
HAL Id: hal-01799833
https://hal.univ-reims.fr/hal-01799833v1

Submitted on 3 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Strategies to implement Edge Computing in a P2P
Pervasive Grid

Luiz Angelo Steffenel, Manuele Kirsch Pinheiro, Lucas Vaz Peres, Damaris
Kirsch Pinheiro

To cite this version:
Luiz Angelo Steffenel, Manuele Kirsch Pinheiro, Lucas Vaz Peres, Damaris Kirsch Pinheiro. Strategies
to implement Edge Computing in a P2P Pervasive Grid. International Journal of Information Tech-
nologies and Systems Approach, 2018, 11 (1), pp.1-15. �10.4018/IJITSA/2018010101�. �hal-01799833�

https://hal.univ-reims.fr/hal-01799833v1
https://hal.archives-ouvertes.fr


DOI: 10.4018/IJITSA.2018010101

International Journal of Information Technologies and Systems Approach
Volume 11 • Issue 1 • January-June 2018

 
Copyright © 2018, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

 

1

Strategies to Implement Edge 
Computing in a P2P Pervasive Grid
Luiz Angelo Steffenel, University of Reims Champagne-Ardenne, Reims, France

Manuele Kirsch Pinheiro, Pantheon-Sorbonne University, Paris, France

Lucas Vaz Peres, Federal University of Western Pará, Santarém, PA, Brazil

Damaris Kirsch Pinheiro, Federal University of Santa Maria, Santa Maria, Brazil

ABSTRACT

The exponential dissemination of proximity computing devices (smartphones, tablets, nanocomputers, 
etc.) raises important questions on how to transmit, store and analyze data in networks integrating 
those devices. New approaches like edge computing aim at delegating part of the work to devices 
in the “edge” of the network. In this article, the focus is on the use of pervasive grids to implement 
edge computing and leverage such challenges, especially the strategies to ensure data proximity 
and context awareness, two factors that impact the performance of big data analyses in distributed 
systems. This article discusses the limitations of traditional big data computing platforms and 
introduces the principles and challenges to implement edge computing over pervasive grids. Finally, 
using CloudFIT, a distributed computing platform, the authors illustrate the deployment of a real 
geophysical application on a pervasive network.

KEywoRdS
Big Data, Computing Middleware, Distributed Computing, Edge Computing, Ozone, P2P, Pervasive Grids

INTRodUCTIoN

Big data and data analytics have become essential tools for the strategic planning of any company. 
While data analysis is not a new topic, it was boosted by the development of large-scale computing 
platforms, notably the clouds. While cloud computing relies on distant resources, several works try 
to leverage the use of proximity resources as effective computing platforms (Garcia Lopez, 2015; 
Parashar & Pierson, 2010; Steffenel & Kirsch-Pinheiro, 2015).

Indeed, the number and nature of proximity computing devices (smartphones, Internet of 
Things - IoT, etc.) is growing exponentially, and it is important to understand how to exploit the 
power of these computing resources. For this reason, new approaches like edge or fog computing 
aim at delegating part of the work to devices in the “edge” of the network (Lopez, 2015). Because 
several strategies can be used to implement edge computing, this work specifically focus on the use 
of pervasive grids to leverage such challenges. Indeed, pervasive grids (Parashar & Pierson, 2010) 
associate classical and volatile computing resources. We believe that organizations can perform big 
data analytics with minimal costs by associating IoT and mobile devices as well as idle or unused 
resources in the enterprise network.

Therefore, in this paper, we discuss the limitations of traditional big data computing platforms 
and introduce the principles and challenges to implement edge computing over pervasive grids. To 



International Journal of Information Technologies and Systems Approach
Volume 11 • Issue 1 • January-June 2018

2

illustrate this, we present CloudFIT, a distributed computing platform based on a P2P overlay, and 
discuss how it can be improved to efficiently deploy edge/pervasive computing applications, especially 
those related to big data analytics. Indeed, after presenting the main architecture of CloudFIT, we 
focus on the required strategies to ensure data proximity and context awareness, two factors that 
impact the performance of big data analysis in distributed systems.

For conducting this research, we adopted a two-fold approach, combining a conceptual research 
method with a case study a case study. Indeed, according to research method categories pointed out 
by Mora et al. (2008), a conceptual research corresponds to the study of ideas related to real objects 
including designing of new conceptual artifacts such as a framework/model, a method/model, or 
a system/component. For these authors, a “conceptual design research is the purposeful design of 
conceptual artifacts”, in which the design artifact is dictated by the design goals. The principles 
and challenges we discuss in this paper represent, in our research, these design goals that guided 
the application of CloudFIT platform. The results of this conceptual research are then confronted 
to a case study issue from a real geophysical problem. Peres, 2013 conduct a case study analysis of 
the detection of Ozone Secondary Events (OSE) problem and Peres et al., (2017) present a detailed 
description of TOC monitoring by Brewer spectrophotometer in Southern Space Observatory SSO/
CRS/INPE – MCTI (29.4 °S; 53.8°O; 488.7m) station for more than twenty years (1992 - 2014). 
Through this two-fold approach, we search for confronting our design goals with results from an 
empirical research proposed by the case study. Thus, we deploy the OSE detection algorithm over 
different scenarios representing edge and pervasive computing networks, both to validate the algorithm 
and to infer its execution performance.

This remain of this paper is organized as follows: we start presenting big data, the limitations 
of traditional computing platforms and the notions of edge computing and pervasive grids. The next 
section introduces the distributed computing platform CloudFIT and explain its main features. This 
section is followed by a case study that illustrates the usage of CloudFIT with a real application. 
Finally, we conclude this paper and explore future research directions.

BACKGRoUNd

Handling Big data in Traditional and Pervasive Environments
Big data is research area presenting several definitions as it can be used in countless domains 
(Babiceanu & Seker, 2016). Even though, the literature often characterizes big data through a set of 
dimensions (Jagadish et al., 2014; Hashem et al., 2015; Gartner 2011; Babiceanu & Seker, 2016): 
Volume, Variety, Velocity, Veracity and Value. These 5 V’s push big data to much more than a simple 
volume threshold as pointed out by Hashem et al. (2015), who stands that big data refers to “the increase 
in the volume of data that are difficult to store, process, and analyze through traditional database 
technologies”. Indeed, the main challenges in big data processing are related to the complexity of 
the data itself, as for example one Terabyte of satellite images cannot be explored in the same way 
than 1 TB of structured text data.

As all five V dimensions have an impact on the way information should be handled, it is important 
to understand how traditional and pervasive computing platforms can be employed and what are 
their limitations.

Constraints and limitations of traditional infrastructures for big dataTraditional big data tools 
like Apache Hadoop (2016) were particularly designed for dedicated infrastructures like clusters or 
datacenters, relying on fast network connections and high-performance hardware, as underlined by 
Wright (2014). However, the usage of such infrastructures represent a significant investment, both 
on the acquisition of the dedicated equipment and its maintenance cost (human and material).

Public cloud platforms are often presented as a low-cost and scalable alternative to cluster 
infrastructures, thanks to their on-demand model. In a cloud platform, there is no need for investment 



International Journal of Information Technologies and Systems Approach
Volume 11 • Issue 1 • January-June 2018

3

on material or maintenance, as these costs are assumed by the cloud provider. Although less expensive 
than cluster infrastructures, public cloud platforms have some drawbacks that must be evaluated when 
deploying big data applications.

One of the limitations of public cloud platforms we can cite is the transfer cost of a large volume 
of data through the network. Not only most cloud providers charge for large inbound/outbound traffic, 
but the connection speed may be a barrier on zones disposing of a poor or limited network access. In 
addition, transferring data to an external public cloud platform can represent a confidentiality risk 
that may prevent some applications to rely on public cloud platforms.

Because of these issues, some organizations may refrain to adopt high performance infrastructures 
like clusters and public cloud platforms for their applications. In the next section, we present a possible 
alternative platform for big data analysis for such organizations.

Proximity Services with Edge Computing and Pervasive Grids
The dissemination of proximity devices with non-negligible processing capacities (smartphones, 
tablets, laptops and nanocomputers like the Raspberry Pi) encourages the integration of these devices 
in the computing effort. Today, several works try to leverage the use of these proximity resources, 
and we strongly believe this can be achieved through the use of edge computing over pervasive grids.

Edge computing is a concept that aims at migrating part of the computation to devices in the 
“edge” of the network (Garcia Lopez et al., 2015). The main reason for this migration is the recent 
rise in computing power from mobile and proximity devices, transforming close base stations into 
“intelligent service hubs that are capable of delivering highly personalized services directly from 
the very edge” (Vermesan et al., 2014). Similar concepts like mobile edge computing (Dey et al., 
2013; ETSI, 2014), edge-centric computing (Garcia Lopez et al., 2015) or fog computing (CISCO, 
2013; Bonomi et al., 2012) also try to deploy applications and services closer to the final user, and 
can therefore be considered as variants of the edge computing concept.

Among the typical examples of edge computing we can cite fog services (Bonomi et al., 2012) 
and cloudlets (Satyanarayanan et al., 2009), all proposing the deployment of proximity servers offering 
enough computing power to perform complex computations (services) with a reduced service latency. 
In most cases, tasks are migrated from the cloud to the edge thanks to containers and microservice 
components (Pahl & Lee, 2015), but this is not a rule. In the same way, the computer power that can 
be offered by IoT devices, nanocomputers or even tablets and smartphones is often underestimated. 
With a few exceptions like (Dey et al., 2013), these works limit the role of edge devices by considering 
them as a frontend layer, connected to a bigger and more powerful “core” network that performs 
most of the work.

In our understanding, the notion of pervasive grid can be employed to unleash the latent computing 
power of proximity devices. Indeed, the concept of Pervasive grids (Parashar & Pierson, 2010) 
aims at transparently integrate sensing/actuating instruments and devices together with classical 
high-performance systems in a dynamic network. These grids can be composed by idle and under-
explored resources in the enterprise network, by small Raspberry Pi or TV set-top devices, but also 
interconnect them to virtual machines deployed on cluster infrastructures. More than all, pervasive 
grids represent an opportunity to deploy computing tasks over local computing resources, minimizing 
data transfer over distant network.

Due to the heterogeneous nature of devices in a pervasive grid, tasks must be assigned according 
to the capabilities of each device, exploring the diversity of resources and improving the usage of 
proximity nodes. One example of such usage is presented by (Ramakrishnan et al., 2014), in which 
the computing resources of a home (laptops, tablets or nanocomputers) are associated to perform a 
preliminary analysis on sensor data concerning the movement of the residents, triggering an alarm 
or calling for an external action if necessary.

Of course, adopting pervasive grids for big data analysis implies considering several questions 
such as data processing, data distribution and tasks scheduling, all while efficiently matching the 



International Journal of Information Technologies and Systems Approach
Volume 11 • Issue 1 • January-June 2018

4

resources capabilities (Shekar & Gokhale, 2017). In order to illustrate these challenges, we present 
in the next section a platform for pervasive grids, and discuss how it can be improved to deploy big 
data applications under the edge computing approach.

dEVELoPING A PLATFoRM FoR EdGE ANd PERVASIVE CoMPUTING

The distributed computing concept accelerates in the 90’s, as an extension on the Internet of the 
cycle stealing principle. Former applications aimed to crack RC5 or DES keys by exhaustive search 
thanks to the aggregation of hundreds of PCs to solve a problem. Web-based Computing projects 
arose at the end of the 90’s like SETI@home (Anderson et al., 2002) and Boinc (Anderson, 2005), 
and were soon followed by P2P-based middleware (Brasileiro et al., 2007). However, the fast spread 
of clusters, grids and cloud infrastructures stalled the development of such middlewares, which were 
relegated to niche domains like those related to computing-intensive applications (combinatorial 
research, cryptography, etc.).

In this section, we present CloudFIT, a distributing computing middleware adapted to both 
computing and data-intensive applications. CloudFIT is structured around collaborative nodes 
connected over a P2P overlay network that provides communication, fault-tolerance and distributed 
storage, while its scheduling mechanism is based on the FIIT (Finite Independent Irregular Tasks) 
paradigm. For instance, applications that can be parallelized in a finite number of tasks and executed 
in batches are fit for this platform, like for example combinatorial problems (Krajecki & Jaillet, 2004) 
or ETL (Extract-Transform-Load) steps in a big data application. Hence, the well-known map-reduce 
paradigm used in several big data applications can be considered as a subset of the FIIT problems.

Instead of relying on containers and microservices, CloudFIT is written in Java and packed in a 
small jar file so that it can be easily deployed over a wide range of devices, from dedicated servers to 
low-end devices like Raspberry Pi. Because CloudFIT relies on P2P overlays, it is extremely elastic 
as nodes can join or leave the platform according to the availability of the resources or the variation 
in the demand. Also, inner services for replication and decentralized management of tasks ensure 
the completion of the tasks even in situations of high volatility or network partition (see Figure 1).

An application running on CloudFIT must simply implements two methods: how many tasks to 
solve and how to compute an individual task. These methods guide the deployment of tasks and their 
execution. Furthermore, each node receives the parameters of the current job and is able to locally 
decide which tasks still need to be computed and how to proceed, carrying the work autonomously 
if no other node can be contacted. Access to a distributed storage facility is also provided by the P2P 
overlay, allowing nodes to obtain input data and store their partial results. The status of completed 
tasks is distributed among the nodes, contributing therefore to the coordination of the work and to 
form a global view of the execution.

As nodes in a pervasive cluster may leave the network for different reasons (failure, low battery, 
network disconnection, etc.), CloudFIT supports by default a robust distributed scheduling with 
no “task reservation”, allowing nodes to execute different tasks in parallel when they are able to 
communicate to each other or, in the worst case, to complete all the computation by itself. This 
scheduler mechanism also allows idle processes to speculatively execute incomplete tasks, reducing 
the “tail effect” when a task is computed by a slow node. The scheduling mechanism supports task 
and job dependencies (allowing the composition of DAGs and workflows) and can be also be driven 
by a context module (Cassales et al., 2016) with additional information about the nodes capacities.

The next sections give some details on the implementation strategies employed in CloudFIT.

Coordination and Clustering
One of the major challenges with edge computing is to coordinate which tasks are assigned to each 
resource in order to efficiently perform operations and reduce the communication latency (Shekar 
& Gokhale, 2017). When using a P2P overlay, however, we observe that nodes are often organized 



International Journal of Information Technologies and Systems Approach
Volume 11 • Issue 1 • January-June 2018

5

indistinctly from their real location, preventing therefore a good use of close-range devices to provide 
a low latency service. We consider that P2P overlays must be enriched through the use of clustering, 
organizing nodes in computing layers that provide bounded communication latencies, context-
awareness or trustworthiness/isolation.

Several clustering approaches are proposed in the literature (Johnen & Mekhaldi, 2011), with 
both manual or automatic clustering depending on specific metrics, so in CloudFIT we decided to 
implement clustering through the concept of community. As presented by Lim and Conan (2014), a 
community is a group ID to which nodes subscribe in order to share tasks and data or interconnect 
different communities in a multi-layered architecture. For instance, all applications in CloudFIT share 
a baseline community used for task distribution and wide-range communication, while the creation 
or subscription to additional communities can be managed directly by the applications.

data Access
Another important aspect to consider of is how data is accessed, as big data applications involve 
the gathering, the transformation and the analysis of data. While these applications can rely on an 
external storage servers/services (like a cloud storage service), this solution is not always adapted to 
their needs as it incurs extra latencies or transfer fees.

In a previous work (Steffenel & Kirsch-Pinheiro, 2015), we conducted performance tests 
comparing the performance of Hadoop and CloudFIT when running the well-known WordCount 
application in a cluster platform. While these tests show that CloudFIT can reach performances at 
the same level than Apache Hadoop, we also observed the need to reinforce the data locality, i.e., 
the optimal data access for the computing tasks. Indeed, part of the success of Apache Hadoop is its 
capability to start tasks where the data is stored, avoiding therefore unnecessary network transfers.

Unfortunately, traditional P2P systems favor data spread and replication (to prevent the loss 
of data in the case of churn) at the expense of losing data locality (Wu et al., 2005). Indeed, P2P 

Figure 1. CloudFIT architecture stack



International Journal of Information Technologies and Systems Approach
Volume 11 • Issue 1 • January-June 2018

6

storage APIs are often based on distribute hash tables (DHT), which are conceived to spread and 
replicate the data across the network, sometimes storing data on nodes really far from the original 
source (or the clients). In a DHT, the data is identified by a hash id that maps to a node id the entire 
P2P network. While this node may hold the primary data replica, it can also be a simple directory 
service pointing to the node where the data is really stored, making hard the mapping between tasks 
and data (Wang et al., 2015).

While CloudFIT is still based on a P2P overlay that lacks data locality information, we designed a 
solution to reinforce through data proximity. Indeed, our approach helps preventing too much dispersion 
of the data over the network, keeping therefore data close to the nodes that will perform the tasks.

For such, we rely on the TomP2P overlay (Bocek, 2015), which contrarily to most P2P overlays 
offers several hash keys (instead of a single hash key). While a typical P2P storage uses a simple 
mapping where the data is indexed in the node with ID closes to the hash key of the data, TomP2P 
identifies resources with up to four keys {kl, kd, kc, kv}, namely kl (location key, which determines 
the node ID closest to the hash key), kd (domain key, used for namespacing), kc (content key, which 
identifies different resources stored in the same location) and kv (version key, which allows the 
managing of different versions of the same resource).

In order to implement data proximity, we manipulate the location key so that it is not randomly 
spread among all nodes but specifically attached to a set of nodes. Thanks to a double hashing function, 
we decouple the location key and the content key for a resource: in a first moment, the content key 
is obtained through a traditional hashing method. Later, the location key is computed to map only 
among the community nodes.

Figure 2 shows an example of such mapping that reinforces the data proximity. Hence, in a 
traditional P2P storage with a single location key, a resource r3 could be stored in any node in the 
network, depending on the hash result (like for example hash(r3)=kl7). By using a location and a content 
key and a community-aware hash function hashca(), we can bound the location key to the nodes in the 
community, all while properly identifying a resource. Hence, for a resource r3 and a community C1 
composed by nodes with IDs kl2, kl3 and kl4, we can compute a community-aware location key kl’ that 
points to a node from the community. Hence, the primary copy of the resource r3 will be located in 
the node kl’ with the content key kc3. Even if the community is small data is preserved as each resource 
has its own content key. The domain key and version key can also be used to improve this resiliency.

As a consequence, this mapping improves the probability that the primary copy of a resource is 
stored in a node from the community, all while allowing the storage overlay to perform replication 
on other nodes, even those outside the community.

Context and Scheduling
While the previous factors help improving the performance in a distributed computing platform, 
we shall address a last issue in order to offer a really scalable pervasive support. As the computing 
performance varies a lot from device to device, context information such as processing power, 
available memory and storage space or even current CPU load can be useful to improve the execution 
performance, as demonstrated by Dey et al. (2013). Also, efficiently matching the tasks with the 
resources capabilities and their locations is a key element on the optimization of performance-sensitive 
edge application (Shekar & Gokhale, 2017).

As presented before, the default scheduler on CloudFIT implements a best-effort algorithm that 
has the advantage of being totally distributed, i.e., all nodes collaborate to consume the tasks without 
a central coordinator. This scheduler currently performs a basic matching according to the tasks 
expressed requirements (minimum requested memory, disk space, etc.), but it can be enriched with 
additional context elements such as the CPU or network speeds (Celaya & Arronategui, 2011). This 
way, nodes can decide whether it is important to prioritize one single task at time in order to avoid 
memory swap (like in memory-intensive applications) or how to balance the available cores in the 
machine with the relative performance of its processors (a 4-core Raspberry Pi is still less powerful 



International Journal of Information Technologies and Systems Approach
Volume 11 • Issue 1 • January-June 2018

7

than a single core in an Intel i7 processor). Such context information is collected by a context collector 
as the one presented in Figure 3, which is integrated into the CloudFIT stack.

While the execution performance is a key component of context information, we also try to use it 
to improve the data access performance in the storage layer. Indeed, we observed in our experiments 
that data access performance is the result of both data access on the nodes (both on memory and 
disk) and the overhead caused by the storage management, affecting especially devices with low 
capacity. For example, a Raspberry Pi is highly penalized by the speed access of its SD card, in spite 
of having a good computing power. To circumvent such limitation, CloudFIT allows nodes to choose 
between acting as full storage nodes or simply as remote data clients. This way, low-end nodes can 

Figure 2. Computing the Location key to implement data-proximity



International Journal of Information Technologies and Systems Approach
Volume 11 • Issue 1 • January-June 2018

8

keep saving/reading data through the network but do not need to manage the storage, alleviating both 
the disk usage and the storage processing.

The next section presents a case study in which we design and deploy a data intensive application 
over a pervasive cluster using CloudFIT.

CASE STUdy: MoNIToRING oZoNE EVENTS FoR UV ALERTS

In order to better validate design assumptions proposed on CloudFIT, we have decided to confront 
those with an empirical environment, through a case study issue from a reality situation. Thus, in 
this section, we present a real application developed over CloudFIT and deployed over a pervasive 
cluster, initially presented in (Steffenel et al., 2016). This application implements a surveillance 
and alert system for ultra-violet risks due to ozone-layer events all while relying on already existing 
computational resources, representing no additional cost to the institution.

Indeed, it is well known that the discovery of the Antarctic Ozone hole (Farman et al., 1985) 
raised the interest of the scientific community, with several studies monitoring the variation in the 
density of the ozone layer on polar regions (Salby et al., 2012). Inhabited zones can also be affected 

Figure 3. Context collector structure (Cassales et al., 2016)



International Journal of Information Technologies and Systems Approach
Volume 11 • Issue 1 • January-June 2018

9

due to both movements of the polar vortex borders over these regions (Marchand et al., 2002) or by 
the influx of air masses with reduced concentration of ozone detached from the polar vortex. The 
latter case, known as Ozone Secondary Effects (OSE), may cause a temporary reduction in the total 
column ozone (TCO) over populated areas (Manney et al., 1994; Pinheiro et al., 2011) and trigger 
important public health subjects as a reduction of 1% in the total ozone column may lead to an increase 
of 1.2% in the ultraviolet radiation (Guarnieri et al., 2004).

Today OSE can only be detected a posteriori, as satellite and ground instruments can at most 
inform the current status of the TCO over an area. To create an effective monitoring and public health 
alert system, we need to forecast OSE. Unfortunately, most of the climatic models are limited to the 
lower atmosphere layers (especially those associated to the weather forecast), and do not explore the 
interactions in higher layers, like those associated to the Ozone layer.

Instead of adapting a simulation model, our approach to forecast OSE relies in the analysis of 
historical data, looking for correlation patterns that can lead to a good forecast. Using CloudFIT, we 
created a pervasive HPC platform out of existing computational resources, minimizing the operational 
costs as there is no need to investment in the acquisition of dedicated machines or in the leasing of 
cloud resources.

Experiment Methodology
In the case of the Ozone Secondary Events detection, the problem was defined as a set of different 
tasks to be performed, each one exploring the CloudFIT distributed computing environment to its 
advantage. These tasks are described in Table 1.

Each step can be parallelized and the dependency between different jobs can be represented as a 
DAG, as illustrated in Figure 4. Furthermore, we can set different communities for different parts of 
the workflow. For instance, low-entry devices gathered at community C1 can be used to pre-process 
and store the data from ground-based Brewer or Dobson spectrophotometers as well as those readings 
from the OMI sensors from the satellites.

The newly entered data can trigger the OSE detection procedure, or in the case of a deeper 
analysis, launch an historical search for recurrent patterns that could be useful for event forecasting. 
This step, covering both filtering and time series analysis, requires more computing resources, so a 
community C2 composed by more powerful nodes can ensure this work.

Figure 4 also includes two other communities, C3 and C4, used to perform the last steps associated 
to the detection and forecasting of OSE.

Input Preprocessing
The total ozone column can be measured by ground equipment but also counts with a worldwide 
satellite coverage, the OMI instrument, which produces a global measurement once a day. TOMS/
OMI website offers different datasets, from raw data to final analyzed products. In our case, we use 
access raw data to extract all the necessary information to our calculations. The file format provided 

Table 1. Detail of OSE analysis steps

Step Actions
Input preprocessing transform raw OMI data files for the analysis
Filtering and aggregation select data corresponding to a given geographical zone and time window, 

performing aggregation if needed
Time series analysis extract of correlation parameters for the target period and zone
Event detection identification of abnormal ozone values and eventual alert generation
Event forecast application of parameters to forecast OSE over inhabited areas



International Journal of Information Technologies and Systems Approach
Volume 11 • Issue 1 • January-June 2018

10

by OMI, presented in Figure 5 (at the left side) is not really adapted for parallel processing. Each file 
corresponds to the measures of a day and contains a header that specifies the basic information for that 
file (date, coordinates grid, step), followed by the measurements for each latitude (indicated at the end 
of the line) and for all covered longitudes. Each measure in Dobson Units (UD) is represented as a 3 
digits integer that must be parsed from the other readings. For example, in Figure 5, the coordinates 
(-89.5, -179.5) has a value 280, (-89.5, -178.5) has a value 280, and so on.

As this format is difficult to manipulate, we preferred to preprocess it and store the data as JSON 
entries using the template presented in Figure 5 (at the right side). JSON is a well-known format that 
is easy to parse and also compatible with document-oriented NoSQL databases. The preprocessing 
is highly parallelizable as each input file containing the measures of a given day can be treated 
independently from each other and distributed over all the nodes using the DHT.

A similar procedure is implemented for other atmospheric parameters like wind currents. NetCDF 
files containing U and V components of wind currents at different altitudes are transformed in JSON 
entries for each coordinate pairs. As a result, the analysis of TCO concentration and dominant wind 
currents can be performed in the next task.

Time-Series Analysis, oSE detection and Forecast
As presented above, OSE are defined by abnormal drops in the total ozone column that are not directly 
related to the expansion of the Antarctic Ozone Hole. The detection of the ozone concentration 
reduction is made by comparing the measured values for a given day with and the historical average 
for that zone. The current approach used by Vaz Peres (2013) relies on the historical average by 
month, i.e., measures are compared to the corresponding month average. For example, the October 22, 
2013 values would be compared to the historical average for the October month. While this approach 
allows the detection of OSE, it lacks precision as the natural ozone concentration varies from year to 
year and also from the beginning to the end of the month, especially in transition months like July or 

Figure 4. Workflow for the OSE detection framework

Figure 5. OMI Ozone raw data file for a given day and its JSON representation



International Journal of Information Technologies and Systems Approach
Volume 11 • Issue 1 • January-June 2018

11

November. Using a standardized average for each month would result in false-positive alerts that we 
wish to minimize. Therefore, in order to make more precise estimations, our implementation uses a 
sliding window approach that computes averages and standard deviations for a time series of 15 days. 
This solution is more realistic as it allows natural variations in a given period to be taken into account.

Once the average and standard deviation for a given coordinate (in a given time period) is 
computed, we can proceed with the detection of OSE. One easy formula, applied on the experiment 
presented in the next section, considers the occurrence of an OSE if the measure for a given coordinate 
is less than the expected lower bound (1.5× the standard deviation) with respect to the last 15 days 
average.

While OSE detection is important, to implement an OSE forecast model is a major objective of 
this project. As developing a specific atmosphere modeling for the Ozone layer is beyond our scope, 
we decided to implement forecasting by detecting recurrent patterns leading to OSEs. For this, an 
extensive correlation analysis between OSE occurrences and atmospheric factors like wind currents 
must be performed. Hence, the use of different communities on CloudFIT allows the computation 
of an historical correlation database, all while online OSE detection/forecast is performed on the 
most recent Ozone readings. We believe that with such approach even a single low-end machine can 
ensure a daily forecast report, relying on patterns previously computed by a large community on the 
CloudFIT network.

Experimental Results
In order to evaluate the effectiveness of deploying the OSE detection application on top of CloudFIT, 
we considered the first analysis steps (preprocessing to OSE detection) for the period between October 
15th, 2013 and October 31st, 2013 over different devices, both individually and in a pervasive cluster 
mode. This scenario considers an area spanning 50°x55° (2750 coordinate points) on the south of 
South America that coincides with the area covered by the analysis from Vaz Peres (2013) and used 
to validate our results. For instance, in Figure 6, the upper part contains the Total Column Ozone 
(TCO) concentration from October 18th to October 22, 2013 over the South Pole according to the 
NASA Ozone Hole Watch Web site (http://ozonewatch.gsfc.nasa.gov/), while the lower part shows 
the progression of the OSE front as detected by our framework. The main advantage of our method 
is that instead of simply observing the Ozone concentration we are able to highlight the zones that 
experience a TCO drop, emphasizing the impact of OSE and allowing a more precise evaluation of 
the health risks.

Also, in order to evaluate the execution performance of our algorithms, we conducted the same 
experiment over three different platform configurations. In the first one, 3 Raspberry Pi 2 (900MHz 
4-core ARM Cortex-A7, 1GB RAM) collaborate in a small network; in the second configuration, 
we created a heterogeneous network composed by one Raspberry Pi 2, one Macbook Air (Intel i7-
4650U, 2 cores, 8GB RAM) and one Lenovo U110 (Intel Core2 Duo). Finally, the algorithm was 
run in a single Dell Precision T5610 server (Intel Xeon E5-2620, 12 cores, 32GB RAM). The first 
two configurations aim to represent edge/pervasive computing platforms that could be found in 
a real situation: the pure Raspberry Pi network may represent the low-end devices that serve as a 
first computing layer to the edge computing network, while the heterogeneous network represents a 
voluntary computing network composed by devices available at a given moment. The Xeon server, 
on the other hand, is used as a control reference to infer the performance of the algorithm in a more 
classical infrastructure.

Hence, the analysis of the OMI data from satellites in the Raspberry Pi 2 network took around 
30 minutes, while the pervasive cluster required about 10 minutes. By comparison, the Xeon server 
required less than 7 minutes. Furthermore, in the case the application shall perform a global coverage 
(65000+ coordinates) or requires more data intensive operations (historical analysis, forecast), new 
nodes can join CloudFIT at any moment and thus provide the elasticity required to perform the tasks 
under different loads.



International Journal of Information Technologies and Systems Approach
Volume 11 • Issue 1 • January-June 2018

12

CoNCLUSIoN

The digital economy that marked the turn of this century changed in deep the way companies plan 
and manage their business models, and big data analytics is one of the major tools supporting this 
revolution. It is an error, however, to think that big data requires massive investments and the usage 
of large-scale resources like those found in a dedicated datacenter or in a cloud computing facility. 
Some organizations are more prone to lightweight and less expensive platforms, we strongly believe 
that these organizations can boost their efficiency with minimal costs by relying on edge computing 
over pervasive grids. For this reason, this paper shows how edge computing and pervasive grids can 
be used to develop efficient and flexible big data analytic tools and applications.

To illustrate this approach, we present a distributed computing platform that implements the 
concepts of both edge computing and pervasive grids. We demonstrate its utilization to deploy an 
atmospheric surveillance system developed for a governmental institution.

The works presented in this paper represent only the first steps towards the generalization of big 
data on edge and pervasive environments. Indeed, additional research concerning context awareness is 
essential, as several advances can be obtained through it: better usage of resources, energy awareness 
(green computing), proximity services, etc.

It is worth noting that the increasing number and nature of proximity devices (IoT, smartphones, 
etc.) represents an unprecedented computing power at the reach of our hands, and that edge and 
pervasive computing are tools that can help unleash that computing power. Indeed, efficiently 
exploring these new resources is a valuable asset for any organization, both in cost reductions and in 
the sustainable usage of the resources.

Figure 6. Absolute Ozone concentration and the OSE progression between October 18 to October 22, 2013



International Journal of Information Technologies and Systems Approach
Volume 11 • Issue 1 • January-June 2018

13

REFERENCES

Anderson, D. (2004) BOINC: A system for public-resource computing and storage. In Proceedings of the 5th 
IEEE/ACM International Workshop on Grid Computing. doi:10.1109/GRID.2004.14

Anderson, D., Cobb, J., Korpela, E., Lebofsky, M., & Werthimer, D. (2002). SETI@home: An experiment 
in public-resource computing. Communications of the ACM, 45(11), 56–61. doi:10.1145/581571.581573 
PMID:12238525

Apache Hadoop. (2016). Retrieved from http://hadoop.apache.org/

Babiceanu, R. F., & Seker, R. (2016). Big Data and virtualization for manufacturing cyber-physical systems: 
A survey of the current status and future outlook. Computers in Industry, 81, 128–137. doi:10.1016/j.
compind.2016.02.004

Bocek, T. (2015). TomP2P, a P2P-based high performance key–value pair storage library. Retrieved from https://
tomp2p.net/

Bonomi, F., Milito, R., Zhu, J., & Addepalli, S. (2012). Fog computing and its role in the internet of 
things. In Proceedings of the 1st MCC Workshop on Mobile Cloud Computing, MCC ’12, New York, NY. 
doi:10.1145/2342509.2342513

Brasileiro, F., Araujo, E., & Voorsluys, W., Oliveira & M. Figueiredo, F. (2007) Bridging the High Performance 
Computing Gap: the OurGrid Experience. 7th IEEE International Symposium on Cluster Computing and the 
Grid (CCGrid ’07) (pp. 817-822). doi:10.1109/CCGRID.2007.28

Cassales, G. W., Charao, A., Kirsch-Pinheiro, M., Souveyet, C., & Steffenel, L. A. (2016). Improving the 
performance of Apache Hadoop on pervasive environments through context-aware scheduling. Journal of Ambient 
Intelligence and Humanized Computing, 7(3), 333–345. doi:10.1007/s12652-016-0361-8

Celaya, J., & Arronategui, U. (2011) A Highly Scalable Decentralized Scheduler of Tasks with Deadlines. In 
Proceedings of the IEEE/ACM 12th International Conference on Grid Computing (pp. 58-65).

Cisco. (2013). Cisco Research Center Requests for Proposals (RFPs). Retrieved from http://research.cisco.com/
research#rfp-2013078

Dey, S., Mukherjee, A., Paul, H. S., & Pal, A. (2013). Challenges of using edge devices in IoT computation grids. In 
Proceedings of the Int. Conf. on Parallel and Distributed Systems (pp. 564–569). doi:10.1109/ICPADS.2013.101

ETSI. (2014). Mobile-edge computing - introductory technical white paper. Retrieved from http://bit.ly/2bzLQ8m

Farman, J., Gardiner, G., & Shanklin, J. (1985). Large losses of total ozone in Antarctica reveal seasonal clox/
nox interaction. Nature, 315(6016), 207–210. doi:10.1038/315207a0

Garcia Lopez, G., Montresor, A., Epema, D., Datta, A., Higashino, T., Iamnitchi, A., & Riviere, E. et  al. 
(2015). Edge-centric computing: Vision and challenges. Computer Communication Review, 45(5), 37–42. 
doi:10.1145/2831347.2831354

Gartner. (2011, June 27). Gartner Says Solving ‘Big Data’ Challenge Involves More Than Just Managing Volumes 
of Data. Newsroom. Retrieved from http://www.gartner.com/newsroom/id/1731916

Guarnieri, R., Padilha, L., Guarnieri, F., Echer, E., Makita, K., Pinheiro, D., & Schuch, N. et al. (2004). A study 
of the anticorrelations between ozone and UV-B radiation using linear and exponential fits in southern Brazil. 
Advances in Space Research, 34(4), 764–776. doi:10.1016/j.asr.2003.06.040

Hashem, I. A. T., Yaqoob, I., Anuar, N. B., Mokhtar, S., Gani, A., & Khan, S. U. (2015). The rise of “big data” 
on cloud computing: Review and open research issues. Information Systems, 47(January), 98–115. doi:10.1016/j.
is.2014.07.006

Jagadish, H., Gehrke, J., Labrinidis, A., Papakonstantinou, Y., Patel, J. M., Ramakrishnan, R., & Shahabi, C. 
(2014). Big Data and Its Technical Challenges. Communications of the ACM, 57(7), 86–94. doi:10.1145/2611567

Johnen, C., & Mekhaldi, F. (2011). Self-stabilization versus robust self-stabilization for clustering in ad-hoc 
network. In Proceedings of the 17th International Conference on Parallel Processing (pp. 117-129). Springer. 
doi:10.1007/978-3-642-23400-2_12



International Journal of Information Technologies and Systems Approach
Volume 11 • Issue 1 • January-June 2018

14

Krajecki, M., & Jaillet, C. (2004). Solving the Langford problem in parallel. In Proceedings of the 3rd International 
Workshop on Parallel and Distributed Computing (pp. 83-90). IEEE.

Lim, L., & Conan, D. (2014). Distributed event-based system with multiscoping for multiscalability. 
In Proceedings of the 9th Workshop on Middleware for Next Generation Internet Computing. ACM. 
doi:10.1145/2676733.2676736

Manney, G. L., Zurek, R. W., O’Neill, A., & Swinbank, R. (1994). On the motion of air through the 
stratospheric polar vortex. Journal of the Atmospheric Sciences, 51(20), 2973–2994. doi:10.1175/1520-
0469(1994)051<2973:OTMOAT>2.0.CO;2

Marchand, M., Bekki, S., Pazmino, A., Lefèvre, F., Godin-Beekmann, S., & Hauchecorne, A. (2005). Model 
simulations of the impact of the 2002 Antarctic ozone hole on the midlatitudes. Journal of the Atmospheric 
Sciences, 62(3), 871–884. doi:10.1175/JAS-3326.1

Mora, M., Gelman, O., Paradice, D., & Cervantes, F. (2008). The case for conceptual research in information 
systems. In Proceedings of the CONF-IRM 2008 (p. 52).

Pahl, C., & Lee, B. (2015) Containers and Clusters for Edge Cloud Architectures – a Technology Review. In 
Proceedings of the 3rd IEEE International Conference on Future Internet of Things and Cloud (FICloud) (pp. 
379-386). doi:10.1109/FiCloud.2015.35

Parashar, M., & Pierson, J. M. (2010). Pervasive grids: Challenges and opportunities. In K. Li, C. Hsu, L. Yang 
et al. (Ed.). Handbook of Research on Scalable Computing Technologies (pp. 14–30). Hershey, PA: IGI Global.

Peres, L. V., Bencherif, H., Mbatha, N., Schuch, A. P., Toihir, A. M., Bègue, N., & Schuch, N. J. et  al. 
(2017). Measurements of the total ozone column using a Brewer spectrophotometer and TOMS and OMI 
satellite instruments over the Southern Space Observatory in Brazil. Ann. Geophys., 35, 25–37. doi:10.5194/
angeo-35-25-2017

Pinheiro, D., Leme, N., Peres, L., & Kall, E. (2011). Influence of the Antarctic ozone hole over South of Brazil 
in 2008 and 2009. National Institute of Science and Technology.

Ramakrishnan, A., Preuveneers, D., & Berbers, Y. (2014). Enabling self-learning in dynamic and open IoT 
environments. In Proceedings of the 5th International Conference on Ambient Systems, Networks and Technologies 
(ANT-2014) (pp. 207–214).

Salby, M. L., Titova, E. A., & Deschamps, L. (2012). Changes of the Antarctic ozone hole: Controlling 
mechanisms, seasonal predictability, and evolution. Journal of Geophysical Research, D, Atmospheres, 117(D10). 
doi:10.1029/2011JD016285

Satyanarayanan, M., Bahl, P., Caceres, R., & Davies, N. (2009). The case for vm-based cloudlets in mobile 
computing. IEEE Pervasive Computing, 8(4), 14–23. doi:10.1109/MPRV.2009.82

Shekhar, S., & Gokhale, A. (2017) Dynamic resource management across cloud-edge resources for performance-
sensitive applications. In Proceedings of the 17th IEEE/ACM International Symposium on Cluster, Cloud and 
Grid Computing. doi:10.1109/CCGRID.2017.120

Steffenel, L. A., & Kirsch-Pinheiro, M. (2015). When the cloud goes pervasive: approaches for IoT PaaS on a 
mobiquitous world. In Proceedings of the EAI International Conference on Cloud, Networking for IoT systems 
(CN4IoT 2015).

Steffenel, L. A., Kirsch-Pinheiro, M., Kirsch-Pinheiro, D., & Vaz Peres, L. (2016). Using a Pervasive Computing 
Environment to Identify Secondary Effects of the Antarctic Ozone Hole. In Proceedings of the 2nd Workshop 
on Big Data and Data Mining Challenges on IoT and Pervasive (Big2DM). doi:10.1016/j.procs.2016.04.215

Vaz Peres, L. (2013). Efeito Secundário do Buraco do Ozônio Antártico Sobre o Sul do Brasil [Msc in Meteorology 
dissertation]. Universidade Federal de Santa Maria, Brazil.

Vermesan, O., Friess, P., Guillemin, P., Giaffreda, R., Grindvoll, H., Eisenhauer, M., & Tragos, E. Z. et al. 
(2014). Internet of Things beyond the hype: Research, innovation and deployment. In Internet of Things - From 
Research and Innovation to Market Deployment. River Publishers.



International Journal of Information Technologies and Systems Approach
Volume 11 • Issue 1 • January-June 2018

15

Wang, W., Barnard, M., & Ying, L. (2015). Decentralized scheduling with data locality for data-parallel 
computation on peer-to-peer networks. In Proceedings of the Annual Allerton Conference on Communication, 
Control, and Computing, Monticello, IL. doi:10.1109/ALLERTON.2015.7447024

Wright, A. (2014). Big Data Meets Big Science. Communications of the ACM, 57(7), 13–15. doi:10.1145/2617660

Wu, D., Tian, Y., & Ng, K.-W. (2005) Aurelia: Building locality-preserving overlay network over heterogeneous 
P2P environments. In Proceedings of the International Conference on Parallel and Distributed Processing and 
Applications. Springer.

Luiz Angelo Steffenel is Associate Professor at the University of Reims Champagne-Ardenne, France. He obtained 
a Ph.D. in Computer Science in 2005 at Institut National Polytechnique de Grenoble, France. Dr Steffenel is 
a board member of the French Grid’5000 project. He is also its scientific coordinator for the University Reims 
Champagne-Ardenne. His research interests include parallel and distributed systems, grid computing, fault 
tolerance and pervasive computing. Also, he works on parallel approaches for molecular docking, in collaboration 
with researchers from Institut de Chimie Moléculaire (ICMR/CNRS) and Matrice Extracellulaire et Dynamique 
Cellulaire (MEDyC/CNRS). 

Manuele Kirsch Pinheiro is Associate Professor in the Computer Science Research Center (Centre de Recherche 
en Informatique) of the University of Paris 1 Panthéon-Sorbonne. Previously, she occupied a post-doctoral position 
on the Computer Science of the Katholieke Universiteit Leuven. She received her PhD in computer science from 
the University Joseph Fourier – Grenoble I in 2006, Grenoble, France. Her research interests include ubiquitous 
computing, context-aware computing, pervasive grids, pervasive information systems, cooperative work (CSCW) 
and group awareness. 

Lucas Vaz Peres has a PhD in Meteorology from Universidade Federal de Santa Maria (2016). Works in the field of 
Geosciences, focusing on Meteorology, with a special interest for the following subjects: synoptic analysis, brewer 
metering, the Antarctic ozone hole and its secondary effects, and the optical thickness of aerosols. 

Damaris Kirsch Pinheiro is PhD in Space Geophysics (2003). She was Director of the Space Science Laboratory 
of Santa Maria- LACESM/UFSM and she is the coordinator of the Chemical Engineering undergraduate program 
at Universidade Federal de Santa Maria. Dr Kirsch Pinheiro represented the Brazilian government at UNEP in the 
9 and 10 Ozone Research Meetings.


