A. W. Toga, Brain Mapping: An Encyclopedic Reference, 2015.

F. Rousseau, C. Studholme, R. Jardri, and M. Thomason, In vivo human fetal brain analysis using MR imaging, Fetal Development: Research on Brain and Behavior, Environmental Influences, and Emerging Technologies, pp.407-427

O. M. Benkarim, G. Sanroma, V. A. Zimmer, E. Muñoz-moreno, N. Hahner et al., Toward the automatic quantification of in utero brain development in 3D structural MRI: A review, Human Brain Mapping, vol.38, pp.2772-2787, 2017.

C. N. Devi, A. Chandrasekharan, V. K. Sundararaman, and Z. C. Alex, Neonatal brain MRI segmentation: A review, Computers in Biology and Medicine, vol.64, pp.163-178, 2015.

A. Makropoulos, I. S. Gousias, C. Ledig, P. Aljabar, A. Serag et al., Automatic whole brain MRI segmentation of the developing neonatal brain, IEEE Transactions on Medical Imaging, vol.33, pp.1818-1831, 2014.

N. I. Weisenfeld and S. K. Warfield, Automatic segmentation of newborn brain MRI, NeuroImage, vol.47, pp.564-572, 2009.

A. Buades, B. Coll, and J. Morel, A review of image denoising algorithms, with a new one, Multiscale Modeling & Simulation, vol.4, pp.490-530, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00271141

F. Rousseau, P. A. Habas, and C. Studholme, A supervised patch-based approach for human brain labeling, IEEE Transactions on Medical Imaging, vol.30, pp.1852-1862, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00631458

P. Coupé, J. V. Manjón, V. Fonov, J. Pruessner, M. Robles et al., Patch-based segmentation using expert priors: Application to hippocampus and ventricle segmentation, NeuroImage, vol.54, pp.940-954, 2011.

H. Wang, J. W. Suh, S. R. Das, J. B. Pluta, C. Craige et al., Multi-atlas segmentation with joint label fusion, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.35, pp.611-623, 2013.

M. Liu, A. Kitsch, S. Miller, V. Chau, K. Poskitt et al., Patch-based augmentation of Expectation-Maximization for brain MRI tissue segmentation at arbitrary age after premature birth, NeuroImage, vol.127, pp.387-408, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01293455

P. Coupé, P. Yger, S. Prima, P. Hellier, C. Kervrann et al., An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images, IEEE Transactions on Medical Imaging, vol.27, pp.425-441, 2008.

S. K. Warfield, K. H. Zou, and W. M. Wells, Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation, IEEE transactions on medical imaging, vol.23, pp.903-921, 2004.

A. J. Asman and B. A. Landman, Non-Local STAPLE: An Intensity-Driven Multi-Atlas Rater Model, Medical image computing and computer-assisted intervention : MICCAI, International Conference on Medical Image Computing and Computer-Assisted Intervention, vol.15, pp.426-434, 2012.

S. T. Roweis and L. K. Saul, Nonlinear dimensionality reduction by locally linear embedding, Science, vol.290, pp.2323-2326, 2000.

E. Hughes, L. Cordero-grande, M. Murgasova, J. Hutter, A. Price et al., The Developing Human Connectome: Announcing the first release of open access neonatal brain imaging, 2017.

A. Makropoulos, E. C. Robinson, A. Schuh, R. Wright, S. Fitzgibbon et al., The Developing Human Connectome Project: A minimal processing pipeline for neonatal cortical surface reconstruction, p.125526, 2017.

B. B. Avants, C. L. Epstein, M. Grossman, and J. C. Gee, Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain, Medical Image Analysis, vol.12, pp.26-41, 2008.

J. Ashburner and K. J. Friston, Unified segmentation, NeuroImage, vol.26, pp.839-851, 2005.

D. Geffroy, D. Rivière, I. Denghien, N. Souedet, S. Laguitton et al., BrainVISA: A complete sotor-ftware platform for neuroimaging, Python in Neuroscience Workshop, Procs, 2011.

S. Liao, Y. Gao, J. Lian, and D. Shen, Sparse patch-based label propagation for accurate prostate localization in CT images, IEEE Transations on Medical Imaging, vol.32, pp.419-434, 2013.

T. Tong, R. Wolz, Z. Wang, Q. Gao, K. Misawa et al., Discriminative dictionary learning for abdominal multi-organ segmentation, Medical Image Analysis, vol.23, pp.92-104, 2015.

P. Viola and M. Jones, Rapid object detection using a boosted cascade of simple features, Computer Vision and Pattern Recognition, 2001.

Z. Tu and X. Bai, Auto-Context and Its Application to High-Level Vision Tasks and 3d Brain Image Segmentation, Ieee Transactions on Pattern Analysis and Machine Intelligence, vol.32, pp.1744-1757, 2010.