rely on the seamless interaction
between a web browser and autostereoscopic displays and tracking
devices through new HTML5 features like WebGL and WebSock-
ets. This plugin-free framework allows to enhance the user expe-
rience by leveraging dedicated hardware via JavaScript. Thanks to
its network-based approach, this framework can easily be extended
to handle other devices in the same fashion. For instance, we began
to explore the possibility to manage haptic devices. As our track-
ing system is completely plugin-free and fully network-based, it
could be seamlessly integrated in web-based collaborative environ-
ments allowing users to remotely interact with shared 3D contents
displayed in a web browser.

Acknowledgements

The authors would like to thank Romain Guillemot, research engi-
neer at CReSTIC SIC, for his expertise in autostereoscopic displays
and his precious help for porting the source code of multiview cam-
eras from OpenGL to WebGL.

References

ABILDGAARD, A., WITWIT, A., KARLSEN, J., JACOBSEN, E.,
TENNE, B., RINGSTAD, G., AND DUE-TNNESSEN, P. 2010.
An autostereoscopic 3D display can improve visualization of 3D
models from intracranial MR angiography. International Jour-
nal of Computer Assisted Radiology and Surgery 5, 549–554.

BEHR, J., ESCHLER, P., JUNG, Y., AND ZÖLLNER, M. 2009.
X3DOM: a DOM-based HTML5/X3D integration model. In
Proceedings of the 14th International Conference on 3D Web
Technology, ACM, New York, NY, USA, Web3D ’09, 127–135.

BENASSAROU, A., VALETTE, G., DEBONS, D., REMION, Y.,
AND LUCAS, L. 2011. Autostereoscopic visualization of 3D
time-varying complex objects in volumetric image sequences.
In Three-Dimensional and Multidimensional Microscopy: Im-
age Acquisition and Processing XVIII, SPIE, vol. 7904.

BRUTZMAN, D., AND DALY, L. 2007. X3D: Extensible 3D Graph-
ics for Web Authors. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA.

DELILLO, B. P. 2010. WebGLU development library for WebGL.
In SIGGRAPH Posters, 4503–4503.

DI BENEDETTO, M., PONCHIO, F., GANOVELLI, F., AND
SCOPIGNO, R. 2010. SpiderGL: a javascript 3D graphics library
for next-generation WWW. In Proceedings of the 15th Interna-
tional Conference on Web 3D Technology, ACM, New York, NY,
USA, Web3D ’10, 165–174.

HALLE, M. 1997. Autostereoscopic displays and computer graph-
ics. SIGGRAPH Comput. Graph. 31, 2, 58–62.

HARROLD, J., AND WOODGATE, G. J. 2007. Autostereo-
scopic display technology for mobile 3DTV applications. SPIE,
vol. 6490.

HÜBNER, T., ZHANG, Y., AND PAJAROLA, R. 2006. Multi-view
point splatting. In GRAPHITE ’06: Proceedings of the 4th inter-
national conference on Computer graphics and interactive tech-
niques in Australasia and Southeast Asia, ACM, New York, NY,
USA, 285–294.

JAISSON, M., AND NOCENT, O., 2010. ModJaw R©: a kind of
magic. http://www.modjaw.com.

KHRONOS GROUP, 2009. WebGL - OpenGL ES 2.0 for the Web.
http://www.khronos.org/webgl/.

LEUNG, C., AND SALGA, A. 2010. Enabling WebGL. In Proceed-
ings of the 19th international conference on World wide web,
ACM, New York, NY, USA, WWW ’10, 1369–1370.

MOUTON, C., SONS, K., AND GRIMSTEAD, I. 2011. Collabo-
rative visualization: current systems and future trends. In Pro-
ceedings of the 16th International Conference on 3D Web Tech-
nology, ACM, New York, NY, USA, Web3D ’11, 101–110.

OPENNITM, 2010. OpenNI framework. http://www.openni.
org/.

PRÉVOTEAU, J., CHALENÇON-PIOTIN, S., DEBONS, D., LUCAS,
L., AND REMION, Y. 2010. Multi-view shooting geometry for
multiscopic rendering with controlled distortion. International
Journal of Digital Multimedia Broadcasting (IJDMB), special
issue Advances in 3DTV: Theory and Practice 2010 (Mar.), 1–
11.

RAGGETT, D. 1994. Extending WWW to support platform in-
dependent virtual reality. In Proceedings of the INET/JENCS,
242/1–242/3.

REIBERG, J., 1997. MAJA: Modeling and Animating the Hu-
man Jaw. http://www.reiberg.net/project/maja/
overview.html.

W3C R©, 2012. The WebSocket API. http://dev.w3.org/
html5/websockets/.


