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Abstract

Brain structure analysis in the newborn is a major health issue. This is especially
the case for premature neonates, in order to obtain predictive information related
to the child development. In particular, the cortex is a structure of interest, that
can be observed in MRI (magnetic resonance imaging). However, neonatal MRI
data present specific properties that make them challenging to process. In this
context, multi-atlas approaches constitute an efficient strategy, taking advantage
of images processed beforehand. The method proposed in this article relies on
such multi-atlas strategy. More precisely, it uses two paradigms: first, a non-local
model based on patches; second, an iterative optimization scheme. Coupling both
concepts allows us to consider patches related not only to the image information,
but also to the current segmentation. This strategy is compared to other multi-atlas
methods proposed in the literature. Experiments show that the proposed approach
provides robust cortex segmentation results.

Keywords: patch-based segmentation, iterative segmentation, neonatal MRI,
cortex

1. Introduction

During the last decades, advances in medical imaging have led to their in-
tensive use in clinical routine. This is particularly true for magnetic resonance
imaging (MRI), that allows for the acquisition of high-quality images, in a non-
ionizing and non-invasive way. At the same time, image processing methods ded-
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icated to MRI have increased the informative potential of these data, particularly
in the study of brain structures [1].

Most efforts invested in the development of image analysis methods, particu-
larly in segmentation, have focused on brain MRI data of adult subjects. However,
MRI data acquired on children and newborns have been the subject of growing in-
terest over the last years. This interest is motivated in particular by the study of
early human brain development mechanisms. Thus, it gave rise to the develop-
ment of specific fields in brain image analysis, on the one hand in utero (fetal
data) [2, 3], and on the other hand ex utero (neonatal data) [4, 5].

Indeed, standard brain segmentation methods and tools, deeply validated for
adult MRI data, are generally not adapted to neonatal brain images. In addition
to issues related to acquiring MRI data in good conditions (reduced acquisition
time, risk of subject motion. . . ), some interpretation difficulties are induced by
immaturity of certain brain structures (e.g. partial myelination of the white mat-
ter, leading to contrast changes) and, of course, the reduced size of structures of
interest.

Brain morphometry is a key tool to assess early brain development and to com-
pute relevant biomarkers [6] that can be further used for diagnosis (for instance
through quantitative evaluation of lesions), prediction of motor and cognitive de-
velopment or therapy (e.g. neuroprotection by melatonin). Neonatal morphometry
can also be used to implement a personalized rehabilitative protocol to stimulate
brain plasticity [7]. In particular, the cortex is a structure of interest for many
recent works focusing on brain folding [8, 9, 10], cortical connectivity [11] and
cortical development [12, 13]. However, the cortex is a thin surface object and
remains difficult to segment in neonatal MRI data.

Various methods were recently proposed to allow for the segmentation of
neonatal brain MRI. From a technical point of view, different approaches were
explored: mathematical morphology [14, 15], deformable models [16, 17], clas-
sification [18, 19, 20], patch-driven level set approach [21] or probabilistic mod-
elling [22].

Beyond the relative relevance of each of these image processing / machine
learning paradigms, another approach that is the so-called multi-atlas framework
[23] has demonstrated its interest in the context of brain segmentation. Multi-atlas
based techniques are usually performed by registering an anatomy textbook [24]
(consisting of one or several labelled images) onto the image to be segmented. The
labels are then mapped and fused using classification rules to produce a new label
map of the input image. The main items of these registration-based label propa-
gation approaches are the accuracy of the nonrigid registration, the fusion rules,
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the selection of the labelled images and the labelling errors in primary manual
segmentation. Multi-atlas methods provide a spatial prior that restricts the result
to a more realistic anatomy, with the assumption that intensities and segmentation
labels are locally correlated. Indeed, by using prior knowledge provided by the
anatomy textbook, multi-atlas segmentation techniques can cope with the lower
quality of neonates MRI and complexity of the structures of interest [25, 26].

The work presented in this article relies on this multi-atlas strategy. Our pur-
pose is to segment the cortex from 3D MRI data in newborns, considering not only
prior appearance information (a given intensity is associated with a given seman-
tics) but also prior spatial information. However, the point-wise mapping conven-
tionally used in multi-atlas approaches, together with the uncertainties induced by
the registration step between data, tend to make these prior spatial information
less robust.

A possible solution to this issue consists of using the notion of patches, ini-
tially introduced for non-local filtering of images [27]. It allows one to take into
account not only the value at a point, but also the profile of the values in its neigh-
bourhood, for comparison purpose with the points or neighbourhoods in the other
images. This strategy, which can compensate errors and approximations in regis-
tration, was used in [28, 29, 30, 31] for brain segmentation. Such algorithm makes
use of local similarities between the image to be segmented and the images con-
tained in the anatomy textbook. The principle is similar to a fuzzy block matching
approach which avoids the constraint of a strict one-to-one mapping.

In this article, we propose a new way of using patch-based approaches to per-
form multi-atlas segmentation of the cortex in 3D MRI. Indeed, we propose to
use jointly: (1) a patch-based non-local model, and (2) an iterative optimization
scheme. The coupled use of these two concepts enables not only to consider
patches linked to the image (as in the literature) but also linked to an estimation
of its current segmentation. These two kinds of information can be seen similar to
the use of data-fidelity and regularisation terms, respectively. This latter regular-
ization ensures a homogeneous behaviour of the segmented structure with regard
to its geometry, and the progressive refinement of the result over iterations.

This article is organized as follows. In Section 2 the main principles of multi-
atlas segmentation are recalled. Section 3 provides a survey of the main multi-
atlas methods for cortical segmentation. Our method is presented in Section 4. A
comparative study of the different methods is presented in Section 5. A discussion,
proposed in Section 6, concludes the article.
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2. Multi-atlas segmentation

Contrary to atlas-based segmentation methods, that use a unique probabilistic
atlas computed from n images, a multi-atlas segmentation method uses directly n
segmentation examples. Each such example is obtained from an image, in order
to guide the segmentation process of the given input image.

2.1. General approach
The n example images are generally chosen similar (in terms of modality,

resolution, observation. . . ) to the input image. Usually, the current image seg-
mentation is then defined as a linear combination of the segmentation information
derived from these n examples.

The set E of the examples is defined as:

E = {Ei = (Ii, Si), i = 1 . . . n} (1)

where each example Ei is composed of one image Ii and its associated segmenta-
tion Si. In our case, Ii is a (grey-level) 3D MRI image that represents a neonate’s
brain structures. In the associated segmentation Si, each point y has a value in
[0, 1] corresponding to its degree of membership to the chosen structure of inter-
est (in our case, the cortex).

Let I be the input image, and S be the segmentation to be computed from I ,
thanks to the examples of E . Then, the segmentation S is not simply defined as a
function f(I), but more generally as:

S = f(I, E1, . . . , En) (2)

Indeed, S depends not only on intrinsic information related to the image I , but
also on the way the images Ii are themselves segmented for the same purpose.

This function f is often defined as a linear operator. More precisely, the seg-
mentation S of I is estimated, at each x, as a linear combination of the information
gathered in different points y within all other images. In this context, these points
y and the weights wi(x, y) are defined according to the similarity between x in I
and y in Ii. The most intuitive way of defining such weights consists of consider-
ing them as reversely proportional to the distance between x and y. For instance,
such distance can be defined with respect to the intensity information at x and y
within their respective images, that is:

wi(x, y) = g(‖I(x)− Ii(y)‖) (3)
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where g is a function of the distance between I(x) and Ii(y). The segmentation
S of I at x can then be defined as a (normalized) linear combination f of the
segmentations Si obtained from the n examples in E :

S(x) = f(I, E1, . . . , En)(x)

=
n∑
i=1

∑
y

wi(x, y)Si(y) (4)

However, if the similarity measure is computed without considering the spa-
tial context, it will not be robust, in particular to noise and registration errors.
Thus, instead of considering the pixel / voxel as comparison unit, some multi-
atlas segmentation methods rely on the notion of patch, that is a region within
the neighbourhood of each point of interest x. The similarity related to x in the
images Ii can then be considered with respect to a richer context.

2.2. Patch-based approaches
For multi-atlas segmentation purposes, using patches as comparison unit re-

quires to define a distance between x in I and y in Ii. Such distance depends on
I(x) and Ii(y), but also on the set of the values of I and Ii in the neighbourhoods
P (x) and P (y), respectively.

Patches are often defined as isotropic volumes P (.) (squares or cubes of size
2k + 1) centred on the points of interest. In this framework, the weights wi(x, y)
(Equation (3)) depend on the information carried by the sub-images restricted to
the supports of patches:

wi(x, y) = g (‖PI(x)− PIi(y))‖) (5)

In other words, the distance considered for the computation of wi(x, y) involves
the set of point-wise distances, such as defined by Equation (3), on the two patches
PI(x) in I and PIi(y) in Ii.

Such calculus may be costly, according to the size and number of patches
P (.). In order to reduce this computational cost, it is generally chosen to restrict
the space of patches for a given point x of I . We only consider the points y
located in the neighbourhood N (x) of x in Ii (of course, a spatial mapping has to
be carried out beforehand between I and the images Ii of E ; this can be done for
instance via a registration step). Under these assumptions, the segmentation S of
I rewrites as:

S(x) =
n∑
i=1

∑
y∈N (x)

wi(x, y)Si(y) (6)
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In the next section, the computation of these weights wi(x, y) is described for
different multi-atlas segmentation methods proposed in the literature.

3. Multi-atlas segmentation: Previous works

Following the algorithmic scheme proposed in the survey [23], the multi-atlas
methods are composed of three main steps: (1) registration; (2) segmentation
propagation; and (3) segmentation fusion.

In the sequel, we focus on step (3) for the principal methods of the literature.
In particular, by assuming that segmentation fusion is performed based on Equa-
tion (6) (with a normalization coefficient used for making the sum of all weights
equal to 1, in each x), the discussion mainly deals with the way of computing the
weights wi(x, y).

3.1. Non-local means
In the pioneering article [27] on Non-Local Means (NLM), the weights con-

sidered are calculated according to a Gaussian hypothesis, for denoising purposes.
This kind of weights, denoted by wNLM , corresponds to a similarity function re-
versely proportional to the point-wise intensity distance between the patches, fol-
lowing a normal distribution:

wNLMi(x, y) = exp−‖PI(x)− PIi(y))‖2

h2
(7)

where h is a regularization constant that can be automatically tuned [32] as h =
2σβp (p, the size of patches), with usually β = 1, while σ corresponds to the
standard deviation of the Gaussian noise in images. By construction, we have
wNLMi(x, y) ∈ (0, 1].

3.2. Joint label fusion
The Joint Label Fusion (JLF) method [30], also relies on patches. However,

while NLM are first dedicated to denoising, JLF is an algorithm specifically de-
signed for multi-atlas segmentation.

In particular, contrary to NLM, only one patch is selected within the research
area N (x), in order to determine the contribution of an image Ii to the segmenta-
tion of I at x. In other words, Equation (6) rewrites as:

S(x) =
n∑
i=1

ŵi(x)Si(ŷi) (8)
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where, for each image Ii, ŷi is the unique point chosen in N (x) with respect to
the similarity between patches PI(x) and PIi(ŷi). Then, we have:

ŷi = arg min
y∈N (x)

‖PI(x)− PIi(y)‖ (9)

Only one weight wi is then to be computed for each image Ii. Nevertheless,
it is defined as spatially variant. In particular, in x, the set ŵ(x) = {ŵi(x), i =
1 . . . n} is defined as the following minimizer:

ŵ(x) = arg min
w(x)∈W

w(x)tMxw(x) (10)

where W is the set of vectors (wi)
n
i=1 ∈ [0, 1]n such that

∑n
i=1wi = 1 and Mx

is the correlation matrix between the segmentation error probabilities induced by
the n images Ii of E (see [30, Equations (6–12)] for more details).

3.3. Weight optimization
In order to compute the segmentation S of I , determining the weights wi(x, y)

in Equation (6) can also be seen as an optimization problem between the patch of
the target image I at point x, and a linear combination of patches of the image Ii
in the neighbourhood N (x).

3.3.1. Optimization on image intensity
This optimization problem can be expressed in the image space. Indeed, one

can set the energy function:

φI(x) =
∥∥∥PI(x)−

n∑
i=1

∑
y∈N (x)

wi(x, y)PIi(y)
∥∥∥ (11)

that defines the distance between the patch PI(x) estimated in the image I in the
neighbourhood of x, and the linear combination of the patches PIi(y) in Ii for all
the y of N (x).

The minimization of φI(x) allows us to obtain the weights ŵ(x) = {wi(x, y) |
y ∈ N (x), i = 1 . . . n}:

ŵ(x) = arg min
w∈W

φI(x) (12)

where W is the set of normalized vectors taking their values in [0, 1].
This approach is inspired from the LLE (Locally Linear Embedding) algo-

rithm [33], initially designed for dimension reduction purposes.
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3.3.2. Optimization on segmentation
The above strategy can also be considered in the space of segmentations. To

this end, it is then necessary to replace, in the definition of φI(x) (Equation (11)),
the patches PI and PIi on images I and Ii by the patches PS and PSi on the
segmentations S and Si associated to these images.

The same optimization scheme (Equation (12)) can then be used for determin-
ing the weights ŵ(x) = {wi(x, y) | y ∈ N (x), i = 1 . . . n}.

This formulation requires to know beforehand the segmentation S of the target
image I . Thus, it mainly presents a retrospective interest, in particular for com-
paring results. Nevertheless, as discussed hereafter, it can also be useful in the
context of iterative optimization schemes.

4. Iterative optimization

Our proposed approach is dedicated to patch-based multi-atlas segmentation.
It essentially relies on the optimization scheme presented in Section 3.3. Its two
main principles are the following.

On the one hand, the proposed optimization scheme is iterative. In particu-
lar, the computed weights wi(x, y) can evolve in order to converge progressively
towards a satisfactory solution. On the other hand, contrary to the formulation
proposed in Equations (11–12), the optimization does no longer rely only on data-
fidelity, but also on the current segmentation. In other words, the evolution of
the weights wi(x, y) are guided by two kinds of information: proximity between
patches in the image space, and proximity in segmentation space.

4.1. Mixed patches
In particular, we propose to define mixed patches PE? from image–segmentation

couples E? = (I?, S?).
All the considered images I? (namely, I and the Ii) are defined on a same

support Ω (indeed, they were registered beforehand), and they take their values
within an interval V ⊂ R. The associated segmentations S? are defined on the
same support Ω, but they take their values in [0, 1]. Without loss of generality, we
consider that V has been normalized. Under these assumptions, both the I? and the
S? can be expressed as functions Ω → [0, 1] (with, however, distinct semantics).
This normalization is crucial for defining a non-biased inter-patch distance.
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Practically, for an image–segmentation couple E? = (I?, S?), the space of
associated patches E? is a function:∣∣∣∣ PE? : Ω → [0, 1]p × [0, 1]p

x 7→ (PI?(x), PS?(x))
(13)

where PI?(x) and PS?(x) are the usual patches of image and segmentation, re-
spectively, that is vectors of [0, 1]p, that indicate the values of I? and S? inside a
window N (x) of Ω of size p, locally centred on x. (For the sake of concision, we
will equivalently consider PE?(x) as a vector (pkE?(x))2pk=1 of [0, 1]2p instead of a
couple of vectors of size p.)

4.2. Inter-patch distance and energy function
In order to define the inter-patch distance, the Lk norms (and especially L1

and L2) can be considered:

‖PEα(x)− PEβ(x)‖1 =

2p∑
k=1

∣∣pkEα(x)− pkEβ(x)
∣∣ (14)

‖PEα(x)− PEβ(x)‖2 =
( 2p∑
k=1

(
pkEα(x)− pkEβ(x)

)2) 1
2

(15)

In particular, it is possible to define, in a way similar to Equation (11), an
energy function φE which, given a image–segmentation couple E = (I, S) and a
multi-atlas set E = {Ei = (Ii, Si), i = 1 . . . n}, expresses the distance between E
and a linear combination on E at a point x of Ω:

φE(x) =
∥∥∥PE(x)−

n∑
i=1

∑
y∈N (x)

wi(x, y)PEi(y)
∥∥∥ (16)

The purpose then consists of determining the weights wi(x, y) allowing one to
minimize this function.

4.3. Optimization scheme
As in Equation (12), our purpose is to minimize the function φE(x) in order to

obtain a vector of optimal weights for computing the segmentation S of I at x:

ŵ(x) = arg min
w∈W

φE(x) (17)
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Algorithm 1 Iterative optimization algorithm

Require: I: input image ; E = {Ei = (Ii, Si), i = 1 . . . n}: multi-atlas ; N :
number of iterations

Ensure: S: segmentation of I
1: for j = 0 . . . N − 1 do
2: for all x ∈ Ω do
3: Compute ŵ(j)(x) (Equation (18))
4: Compute S(j)(x) from ŵ(j)(x) (Equation. (19))
5: end for
6: end for
7: S ← S(N−1)

with the same notations as in Section 3.3.
In particular, the same optimization scheme can be used. However, the strategy

is now iterative. Algorithm 1 summarizes the overall method. Its successive steps
are discussed hereafter.

4.3.1. Initialization
The first iteration of the process requires to define beforehand an initial image–

segmentation couple E(−1) = (I, S(−1)) associated to I . The initial segmentation
S(−1) can be chosen arbitrarily. This initialization is justified hereafter, in the
weighting policy description.

4.3.2. Iterations
At the j-th stage of the iterative process, the current energy function φ(j)

E (x) is
optimized by considering P (j−1)

E (x) = (PI(x), PS(j−1)(x)), in order to define the
weights w(j)

i (x, y) (Equations (16–17)):

ŵ(j)(x) = arg min
w∈W

∥∥∥P (j−1)
E (x)−

n∑
i=1

∑
y∈N (x)

wi(x, y)PEi(y)
∥∥∥ (18)

and then to compute S(j) from these weights w(j)
i (x, y) of ŵ(j)(x):

S(j)(x) =
n∑
i=1

∑
y∈N (x)

w
(j)
i (x, y)Si(y) (19)
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4.3.3. Weighting
We propose to weight the influence of the terms related to intensity and esti-

mated segmentation, respectively. Here, the underlying idea is to relax progres-
sively the hypothesis of isometry between intensity space and segmentation space.

In particular, at each iteration j, we consider a parameter αj ∈ [0, 1] such that
the terms of PE? linked to the patch PS? (resp. PI?) are weighted by αj (resp.
1− αj).

Practically, this weighting can be realized without altering the formulation of
Equations (17–19). Indeed, it is sufficient that the αj weights be involved in the
definition of PE? by applying a scale function onto the value space. In other words,
we define a function:∣∣∣∣ Πα : [0, 1]p × [0, 1]p → Rp × Rp

(PI? , PS?) 7→ ((1− α)PI? , αPS?)
(20)

It is then sufficient to substitute Παj◦PE? to PE? in the above optimization scheme.
In order to guarantee a continuous evolution of the process, we choose an increas-
ing sequence of weights (αj) depending on j. At the first iteration, α0 is set to 0.
Then any initialization of the segmentation S(−1) can be considered.

4.3.4. Termination
The iterative process ends when a given number N of iterations has been per-

formed. This value N can be defined manually. (If the number of required it-
erations is unknown a priori, the termination may alternatively be handled by
considering a convergence criterion.)

5. Experiments

In this section, we apply the proposed method for processing 3D neonates
cerebral MRI images. Our purpose is to segment cortical structures from these
data, by taking advantage of a base of similar images, endowed with segmenta-
tions.

5.1. Data
The considered images are T2-weighted MRIs, made available [34] in the con-

text of the Developing Human Connectome Project (dHCP)1 [35], and provided
by the Evelina Neonatal Imaging Centre, London, UK.

1http://www.developingconnectome.org
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The subjects are aged between 37–44 weeks. The data were acquired on a 3T
Achieva scanner, dedicated to neonates, with an acquisition time of approximately
60 minutes. The size of voxels is 0, 5× 0, 5× 0, 5 mm3. The repetition (TR) and
echo times (TE) are 12 000 and 156 ms, respectively.

A set of 40 images is considered. Among these data, 30 are used for building
an example dataset (multi-atlas: Ii), while the other 10 are used as input images
(I). For each of these 40 images, the algorithmic pipeline dHCP2 has been applied.
The obtained segmentations, visually validated, constitute our reference. For the
30 images Ii, they provide us with the segmentations Si; for the 10 images I , they
provide us with the expected segmentations S.

5.2. Data preprocessing
The example images were registered in two steps (affine, then non-rigid reg-

istration) by using ANTs3 [36]. In order to make patch-based methods robust,
the intensities of example images (Ii) were normalized by histogram matching
with the subjects to be segmented (I). This is done in order to avoid additive bias
effects on inter-patch distances (Equations (14–15)).

5.3. Compared methods
The proposed method, described in Section 4, and denoted by ITER in the

sequel, was compared to the following methods:

• Non-Local Means – NLM [27] (Section 3.1);

• Joint Label Fusion – JLF [30] (Section 3.2);

• MANTIS [18].

It is worth mentioning that the first two are patch-based multi-atlas methods, such
as to ITER. By contrast, MANTIS is not multi-atlas; it is based on classifica-
tion principles. Indeed, this latter method relies on an adaptation of the unified
segmentation algorithm [37], enriched with morphological processing and topo-
logical filtering steps.

2https://github.com/DevelopingHCP/structural-pipeline
3http://stnava.github.io/ANTs
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5.4. Parameters
The MANTIS method presents few parameters. These are regularization pa-

rameters for the initial classification of the unified segmentation [37]. The used
values are those defined by default.

The other methods based on patches all present similar characteristics. In
particular, they share various parameters: the number K of nearest neighbours
among N (.), considered for the calculus of energy functions φ(.) (Equation (11)
and next); the size p of the patches P (.); and the dimension of research areas
N (.).

The use of the K nearest neighbours among n.|N (x)| for the calculus of φ(x)
is aimed to reduce the influence of an excessive amount of patches with a low
similarity with the considered patch in each point x ∈ Ω. The parameter K is
fixed to 15, except for JLF where, by definition, we have K = n (here, 30). The
value of p is set to 27; it corresponds to patches of size 3 × 3 × 3 voxels. The
research areas N (.) are cubes with 7 × 7 × 7 voxels. These parameters were set
based on preliminary experiments.

Some parameters are specific to some of these methods. In JLF, the supple-
mentary parameters were set at a fixed default value. For the ITER method, the
inter-patch distance relies on the L2 norm (Equation (15)). The regularization
parameter for inversion is set to 10−3. The number of iterations N was empiri-
cally set to 2. The values of αj (trade-off coefficient) are set to 0 and 0.25 for the
first and second iteration, respectively. The 0 value allows us at perform a first
iteration based on data-fidelity only. The 0.25 value for the second iteration was
determined from preliminary experiments, within a range of values from 10−2

to 0.5. The K nearest neighbours are updated at each iteration. This allows us
to combine examples that are increasingly adapted to estimate the segmentation,
according to the evolution of αj .

6. Results and discussion

6.1. Results
Quantitative evaluations of the results provided by the four methods are gath-

ered in Table 1. In particular, two evaluation measures were considered: the Dice
index and the Peak Signal to Noise Ratio (PSNR). The Dice index (that varies be-
tween 0 and 1) is an overlapping measure between the estimated segmentation and
the ground-truth; the closer to 1, the better the adequacy between the result and
the ground-truth both in terms of false positives and false negatives. The PSNR
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Table 1: Performances of ITER, compared to three other segmentation methods (NLM, JLF,
MANTIS) applied on 10 subjects, with an example base of 30 subjects.

NLM [27] JLF [30] MANTIS [18] ITER

Dice (mean) 0,876 0,845 0,793 0,887
Dice (std. dev.) 0,011 0,018 0,028 0,011

PSNR (mean, dB) 20,758 18,966 16,661 21,086
PSNR (std. dev., dB) 0,396 0,487 0,533 0,392

provides a measure of quality (mean quadratic error) of the estimated image; the
higher its value (in dB), the better the quality of the obtained result.

The ITER and NLM methods generate results defined as fuzzy maps. In order
to compare these results with those of JLF and MANTIS (that generate binary
maps), a thresholding of the fuzzy maps is set at value 0.5.

A more qualitative assessment of the results obtained by the four method is
also available via illustrative samples of segmentations, visualized on 2D slices,
in Figures 1–2 (axial slices), and as 3D visualizations of meshed obtained from
binary volumes (sagittal view) in Figure 3 and using tools from BrainVISA soft-
ware4 [38].

6.2. Discussion and perspectives
From a quantitative point of view (Table 1), the results obtained with ITER

are better than those obtained with the other three tested methods. This is verified
for both Dice and PSNR measures. This improvement is significant compared to
the JLF and MANTIS methods; it is lower compared to the NLM method (ap-
proximately 0.01 gap for Dice and 0.3 dB for PSNR). These first results tend to
show that the proposed strategy of coupling patch-based and iterative optimization
indeed makes sense, as the results are at the level of the state of the art. In addi-
tion to this algorithmic approach, the simultaneous use of a data-fidelity term and
a regularization term from both the example images and their segmentations in
same patches, also seems relevant. Indeed, compared to ITER, the NLM method,
although being also patch-based, is neither iterative nor image/segmentation mix-
ing.

4http://brainvisa.info
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Despite slight quantitative differences between ITER and the other methods,
observation of the visual results confirms the satisfactory behaviour of the ITER
method from a more qualitative point of view. First, this can be seen on 2D slices
in Figures 1–2. In Figure 1, one can observe that MANTIS clearly oversegments
the cortex, compared to the other three methods, while JLF tends to slightly un-
dersegment it. ITER and NLM provide visually comparable results, with slightly
more noisy results for NLM. These trends are confirmed by Figure 2, where we
can focus on a zoomed area of the slice, and observe the zones of false positives
and false negatives. This illustration emphasizes the over- and undersegmenta-
tion behaviours of MANTIS and JLF, respectively. Once again, NLM and ITER
provide close results, but ITER seems to present lower false negatives.

Second, the behaviour of the four methods can be qualitatively observed from
3D cortical surfaces computed based on segmentation results. Indeed, in Figure 3,
one can observe that JLF leads to topologically incorrect surfaces (holes), due to
undersegmentation, while the oversegmentation of MANTIS leads to noisy pat-
terns on the surface, and disconnected elements. Once again, NLM and ITER
provide globally correct surfaces, with a slightly more regular appearance with
ITER.

Overall, these experiment argue in favour of considering mixed patches and
iterative optimization schemes for patch-based segmentation approaches. This
is, in particular, strengthened by the fact that these results were obtained in a
complicated applicative context, namely the analysis of cortical structures.

However, these results are yet preliminary. At this stage, they cover a small
data set of 10 + 30 images. In addition, these data present good contrast quality
and signal-to-noise ratio. Consequently, it will be mandatory to assess the robust-
ness of ITER in more challenging contexts, with data of lower quality.

In addition, since the method is based on a multi-atlas paradigm, it may be rel-
evant to investigate the impact of example quality, in order to understand the side
effects of imperfect segmentation examples, but also heterogeneous data collected
in multi-centric studies.

Finally, the space of parameters of the ITER method has not been fully ex-
plored. In particular, the type of distance, the number of closest neighbours, the
weighting policies will deserve a wider study. We will also consider larger ranges
of iterations, in order to observe if smooth evolutions of the trade-off parameter α
could enable to improve the overall quality of the segmentation results.
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(a) T2 MRI (b) Reference (c) NLM

(d) JLF (e) MANTIS (f) ITER

Figure 1: Segmentation results on a T2-weighted brain MRI (axial slice). (a) Input image. (b)
Reference segmentation obtained from the dHCP pipeline [17]. Segmentation results obtained
with: (c) NLM [27], (d) JLF [30], (e) MANTIS [18], (f) ITER.
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