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Abstract

Brain structure analysis in the newborn is a major health issue. This is especially
the case for preterm neonates, in order to obtain predictive information related
to the child development. In particular, the cortex is a structure of interest, that
can be observed in magnetic resonance imaging (MRI). However, neonatal MRI
data present speci�c properties that make them challenging to process. In this
context, multi-atlas approaches constitute an ef�cient strategy, taking advantage of
images processed beforehand. The method proposed in this article relies on such
a multi-atlas strategy. More precisely, it uses two paradigms: �rst, a non-local
model based on patches; second, an iterative optimization scheme. Coupling both
concepts allows us to consider patches related not only to the image information,
but also to the current segmentation. This strategy is compared to other multi-atlas
methods proposed in the literature. Experiments on dHCP datasets show that the
proposed approach provides robust cortex segmentation results.

Keywords: multi-atlas, patch-based segmentation, iterative segmentation,
neonatal MRI, cortex

1. Introduction

During the last decades, advances in medical imaging have led to their in-
tensive use in clinical routine. This is particularly true for magnetic resonance
imaging (MRI), that allows for the acquisition of high-quality images, in a non-
ionizing and non-invasive way. At the same time, image processing methods ded-
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icated to MRI have increased the informative potential of these data, particularly
in the study of brain structures [1].

Most efforts invested in the development of image analysis methods, particu-
larly in segmentation, have focused on brain MRI data of adult subjects. However,
MRI data acquired on children and newborns have been the subject of growing in-
terest over the last few years. This interest is motivated in particular by the study
of early human brain development mechanisms. Thus, it gave rise to the devel-
opment of speci�c �elds in brain image analysis, on the one hand in utero (fetal
data) [2, 3], and on the other hand ex utero (neonatal data) [4, 5].

Indeed, standard brain segmentation methods and tools, deeply validated for
adult MRI data, may not be adapted to neonatal brain images. In addition to issues
related to acquiring MRI data in good conditions (reduced acquisition time, risk of
subject motion. . . ), interpretation dif�culties are induced by immaturity of some
brain structures (e.g. partial myelination of the white matter, leading to contrast
changes) and, of course, the reduced size of structures of interest.

Brain morphometry is a key tool to assess early brain development and to
compute relevant biomarkers [6] that can be further used for diagnosis (for in-
stance through quantitative evaluation of lesions), prediction of motor and cog-
nitive development, or therapy (e.g. neuroprotection by melatonin). Neonatal
morphometry can also be used to implement a personalized rehabilitative proto-
col to stimulate brain plasticity [7]. In particular, the cortex is a region of interest
for many recent works focusing on brain folding [8, 9, 10], cortical connectivity
[11] and cortical development [12, 13]. However, the cerebral cortex is a thin
surface object and remains dif�cult to segment in neonatal MRI data.

Various methods were recently proposed for neonatal brain MRI segmenta-
tion. From a technical point of view, different approaches were explored: mathe-
matical morphology [14, 15], deformable models [16, 17], classi�cation [18, 19,
20], patch-driven level set approach [21] or probabilistic modelling [22].

Beyond the relative relevance of each of these image processing / machine
learning paradigms, another approach, the so-called multi-atlas framework [23],
has demonstrated its interest in the context of brain segmentation. Multi-atlas
based techniques are usually performed by registering an anatomy textbook [24]
(consisting of one or several labelled images) onto the image to be segmented. The
labels are then mapped and fused using classi�cation rules to produce a new label
map of the input image. The main items of these registration-based label propa-
gation approaches are the accuracy of the non-rigid registration, the fusion rules,
the selection of the labelled images and the labelling errors in primary manual
segmentation. Multi-atlas methods provide a spatial prior that restricts the result
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to a more realistic anatomy, with the assumption that intensities and segmenta-
tion labels are locally correlated. Indeed, by using prior knowledge provided by
an appropriate dedicated anatomy textbook, multi-atlas segmentation techniques
can cope with the lower quality of neonates MRI and the complexity (in terms of
geometry and topology) of the structures of interest [25, 26].

The work presented in this article relies on this multi-atlas strategy. Our pur-
pose is to segment the cortex from 3D MRI data in newborns, considering not only
prior appearance information (a given intensity is associated with a given seman-
tics) but also prior spatial information. However, the point-wise mapping conven-
tionally used in multi-atlas approaches, together with the uncertainties induced by
the registration step between data, tend to make these prior spatial information
less robust.

A possible solution to this issue consists in using the notion of image patches,
successfully used for non-local image denoising [27]. It allows one to take into
account not only the value at a point, but also the pro�le of the values in its neigh-
bourhood, for comparison purpose with the points or neighbourhoods in the other
images. This strategy, which can compensate for errors and approximations in
registration, was used in [28, 29, 30, 31] for brain segmentation. Such an algo-
rithm makes use of local similarities between the image to be segmented and the
images contained in the anatomy textbook. The principle is similar to a fuzzy
block matching approach which avoids the constraint of a strict one-to-one map-
ping.

In this article, we propose an iterative way of using patch-based approaches to
perform multi-atlas segmentation of the cortex in 3D MRI. Indeed, we propose to
use jointly: (1) a patch-based non-local model, and (2) an iterative optimization
scheme. The coupled use of these two concepts enables to consider patches not
only linked to the image (as in the literature) but also linked to an estimation of
its current segmentation. These two kinds of information can be seen similar to
the use of data-�delity and regularization terms, respectively. This latter regular-
ization ensures a homogeneous behaviour of the segmented structure with regard
to its geometry, and the progressive re�nement of the result over iterations.

This article is organized as follows. In Section 2 the main principles of multi-
atlas segmentation are recalled. Section 3 provides a survey of the main multi-
atlas methods for cortical segmentation. Our method is presented in Section 4. A
comparative study of the different methods is presented in Section 5. A discussion
in Section 6 concludes the article.
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2. Multi-atlas segmentation

In contrast to atlas-based segmentation methods, that use a unique probabilis-
tic atlas computed from n images, a multi-atlas segmentation method uses n seg-
mentation examples. Each such example is obtained from an image, in order to
guide the segmentation process of the given input image.

2.1. General approach
The n example images are generally chosen similar (in terms of modality,

resolution, observation. . . ) to the input image. Indeed, multi-atlas approaches are
implicitly based on a smoothness assumption that if two input images are close,
then so should be the corresponding segmentation outputs. Usually, the current
image segmentation is then de�ned as a linear combination of the segmentation
information derived from these n examples.

The set E of examples is de�ned as:

E = fEi = (Ii; Si); i = 1 : : : ng (1)

where each example Ei is composed of one image Ii and its associated segmen-
tation Si. In our case, Ii is a (grey-level) 3D neonatal brain MR image. In the
associated segmentation Si, each point y has a value in [0; 1] corresponding to its
degree of membership to the chosen structure of interest (in our case, the cortex).

Let I be the input image, and S be the segmentation to be computed from I ,
thanks to the examples of E . Then, the segmentation S is not simply de�ned as a
function f(I), but more generally as:

S = f(I; E1; : : : ; En) (2)

Indeed, S depends not only on intrinsic information related to the image I , but
also on the way the images Ii are themselves segmented for the same purpose.

This function f is often de�ned as a linear operator. More precisely, the seg-
mentation S of I is estimated, at each voxel x, as a linear combination of the
information gathered in different points y within all other images. In this context,
these points y and the weights wi(x; y) are de�ned according to the similarity be-
tween x in I and y in Ii. The most intuitive way of de�ning such weights consists
in considering them as reversely proportional to the distance between x and y. For
instance, this distance can be de�ned with respect to the intensity information at
x and y within their respective images, that is:

wi(x; y) = g(kI(x)� Ii(y)k) (3)
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where g is a function of the distance between I(x) and Ii(y).
The weights wi(x; y) are computed from intensity-based similarity, but are

used for segmentation purposes. Under the isometry assumption that weights
computed in the image space are valid in the segmentation space, the segmen-
tation S of I at x can be de�ned as a (normalized) linear combination f of the
segmentations Si obtained from the n examples in E :

S(x) = f(I; E1; : : : ; En)(x)

=
nX

i=1

X

y2
i

wi(x; y)Si(y) (4)

where 
i is the support of the images Ii and Si.
However, if the weights are computed without considering the spatial context,

the output segmentation result may not be robust, in particular to noise and reg-
istration errors. Thus, instead of considering the voxel as comparison unit, some
multi-atlas segmentation methods rely on the notion of image patch, that is a re-
gion within the neighbourhood of each point of interest x. The similarity related
to x in the images Ii can then be considered with respect to a richer context.

2.2. Patch-based approaches
For multi-atlas segmentation purposes, using patches as comparison unit re-

quires to de�ne a distance between x in I and y in Ii. This distance depends on
I(x) and Ii(y), but also on the set of values of I and Ii in the neighbourhoods
P (x) and P (y), respectively.

Patches are often de�ned as isotropic volumes P (:) (squares or cubes of size
2k + 1) centred on the points of interest. In this framework, the weights wi(x; y)
(Equation (3)) depend on the information carried by the sub-images restricted to
the supports of patches:

wi(x; y) = g (kPI(x)� PIi(y))k) (5)

In other words, the distance considered for the computation of wi(x; y) involves
the set of point-wise distances on the two patches PI(x) in I and PIi(y) in Ii.

This calculus may be costly, depending on the size and number of patches
P (:). In order to reduce this computational cost, it is generally chosen to restrict
the space of patches for a given point x of I . We only consider the points y
located in the neighbourhood N (x) of x in Ii (of course, a spatial mapping has to
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be carried out beforehand between I and the images Ii of E ; this can be done for
instance via a registration step). Then, the segmentation S of I rewrites as:

S(x) =
nX

i=1

X

y2N (x)

wi(x; y)Si(y) (6)

In the next section, we will focus on the computation of these weightswi(x; y).

3. Weights computation for multi-atlas segmentation

Multi-atlas methods are composed of three main steps: (1) registration of the
learning dataset E on the input image I , (2) segmentation propagation; and (3)
segmentation fusion. In the sequel, we focus on the fusion step (3). In particular,
by assuming that segmentation fusion is performed based on Equation (6) (with
a normalization coef�cient used for making the sum of all weights equal to 1,
in each x), the discussion mainly deals with the way of computing the weights
wi(x; y).

3.1. Non-local means
In the pioneering article [27] on Non-Local Means (NLM), the weights con-

sidered are calculated according to a Gaussian noise hypothesis, for denoising
purposes. This kind of weights, denoted by wNLM , corresponds to a similarity
function inversely proportional to the point-wise intensity distance between the
patches, following a normal distribution:

wNLMi(x; y) = exp�
kPI(x)� PIi(y))k2

h2 (7)

where h is a regularization constant that can be automatically tuned as h2 = 2�2�p
(p, the size of patches), with usually � = 1, while � corresponds to the stan-
dard deviation of the Gaussian noise in images [32]. By construction, we have
wNLMi(x; y) 2]0; 1]. Such weighting functions have been used for multi-atlas
segmentation purpose [28, 29], where � is estimated on the input image to seg-
ment.

3.2. Joint label fusion
The Joint Label Fusion (JLF) method [30] (which was applied in MICCAI

2012 Grand Challenge on Multi-Atlas Labeling and �nished in the �rst place) also
relies on image patches. In contrast to NLM, only one patch is selected within the
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search area N (x), in order to determine the contribution of an image Ii to the
segmentation of I at x. In other words, Equation (6) rewrites as:

S(x) =
nX

i=1

ŵi(x)Si(ŷi) (8)

where, for each image Ii, ŷi is the unique point chosen in N (x) with respect to
the similarity between patches PI(x) and PIi(ŷi). Then, we have:

ŷi = arg min
y2N (x)

kPI(x)� PIi(y)k (9)

Only one weight wi is then to be computed for each image Ii. Nevertheless, it is
de�ned as spatially variant. In particular, at x, the set ŵ(x) = fŵi(x); i = 1 : : : ng
is de�ned as the following minimizer:

ŵ(x) = arg min
w(x)2W

w(x)tMxw(x) (10)

where W is the set of vectors (wi)ni=1 2 [0; 1]n such that
Pn

i=1wi = 1 and Mx
is the correlation matrix between the segmentation error probabilities induced by
the n images Ii of E (see [30, Equations (6�12)] for more details).

3.3. STAPLE
Considering a collection of segmentation maps, the segmentation fusion step

aims at computing a probabilistic estimate of the true segmentation. It appears
then that the STAPLE method proposed in [33] can be used for multi-atlas seg-
mentation. The goal of STAPLE is to estimate both the segmentation S, and per-
formance parameters � describing the agreement over the whole image between
the experts (i.e. the set of registered images of E) and S. An iterative optimiza-
tion approach (i.e. the Expectation-Maximization algorithm) is used to estimate
S and � in a probabilistic framework. S is obtained by maximizing its posterior
probability:

P (S = sjD; �(k)) =
Y

x2


P (S(x) = s j D; �(k)) (11)

=
Y

x2


P (S(x) = s)
Qn

i=1 �
(k)
idxisP

s0 P (S(x) = s0)
Qn

i=1 �
(k)
idxis0

(12)
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where dxi is the segmentation decision of expert i for the voxel x (x 2 
, where

 is the support of the image I to segment) and �(k)

idxis is the probability that
expert i gives the label s0 to a voxel x when the reference standard label is s
(�idxis = P (dxi = s0 j S = s)) at the iteration k. The variable � corresponds then
to the weights w used for the segmentation fusion. In [34], a non-local version
of STAPLE is proposed to add search and patch neighborhoods to compute the
weights for segmentation fusion.

4. Optimization-based iterative proposed approach

In this section, we describe an optimization-based iterative algorithm based
on two key principles. On the one hand, the proposed optimization scheme is
iterative in the sense that the computed weights wi(x; y) can evolve in order to
converge progressively towards a satisfactory solution. For each voxel x, the set
of weights, as a latent representation, is not �xed: both values of weights and
the set of neighbours may change during the segmentation process. On the other
hand, the optimization-based weight estimation does not longer rely only on data-
�delity, but also on the current segmentation. In other words, the evolution of
the weights wi(x; y) are guided by two kinds of information: proximity between
patches in the image space, and proximity in the segmentation space.

4.1. Optimization-based approach for weights computation
Multi-atlas segmentation methods ([28, 29, 30]) implicitly rely on the isometry

assumption, i.e. the latent representation (provided by the set of weights) of the
current voxel x with respect to its neighbours in the learning dataset E is the same
in the intensity space and in the segmentation space. Thanks to this assumption,
the segmentation S of I at x is de�ned as a (normalized) linear combination of the
segmentations, the weights being estimated from the intensity images (Eq. 4, 6).
Bearing this assumption in mind, the computation of weights wi(x; y) can also be
seen as an optimization problem expressed in the image space. Indeed, one can
set the energy function:

�I(x) =
PI(x)�

nX

i=1

X

y2N (x)

wi(x; y)PIi(y)
 (13)

that de�nes the distance between the patch PI(x) and the linear combination of
the patches PIi(y) in Ii for all the y of N (x). The weights ŵ(x) = fwi(x; y) j
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y 2 N (x); i = 1 : : : ng can then be computed by minimizing �I(x) as follows:

ŵ(x) = arg min
w2W

�I(x) (14)

where W is the set of normalized vectors taking their values in [0; 1]. The weights
are then estimated such that the reconstruction error of the current image patch
PI using a linear model is minimized. This approach is inspired from the LLE
(Locally Linear Embedding) algorithm [35], initially designed for dimension re-
duction purposes.
Since the computed weights are then used for segmentation purposes based on
Eq. 4 or 6, the above strategy relies also on the isometry assumption. The isome-
try assumption can be relaxed by keeping the way the segmentation is performed
from the weights (Eq. 4, 6). The principle is to directly compute the weights in
the space of segmentations. To this end, it is then necessary to replace, in the def-
inition of �I(x) (Equation (13)), the patches PI and PIi on images I and Ii by the
patches PS and PSi on the segmentations S and Si associated with these images.
The same optimization scheme (Equation (14)) can then be used for determining
the weights ŵ(x) = fwi(x; y) j y 2 N (x); i = 1 : : : ng. However, this formula-
tion requires to know beforehand the segmentation S of the target image I . Since
S is the segmentation to estimate, we propose to derive an iterative scheme to
relax the isometry assumption.

4.2. Mixed patches
To this end, we propose to de�ne mixed patches PE? from image�segmentation

couples E? = (I?; S?). All the considered images I? (namely, I and the Ii) are
de�ned on a same support 
 (indeed, the image registration step is performed be-
forehand), and they take their values within an interval V � R. The associated
segmentations S? are de�ned on the same support 
, but they take their values in
[0; 1]. Without loss of generality, we consider that V has been normalized. Under
these assumptions, both the I? and the S? can be expressed as functions 
! [0; 1]
(with, however, distinct semantics). This normalization is crucial for de�ning a
non-biased inter-patch distance.

Practically, for an image�segmentation couple E? = (I?; S?), the space of
associated patches E? is a function:

����
PE? : 
 ! [0; 1]p � [0; 1]p

x 7! (PI?(x); PS?(x)) (15)
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where PI?(x) and PS?(x) are the usual patches of image and segmentation, re-
spectively, that are vectors of [0; 1]p, that indicate the values of I? and S? inside a
window N (x) of 
 of size p, locally centred on x. (For the sake of concision, we
will equivalently consider PE?(x) as a vector (pkE?(x))2p

k=1 of [0; 1]2p instead of a
couple of vectors of size p.)

4.3. Inter-patch distance and energy function
In order to de�ne the inter-patch distance, the Lk norms (and especially L1

and L2) can be considered:

kPE�(x)� PE�(x)k1 =
2pX

k=1

��pkE�(x)� pkE�(x)
�� (16)

kPE�(x)� PE�(x)k2 =
� 2pX

k=1

�
pkE�(x)� pkE�(x)

�2
� 1

2 (17)

In particular, it is possible to de�ne, in a way similar to Equation (13), an energy
function �E which, given a image�segmentation couple E = (I; S) and a multi-
atlas set E = fEi = (Ii; Si); i = 1 : : : ng, expresses the distance between E and a
linear combination on E at a point x of 
:

�E(x) =
PE(x)�

nX

i=1

X

y2N (x)

wi(x; y)PEi(y)
 (18)

As in Equation (14), our purpose is to minimize the function �E(x) in order to
obtain a vector of optimal weights for computing the segmentation S of I at every
voxel x:

ŵ(x) = arg min
w2W

�E(x) (19)

with the same notations as in Section 4.1. This criterion can be optimized ef�-
ciently in the same way than the one of Eq. 14.

4.4. Iterative Multi-Atlas Patch-based approach
In order to relax the isometry assumption, the computation of the weights

wi(x; y) is based on proximity between patches in the image space, and proxim-
ity in the segmentation space. Since the segmentation of the target image is not
known, an iterative method is used (Algorithm 1).

Its successive steps are discussed hereafter.
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Algorithm 1 Iterative Multi-Atlas Patch-Based approach
Require: I: input image ; E = fEi = (Ii; Si); i = 1 : : : ng: learning dataset,

N: number of iterations, f�0 = 0; �1; : : : ; �N�1g: intensity vs segmentation
trade-off ; S(0): arbitrarily chosen initial segmentation

Ensure: S: segmentation of I
1: for j = 1 : : : N do
2: for all x 2 
 do
3: Compute ŵ(j)(x) (Equation (20))
4: Compute S(j)(x) from ŵ(j)(x) (Equation. (21))
5: end for
6: end for
7: S  S(N)

4.4.1. Initialization
The �rst iteration of the process requires to de�ne beforehand an initial image�

segmentation couple E(0) = (I; S(0)) associated to I . The initial segmentation
S(0) can be chosen arbitrarily. This initialization is justi�ed hereafter, in the
weighting policy description.

4.4.2. Iterations
During the iterative process, the current energy function �(j+1)

E (x) is opti-
mized by considering P (j)

E (x) = (PI(x); PS(j)(x)), in order to de�ne the weights
w(j+1)
i (x; y) (Equations (18�19)):

ŵ(j+1)(x) = arg min
w2W

P (j)
E (x)�

nX

i=1

X

y2N (x)

wi(x; y)PEi(y)
 (20)

and then to compute S(j+1) from these weights w(j+1)
i (x; y) of ŵ(j+1)(x):

S(j+1)(x) =
nX

i=1

X

y2N (x)

w(j+1)
i (x; y)Si(y) (21)

4.4.3. Weighting
We propose to balance the in�uence of the terms related to intensity and es-

timated segmentation, respectively. Here, the underlying idea is to relax progres-
sively the hypothesis of isometry between intensity space and segmentation space.
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In particular, at each iteration j, we consider a parameter �j 2 [0; 1] such that the
terms of PE? linked to the patch PS? (resp. PI?) are weighted by �j (resp. 1��j).

Practically, this weighting can be performed without altering the formulation
of Equations (19�21). Indeed, it is suf�cient that the �j weights be involved in
the de�nition of PE? by applying a scale function onto the value space. In other
words, we de�ne a function:

����
�� : [0; 1]p � [0; 1]p ! Rp � Rp

(PI? ; PS?) 7! ((1� �)PI? ; �PS?)
(22)

It is then suf�cient to substitute ��j�PE? to PE? in the above optimization scheme.
In order to guarantee a continuous evolution of the process, we choose an increas-
ing sequence of weights (�j) depending on j. At the �rst iteration, �0 is set to 0.
Then any initialization of the segmentation S(0) can be considered.

5. Experiments

In this section, we apply the proposed method for processing 3D neonatal
brain MR images. In this work, we focus on the segmentation of cerebral cor-
tex, by taking advantage of a base of similar images, endowed with associated
segmentation maps.

5.1. Data
The considered images are T2-weighted MRI data, made available [36] in the

context of the Developing Human Connectome Project (dHCP)1 [37]. Infants
were recruited and imaged at the Evelina Neonatal Imaging Centre, London. In-
formed parental consent was obtained for imaging and data release, and the study
was approved by the UK Health Research Authority. All infants were born and
imaged at term age (37-44 weeks of age). Imaging was carried out on 3T Philips
Achieva using a dedicated neonatal imaging system which included a neonatal 32
channel phased array head coil. The infants were imaged in natural sleep. T2w
images were acquired in sagittal and axial slice stacks with in-plane resolution
0:8� 0:8 mm2 and 1:6 mm slices overlapped by 0:8 mm. Other parameters were:
12000/156ms TR/TE, SENSE factor 2:11 (axial) and 2:58 (sagittal). In this work,
a set of 40 images with a voxel size of 0:5� 0:5� 0:5 mm3 is considered. Among
these data, 30 are used for building the learning dataset E , while the other 10

1http://www.developingconnectome.org
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are used as testing dataset. For each of these 40 images, the algorithmic pipeline
dHCP2 has been applied. The obtained segmentations, visually validated, are used
as reference.

5.2. Data preprocessing
The example images were registered in two steps (af�ne, then non-rigid regis-

tration) by using ANTs3 [38]. To improve the robustness with respect to intensity
variability, the intensities of example images (Ii) were normalized by histogram
matching with the subjects to be segmented (I). This is done in order to avoid
additive bias effects on inter-patch distances (Equations (16�17)).

5.3. Compared methods
The proposed method, described in Section 4, and denoted by IMAPA (IMAPA

stands for "Iterative Multi-Atlas Patch-based Approach") in the sequel, was com-
pared to the following methods:

� Non-Local Means � NLM (Section 3.1);

� Joint Label Fusion � JLF [30] (Section 3.2);

� MANTIS [18].

It is worth mentioning that the �rst two are patch-based multi-atlas methods, such
as IMAPA. By contrast, MANTIS is not multi-atlas; it is based on classi�cation
techniques. Indeed, this latter method relies on an adaptation of the uni�ed seg-
mentation algorithm [39], enriched with morphological processing and topologi-
cal �ltering steps.

5.4. Parameters
The MANTIS method presents few parameters. These are regularization pa-

rameters for the initial classi�cation of the uni�ed segmentation [39]. The used
values are those de�ned by default.

The three other methods based on patches all present similar characteristics.
In particular, they share various parameters: the number K of nearest patches
considered for the calculus of energy functions �(:) (Equation (13) and next); the
size p of the patches P (:); and the size of research areas N (:).

2https://github.com/DevelopingHCP/structural-pipeline
3http://stnava.github.io/ANTs
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The use of the K nearest patches (among n:jN (x)j) for the calculus of �(x)
is aimed to reduce the in�uence of an excessive amount of patches with a low
similarity with the considered patch in each point x 2 
. The parameter K is set
to 15, except for JLF where, by de�nition, we have K = n (here, 30). The value
of p is set to 27; it corresponds to patches of size 3 � 3 � 3 voxels. The search
areas N (:) are cubes of 7 � 7 � 7 voxels. These parameters were set based on
preliminary experiments.

Some parameters are speci�c to some of these methods. In JLF, the supple-
mentary parameters were set at a �xed default value. For the IMAPA method, the
inter-patch distance relies on the L2 norm (Equation (17)). The number of itera-
tions N was empirically set to 2. The values of �j (trade-off coef�cient) are set
to 0 and 0:25 for the �rst and second iteration, respectively. The 0 value allows
us at perform a �rst iteration based on data-�delity only. The 0:25 value for the
second iteration was determined from preliminary experiments, within a range of
values from 10�2 to 0:5. The convergence of the algorithm has been assessed by
computing the fuzzy DICE index for each value of � 2 f0; 0:25; 0:5; 0:75; 1g.
Although the fuzzy DICE index increases over iterations, the �rst two iterations
(from � = 0 to 0:25) led to the main improvement. Figure 1 shows estimated seg-
mentation maps through the iterative process for one subject. It can be seen that
small isolated regions are removed over the iterations. To shorten the computation
time, we have used in this work only two iterations (i.e. � 2 f0; 0:25g).

The K nearest neighbours are updated at each iteration. This allows us to
combine examples that are increasingly adapted to estimate the segmentation, ac-
cording to the evolution of �j .
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(a) � = 0 (b) � = 0:25 (c) � = 0:5 (d) � = 0:75 (e) � = 1

Figure 1: Slices of estimation segmentation maps of the same subject through the iterative process
(i.e. � 2 f0; 0:25; 0:5; 0:75; 1g.

5.5. Results
Quantitative evaluations of the results provided by the four methods are gath-

ered in Table 1. In particular, two evaluation measures were considered: the Dice
index and the Peak Signal to Noise Ratio (PSNR). The Dice index (that varies be-
tween 0 and 1) is an overlapping measure between the estimated segmentation and
the ground-truth; the closer to 1, the better the adequacy between the result and
the ground-truth both in terms of false positives and false negatives. The PSNR
provides another complimentary measure of quality (mean quadratic error) of the
estimated image; the higher its value (in dB), the better the quality of the obtained
result. The PSNR is computed as follows:

PSNR = 10� log10

�
MAX2

MSE

�
(23)

whereMAX is the maximum value of the reference image andMSE is the mean
squared error (between the estimated image and the reference image).
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Table 1: Performances of IMAPA, compared to three other segmentation methods (NLM, JLF,
MANTIS, IMAPA(0) ) applied on 10 subjects, with a learning dataset of 30 subjects. Best results
are highlighted in bold.

NLM JLF MANTIS IMAPA(0) IMAPA
[30] [18] (� = 0)

Dice (mean) 0.876 0.845 0.793 0.873 0.887
Dice (std. dev.) 0.011 0.018 0.028 0.011 0.011

PSNR (mean, dB) 20.758 18.966 16.661 20.671 21.086
PSNR (std. dev., dB) 0.396 0.487 0.533 0.411 0.392

The IMAPA and NLM methods generate results de�ned as fuzzy maps. In
order to compare these results with those of JLF and MANTIS (that generate
binary maps), a thresholding of the fuzzy maps is set at value 0:5. IMAPA(0)

stands for the non-iterative IMAPA method, i.e. only the intensity patches are
used for the weight computation (� = 0).

A more qualitative assessment of the results obtained by the four methods is
also available via illustrative samples of segmentations, visualized on 2D slices,
in Figures 2�3 (axial slices), and as 3D visualizations of meshed obtained from bi-
nary volumes (sagittal view) in Figure 4 and using meshing tools from BrainVISA
software4 [40].

6. Discussion

From a quantitative point of view (Table 1), the results obtained with the pro-
posed IMAPA method are better than those obtained with the other three tested
methods, for both Dice and PSNR measures. This improvement is signi�cant
compared to the JLF and MANTIS methods; it is lower compared to the NLM
method (approximately 0:01 gap for Dice and 0:3 dB for PSNR). These results on
the dHCP dataset tend to show that the proposed strategy of coupling patch-based
and iterative optimization is indeed of interest, as the results are at the level of the
state of the art. In addition to this algorithmic approach, the simultaneous use of
a data-�delity term and a regularization term from both the example images and
their segmentations in same patches, also seems relevant. Indeed, compared to

4http://brainvisa.info
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IMAPA, the NLM weight computation method, although being also patch-based,
is neither iterative nor image/segmentation mixing.

Despite slight quantitative differences between IMAPA and the other meth-
ods, observation of the visual results con�rms the satisfactory behaviour of the
IMAPA method from a more qualitative point of view. First, this can be seen
on 2D slices in Figures 2�3. In Figure 2, one can observe that MANTIS clearly
over-segments the cerebral cortex, compared to the other three methods, while JLF
tends to slightly under-segment it. IMAPA and NLM provide visually comparable
results, with slightly more noisy results for NLM. These trends are con�rmed by
Figure 3, where we can focus on a zoomed area of the slice, and observe the zones
of false positives and false negatives. This illustration emphasizes the over- and
under-segmentation behaviours of MANTIS and JLF, respectively. Once again,
NLM and IMAPA provide close results, but IMAPA seems to present lower false
negatives.

Secondly, the behaviour of the four methods can be qualitatively observed
from 3D cortical surfaces computed based on segmentation results. Indeed, in Fig-
ure 4, one can observe that JLF leads to topologically incorrect surfaces (holes),
due to under-segmentation, while the over-segmentation of MANTIS leads to
noisy patterns on the surface, and disconnected elements. Once again, NLM and
IMAPA provide globally correct surfaces, with a slightly more regular appearance
with IMAPA.

Overall, these experiments argue in favour of considering mixed patches and
iterative optimization schemes for patch-based segmentation approaches. This
is, in particular, strengthened by the fact that these results were obtained in a
complicated applicative context, namely the analysis of cortical surface.

However, these results are yet preliminary. At this stage, they cover a small
data set of 10 + 30 images. In addition, these data present good contrast quality
and signal-to-noise ratio. Consequently, further work will focus on the assessment
of the robustness of IMAPA in more challenging contexts, with data of lower
quality. In addition, since the method is based on a multi-atlas paradigm, it may
be relevant to investigate the impact of example quality, in order to understand
the side effects of imperfect segmentation examples, but also heterogeneous data
collected in multi-centric studies.

The space of parameters of the IMAPA method has not been fully explored. In
particular, the type of distance, the number of closest neighbours, the weighting
policies will deserve a wider study. We will also consider larger ranges of itera-
tions, in order to observe if smooth evolutions of the trade-off parameter � could
enable to improve the overall quality of the segmentation results.
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(a) T2w MRI (b) Reference (c) NLM

(d) JLF (e) MANTIS (f) IMAPA

Figure 2: Segmentation results on a T2-weighted brain MRI (axial slice). (a) Input image. (b) Ref-
erence segmentation obtained from the dHCP pipeline [17]. Segmentation results obtained with:
(c) NLM, (d) JLF [30], (e) MANTIS [18], (f) IMAPA.

It has also to be mentioned that IMAPA shares similarities with sparse coding
based methods, such as the one described in [41, 42]. More speci�cally, the repre-
sentation of the input patch as a linear combination of a set of atoms (called a dic-
tionary in sparse coding) is close to non-local patch-based linear modeling. Main
differences between sparse coding-based methods and the framework used here
are: 1) data representation (dictionaries vs raw patches), 2) sparsity (via a penalty
term vs nearest neighbors in patch space). The estimation of the weights through a
reconstruction term brings sparsity-based and non-local approaches closer. The it-
erative nature of the proposed method is also related to cascading approaches [43]
(also called auto-context [44]) that make use of previous estimations to re�ne the
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(a) NLM (b) JLF (c) MANTIS (d) IMAPA

Figure 3: First row: zoom on a region of Figure 2. Second row: false positives (in blue) and
false negatives (in red) provided by the different methods, compared to the reference image (Fig-
ure 2(b)). (a) NLM, (b) JLF [30], (c) MANTIS [18], (d) IMAPA.

segmentation maps. It has to be noticed that the probabilistic framework used
in STAPLE is also related to this cascading approach by the alternation between
the estimation of weights and the segmentation map during the EM optimiza-
tion. Future research directions could focus on these methodological aspects to
further study the link between IMAPA, sparse coding based methods, cascading
frameworks and the STAPLE probabilistic modeling, and to propose a uni�ed
framework highlighting the key components of these approaches.
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(a) NLM (b) JLF

(c) MANTIS (d) IMAPA

Figure 4: 3D visualization of mesh surfaces computed from the segmentation results obtained with
(a) NLM, (b) JLF [30], (c) MANTIS [18], (d) IMAPA.
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