A. W. Toga, Brain Mapping: An Encyclopedic Reference, 2015.

F. Rousseau, C. Studholme, R. Jardri, and M. Thomason, In vivo human fetal brain analysis using MR imaging, Fetal Development: Research on Brain and Behavior, Environmental Influences, and Emerging Technologies, pp.407-427

O. M. Benkarim, G. Sanroma, V. A. Zimmer, E. Muñoz-moreno, N. Hahner et al., Toward the automatic quantification of in utero brain development in 3D structural MRI: A review, Human Brain Mapping, vol.38, pp.2772-2787, 2017.

C. N. Devi, A. Chandrasekharan, V. K. Sundararaman, and Z. C. Alex, Neonatal brain MRI segmentation: A review, Computers in Biology and Medicine, vol.64, pp.163-178, 2015.

A. Makropoulos, S. J. Counsell, and D. Rueckert, A review on automatic fetal and neonatal brain MRI segmentation, NeuroImage, vol.170, pp.231-248, 2018.

L. R. Ment, D. Hirtz, and P. S. Hüppi, Imaging biomarkers of outcome in the developing preterm brain, The Lancet Neurology, vol.8, pp.1042-1055, 2009.

P. S. Hüppi, Cortical development in the fetus and the newborn: Advanced MR techniques, Topics in Magnetic Resonance Imaging: TMRI, vol.22, pp.33-38, 2011.

J. Dubois, M. Benders, A. Cachia, F. Lazeyras, R. Ha-vinh et al., Mapping the early cortical folding process in the preterm newborn brain, Cerebral Cortex, vol.18, pp.1444-1454, 2008.

J. Lefèvre, D. Germanaud, J. Dubois, F. Rousseau, I. De-macedo et al., Are developmental trajectories of cortical folding comparable between cross-sectional datasets of fetuses and preterm newborns?, Cerebral Cortex, vol.26, pp.3023-3035, 2016.

E. Orasanu, A. Melbourne, M. J. Cardoso, H. Lomabert, G. S. Kendall et al., Cortical folding of the preterm brain: A longitudinal analysis of extremely preterm born neonates using spectral matching, Brain and Behavior, vol.6, 2016.

G. Ball, J. P. Boardman, P. Aljabar, A. Pandit, T. Arichi et al., The influence of preterm birth on the developing thalamocortical connectome, Cortex, vol.49, pp.1711-1721, 2013.

G. Ball, L. Srinivasan, P. Aljabar, S. J. Counsell, G. Durighel et al., Development of cortical microstructure in the preterm human brain, Proceedings of the National Academy of Sciences of the United States of America, vol.110, pp.9541-9546, 2013.

Q. Yu, A. Ouyang, L. Chalak, T. Jeon, J. Chia et al., Structural development of Human fetal and preterm brain cortical plate based on population-averaged templates, Cerebral Cortex, vol.26, pp.4381-4391, 2016.

L. Gui, R. Lisowski, T. Faundez, P. S. Hüppi, F. Lazeyras et al., Morphology-driven automatic segmentation of MR images of the neonatal brain, Medical Image Analysis, vol.16, pp.1565-1579, 2012.

B. Morel, Y. Xu, A. Virzi, T. Géraud, C. Adamsbaum et al., A challenging issue: Detection of white matter hyperintensities in neonatal brain MRI, EMBC, Procs, pp.93-96, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02287325

F. Leroy, J. Mangin, F. Rousseau, H. Glasel, L. Hertz-pannier et al., Atlas-free surface reconstruction of the cortical greywhite interface in infants, PloS One, vol.6, p.27128, 2011.

A. Schuh, A. Makropoulos, R. Wright, E. C. Robinson, N. Tusor et al., A deformable model for the reconstruction of the neonatal cortex, pp.800-803, 2017.

R. J. Beare, J. Chen, C. E. Kelly, D. Alexopoulos, C. D. Smyser et al., Neonatal brain tissue classification with morphological adaptation and unified segmentation, Frontiers in Neuroinformatics, vol.10, p.12, 2016.

P. Moeskops, M. J. Benders, S. M. Chi¸t?achi¸t?chi¸t?a, K. J. Kersbergen, F. Groenendaal et al., Automatic segmentation of MR brain images of preterm infants using supervised classification, NeuroImage, vol.118, pp.628-641, 2015.

P. Anbeek, I. I?gum, B. J. Van-kooij, C. P. Mol, K. J. Kersbergen et al., Automatic segmentation of eight tissue classes in neonatal brain MRI, PLOS ONE, vol.8, p.81895, 2013.

L. Wang, F. Shi, G. Li, Y. Gao, W. Lin et al., Segmentation of neonatal brain MR images using patch-driven level sets, NeuroImage, vol.84, pp.141-158, 2014.

M. J. Cardoso, A. Melbourne, G. S. Kendall, M. Modat, N. J. Robertson et al., AdaPT: An adaptive preterm segmentation algorithm for neonatal brain MRI, NeuroImage, vol.65, pp.97-108, 2013.

J. E. Iglesias and M. R. Sabuncu, Multi-atlas segmentation of biomedical images: A survey, Medical Image Analysis, vol.24, pp.205-219, 2015.

M. I. Miller, G. E. Christensen, Y. Amit, and U. Grenander, Mathematical textbook of deformable neuroanatomies, Proceedings of the National Academy of Sciences of the United States of America, vol.90, pp.11944-11948, 1993.

A. Makropoulos, I. S. Gousias, C. Ledig, P. Aljabar, A. Serag et al., Automatic whole brain MRI segmentation of the developing neonatal brain, IEEE Transactions on Medical Imaging, vol.33, pp.1818-1831, 2014.

N. I. Weisenfeld and S. K. Warfield, Automatic segmentation of newborn brain MRI, NeuroImage, vol.47, pp.564-572, 2009.

A. Buades, B. Coll, and J. Morel, A review of image denoising algorithms, with a new one, Multiscale Modeling & Simulation, vol.4, pp.490-530, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00271141

F. Rousseau, P. A. Habas, and C. Studholme, A supervised patch-based approach for human brain labeling, IEEE Transactions on Medical Imaging, vol.30, pp.1852-1862, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00631458

P. Coupé, J. V. Manjón, V. Fonov, J. Pruessner, M. Robles et al., Patch-based segmentation using expert priors: Application to hippocampus and ventricle segmentation, NeuroImage, vol.54, pp.940-954, 2011.

H. Wang, J. W. Suh, S. R. Das, J. B. Pluta, C. Craige et al., Multi-atlas segmentation with joint label fusion, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.35, pp.611-623, 2013.

M. Liu, A. Kitsch, S. Miller, V. Chau, K. Poskitt et al., Patch-based augmentation of Expectation-Maximization for brain MRI tissue segmentation at arbitrary age after premature birth, NeuroImage, vol.127, pp.387-408, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01293455

P. Coupé, P. Yger, S. Prima, P. Hellier, C. Kervrann et al., An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images, IEEE Transactions on Medical Imaging, vol.27, pp.425-441, 2008.

S. K. Warfield, K. H. Zou, and W. M. Wells, Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation, IEEE transactions on medical imaging, vol.23, pp.903-921, 2004.

A. J. Asman and B. A. Landman, Non-Local STAPLE: An Intensity-Driven Multi-Atlas Rater Model, Medical image computing and computer-assisted intervention : MICCAI, International Conference on Medical Image Computing and Computer-Assisted Intervention, vol.15, pp.426-434, 2012.

S. T. Roweis and L. K. Saul, Nonlinear dimensionality reduction by locally linear embedding, Science, vol.290, pp.2323-2326, 2000.

E. Hughes, L. Cordero-grande, M. Murgasova, J. Hutter, A. Price et al., The Developing Human Connectome: Announcing the first release of open access neonatal brain imaging, 2017.

A. Makropoulos, E. C. Robinson, A. Schuh, R. Wright, S. Fitzgibbon et al., The Developing Human Connectome Project: A minimal processing pipeline for neonatal cortical surface reconstruction, p.125526, 2017.

B. B. Avants, C. L. Epstein, M. Grossman, and J. C. Gee, Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain, Medical Image Analysis, vol.12, pp.26-41, 2008.

J. Ashburner and K. J. Friston, Unified segmentation, NeuroImage, vol.26, pp.839-851, 2005.

D. Geffroy, D. Rivière, I. Denghien, N. Souedet, S. Laguitton et al., BrainVISA: A complete sotor-ftware platform for neuroimaging, Python in Neuroscience Workshop, Procs, 2011.

S. Liao, Y. Gao, J. Lian, and D. Shen, Sparse patch-based label propagation for accurate prostate localization in CT images, IEEE Transations on Medical Imaging, vol.32, pp.419-434, 2013.

T. Tong, R. Wolz, Z. Wang, Q. Gao, K. Misawa et al., Discriminative dictionary learning for abdominal multi-organ segmentation, Medical Image Analysis, vol.23, pp.92-104, 2015.

P. Viola and M. Jones, Rapid object detection using a boosted cascade of simple features, Computer Vision and Pattern Recognition, 2001.

Z. Tu and X. Bai, Auto-Context and Its Application to High-Level Vision Tasks and 3d Brain Image Segmentation, Ieee Transactions on Pattern Analysis and Machine Intelligence, vol.32, pp.1744-1757, 2010.