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Abstract Component-trees are classical tree struc-

tures for grey-level image modelling. Component-

graphs are defined as a generalization of component-
trees to images taking their values in any (totally or

partially) ordered sets. Similarly to component-trees,

component-graphs are a lossless image model; then,
they can allow for the development of various image

processing approaches. However, component-graphs are

not trees, but directed acyclic graphs. This makes their
construction non-trivial, leading to non-linear time cost

and resulting in non-linear space data structures. In

this theoretical article, we discuss the notion(s) of

component-graph, and we propose a strategy for their
efficient building and representation, which are neces-

sary conditions for further involving them in image pro-

cessing approaches.

Keywords Component-graph · Algorithmics · Math-

ematical morphology · Multivalued images

1 Introduction

The component-graph is a hierarchical image model de-

veloped in the framework of mathematical morphology
[1]. Most hierarchical models proposed in this context

are trees, i.e. rooted, non-directed, connected, acyclic

graphs. Well-known examples of such trees are, for
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instance, the component-tree [2], the tree of shapes

[3] or the binary partition tree [4]. By contrast, the

component-graph is not a tree, but a directed acyclic
graph (it shares this property with other models, such

as component hypertrees [5] and directed component hi-

erarchies [6]). This data structure is then more complex
to build, store and manipulate. However, it is also more

powerful, since it allows us to generalize the paradigm

of component-tree not only to images taking their val-
ues in totally ordered (i.e. grey-level) sets, but in any

(possibly partially) ordered sets. It then encompasses

the spectrum of multivalued imaging.

After a preliminary study of the relations between
component-trees and multivalued images [7], the notion

of component-graph was introduced in [8]. A structural

discussion was proposed in [9]. From an algorithmic
point of view, first strategies for building component-

graphs were investigated. Except in a specific case—

where the partially ordered set of values is structured
itself as a tree [10]—these first attempts emphasized

a high computational cost of the construction process,

and a high spatial cost of the directed acyclic graph

explicitly modelling a component-graph [11,12]. By re-
laxing certain constraints, leading to an improved com-

plexity, the notion of component-graph was involved

in the development of an efficient extension of tree of
shapes to multivalued images [13]. From an applicative

point of view, the notion of component-graph, coupled

with the recent notion of shaping [14], also led to pre-
liminary, yet promising, results for multimodal image

processing [15,16].

The purpose of this theoretical study is to describe

different variants of component-graphs, and to propose
an algorithmic scheme for efficiently building the most

relevant ones. By side effect, we also discuss the way

to efficiently store the resulting component-graph. This
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article is an extended and improved version of the con-

ference paper [17].
It is organised as follows. Sections 2 and 3 provide

notations and basic notions. Sections 4 and 5 provide

a discussion on various kinds of component-graphs. In
particular, we motivate our choice of working in prior-

ity with a specific family called the strong component-

graphs. Sections 6–11 constitute the main contribution
of the article. They discuss image preprocessing, data

structure modelling and construction steps for the ac-

tual building and storage of a component-graph. Sec-

tion 12 provides a complementary discussion about the
space versus time cost trade-off to be handled for effi-

ciently manipulating the component-graph.

2 Notations

We use the same notations as in [9–12].

The inclusion (resp. strict inclusion) relation on sets

is noted ⊆ (resp. ⊂). The cardinality of a set X is noted
|X|. The power set of a set X is noted 2X . If P ⊆ 2X

is a partition of X, we write X =
⊔

P.

A function F from a set X to a set Y is noted F :
X → Y , and the set of all the functions from X to Y

is noted Y X . If X ′ ⊆ X and Y ′ ⊆ Y , we note F (X ′) =

{F (x) | x ∈ X ′} and F−1(Y ′) = {x ∈ X | F (x) ∈ Y ′}.
If F is a bijection, we also note F−1 : Y → X its

associated inverse function.

Let a be a (binary) relation on a set X. The re-

striction of a to a subset Y ⊆ X will generally still be
noted a.

We say that a is an equivalence relation if a is

reflexive, transitive and symmetric. For any x ∈ X, the
equivalence class of x with respect to a is noted [x]a.

The set of all these equivalence classes is noted X/a.

We say that a is an order relation (and that (X,a)
is an ordered set) if a is reflexive, transitive and anti-

symmetric. Moreover, we say that a is a total (resp.

partial) order relation (and that (X,a) is a totally

(resp. partially) ordered set), if a is total (resp. par-
tial) (i.e., if ∀x, y ∈ X, (x a y) ∨ (y a x) (resp. if

∃x, y ∈ X, (x 6a y) ∧ (y 6a x))).

For any symbol further used to denote an order re-
lation (⊆, ≤, E, etc.), the inverse symbol (⊇, ≥, D,

etc.) denotes the associated dual order, while the sym-

bol without lower bar (⊂, <, ⊳, etc.) denotes the asso-
ciated strict order.

The Hasse diagram of an ordered set (X,6) is the

couple (X,≺) where ≺ is the cover relation associated

to 6, defined for all x, y ∈ X by x ≺ y iff x < y and
there is no z ∈ X such that x < z < y.

If (X,6) is an ordered set and x ∈ X, we note

x↑ = {y ∈ X | y > x} and x↓ = {y ∈ X | y 6 x},

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Fig. 1 A graph (Ω,a) where Ω is composed of 144 elements
depicted by disks, whereas the adjacency relation a between
these elements is depicted by straight segments. This graph
has the same structure as a 12× 12 part of Z2 endowed with
the standard 4-adjacency relation.

namely the sets of the elements greater and lower than

x, respectively. If Y ⊆ X, the sets of all the maximal
and minimal elements of Y are noted

`6
Y and

a6
Y ,

respectively. The supremum and the infimum of Y are

noted (when they exist)
∨6

Y and
∧6

Y , respectively

(we will note
⋃

and
⋂

for
∨⊆

and
∧⊆

, respectively).
The maximum and the minimum of Y are noted (when

they exist)
b6

Y and
c6

Y , respectively. If Y is de-

fined as {x | p(x)} where p is a Boolean predicate, we
will sometimes note

b6

p(x) x, instead of
b6

Y ; the same

remark holds for
c6

,
∨6

,
∧6

,
⋃

,
⋂

,
⊔

.

The symbol ≤ will be used to denote two distinct

orders: the canonical order on Z and the pointwise order
on functions; the context of use allows the reader to

unambiguously associate the correct semantics to each

occurrence of the symbol.

3 Basic notions

3.1 Graph

Let Ω be a nonempty finite set. Let a be an adja-
cency (i.e. irreflexive, symmetric) relation on Ω. The

set (Ω,a) is then a non-directed graph. Let X ⊆ Ω be

a subset of Ω. The reflexive–transitive closure of (the
restriction of) a on X induces the connectedness re-

lation on X. It is an equivalence relation, and the set

of the equivalence classes of X, called connected com-

ponents, is noted C[X]. Without loss of generality, we
assume that (Ω,a) is connected, i.e. C[Ω] = {Ω}.

Example 1 Figure 1 illustrates a graph (Ω,a) that

represents a 12× 12 part of Z2 endowed with the stan-

dard 4-adjacency relation.
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Fig. 2 Hasse diagram of a set V = {a, b, c, d, e, f, g, h, i, j, k,
l,m, n}, equipped with a partial order relation 6. The straight
segments correspond to the cover relation ≺ associated to 6.
The greater a value, the higher in the graph. For instance,
we have h ≺ k, since k is at a higher position than h. In
particular, as a = ⊥ is the minimum of (V,6), it is at the
lowest position. This ordered set does not have any maximum,
but three maximal values l, m and n.

3.2 Image

Let Ω be a non-directed graph, such as defined above.

Let V be a nonempty finite set equipped with an order
relation 6. We assume that (V,6) admits a minimum,

noted ⊥. An image is a function I : Ω → V . The sets

Ω and V are called the support and the value space of

I, respectively. For any x ∈ Ω, I(x) ∈ V is the value
of I at x. Without loss of generality, we assume that

I−1({⊥}) 6= ∅. If (V,6) is a totally (resp. partially)

ordered set, we say that I is a grey-level (resp. a mul-
tivalued) image.

Example 2 Figure 2 describes a partially ordered set

(V,6) composed of 14 values. More precisely, it illus-
trates the Hasse diagram (V,≺) associated to (V,6).

Figure 3 illustrates an image I defined on the support

Ω of Figure 1, and taking its values in the ordered set

(V,6) of Figure 2.

3.3 Level-set image (de)composition

Let X ⊆ Ω and v ∈ V . The thresholding function λv is

defined by

∣

∣

∣

∣

λv : V Ω → 2Ω

I 7→ {x ∈ Ω | I(x) > v}
(1)

Example 3 A thresholded image is illustrated in Fig-

ure 4.

e k g e f b b b g e e b

k k l l m m m h m f e b

d d l l a a m m m f e c

c l l h a a e f f e e c

l l h g e k e f f a e e

l i g g e k k k a a e e

i i g g a a k k a n i e

d i i g f f k h i n n i

d d i a a k k k h i n n

i i i a a b g g i n n g

i e d n n k e e n n n g

i e n n n n n n n h h g

Fig. 3 An image I : Ω → V , where (Ω,a) is the graph of
Figure 1 and (V,6) is the ordered set of Figure 2. For the
sake of readability, each element x of Ω is replaced by I(x).
This image will be used for all the further illustrations of the
article.

k

k k l l m m m h m

l l m m m

l l h

l l h k

l k k k

k k n

k h n n

k k k h n n

n n

n n k n n n

n n n n n n n h h

Fig. 4 The image I of Figure 3, thresholded at value h.
More precisely, we show here the subgraph (λh(I),a) (Equa-
tion (1)). The values I(x) at the remaining points x ∈ λh(I)
are provided, for easing the comparison with Figure 3. We
can observe that (λh(I),a) has three connected components.

The cylinder function C(X,v) is defined by

∣

∣

∣

∣

∣

∣

C(X,v) : Ω → V

x 7→

{

v if x ∈ X

⊥ otherwise

(2)

In other words, a cylinder function is a bivalued piece-
wise constant function that associates the minimum

value ⊥ everywhere except on a given subset X of the

support where a chosen value v is applied.
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Example 4 Trivial examples of cylinder functions are

the functions C({x},I(x)) for x ∈ Ω. Such functions have
the same value as I at point x and map each other

points to ⊥. The combination of these cylinder func-

tions for all the x ∈ Ω allows us to construct I as

I =

≤
∨

x∈Ω

C({x},I(x)) (3)

Remark 1 More generally, an image I : Ω → V
can be decomposed into cylinder functions induced by

thresholding operations and, symmetrically, I can be re-

constructed by composition of these cylinder functions

I =

≤
∨

v∈V

≤
∨

X∈C[λv(I)]

C(X,v) (4)

4 Valued connected components and orders

4.1 Valued connected components

We note Ψ the set of all the connected components ob-

tained from all the thresholdings of I

Ψ =
⋃

v∈V

C[λv(I)] (5)

Example 5 The whole support Ω is an element of Ψ ,

since it is a connected component (actually the unique

one) of λ⊥(I), i.e. C[λ⊥(I)] = {Ω}. The set C[λh(I)]
is composed of three connected components (Figure 4).

These three subsets of Ω are then also some elements

of Ψ .

Remark 2 It may happen that a same set X ⊆ Ω
belongs to distinct C[λv(I)] for various values v ∈ V .

However, X is only present once in Ψ , which is defined

as a set, and not a multiset.

Remark 3 The set Ψ of connected components does

not preserve the information of the value(s) v such that

X ∈ C[λv(I)].

By assigning to X ∈ Ψ a value v ∈ V such that X

is a connected component of the level set λv(I), we can

define a notion of valued connected component.

Definition 1 (Valued connected component) Let

v ∈ V and X ∈ C[λv(I)]. The couple K = (X, v) is
called a valued connected component; X is the support

of K and v is its value. We define the set Θ of all the

valued connected components of I as

Θ =
⋃

v∈V

C[λv(I)]× {v} (6)

Example 6 The valued connected component associ-

ated to the connected component Ω ∈ Ψ is (Ω,⊥) ∈ Θ.
If X ∈ Ψ is a connected component such that X ∈
C[λv(I)] and X ∈ C[λw(I)] for v 6= w, then X appears

once in Ψ , whereas two corresponding valued connected
components (X, v) and (X,w) appear in Θ.

4.2 Orders on valued connected components

In the case of grey-level images, the connected compo-

nents of Ψ are equipped with the inclusion relation ⊆.

The component-tree is then defined as the Hasse dia-
gram of the partially ordered set (Ψ,⊆).

The purpose of component-graphs is to generalize

this model to the case of images taking their values
in sets which are not canonically equipped with total

orders; this is for instance the case of multivalued im-

ages. This requires to define a relevant order relation

E on the set Θ of valued connected components, and
to ensure that this relation remains compliant with ⊆
in the case where 6 is a total order on V . Under such

conditions, the component-graph, defined as the Hasse
diagram of (Θ,E), will be a relevant generalization of

the component-tree.

Practically, there exist several ways to define a rela-
tion E on Θ that takes into account the support of the

valued connected components and / or their value, i.e.

that involves ⊆ and / or 6.

In particular, five variants of E can be proposed,
in first intention, by composing ⊆ and 6 via standard

policies (namely conjunction, lexicography, projection)

(X, v) E1 (Y,w) ⇔ X ⊆ Y (7)

(X, v) E2 (Y,w) ⇔ (X ⊂ Y ) ∨ (X = Y ∧ w 6 v) (8)

(X, v) E3 (Y,w) ⇔ (X ⊆ Y ) ∧ (w 6 v) (9)

(X, v) E4 (Y,w) ⇔ (w < v) ∨ (w = v ∧X ⊆ Y ) (10)

(X, v) E5 (Y,w) ⇔ w 6 v (11)

In particular, for any K,K ′ ∈ Θ, we have

K E3 K ′ ⇒ K E2 K ′ ⇒ K E1 K ′ (12)

K E3 K ′ ⇒ K E4 K ′ ⇒ K E5 K ′ (13)

However, on the one hand, neither E1 nor E5 are

order relations. Indeed, they are reflexive and transi-

tive, by not antisymmetric, in general. For instance,
for distinct X, Y and v, w, we have (X, v) E1 (X,w)

and (X,w) E1 (X, v) whereas (X, v) 6= (X,w); and

(X, v) E5 (Y, v) and (Y, v) E5 (X, v) whereas (X, v) 6=
(Y, v). On the other hand, E4 is an order relation, but it
does not relevantly take into account the support infor-

mation carried by the elements of Θ. Indeed, two val-

ued connected components are mainly compared with
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respect to their respective values. Their supports are

only considered for a common value, and the condition
X ⊆ Y , in Equation (10), simply rewrites as X = Y ,

thus ensuring antisymmetry.

Finally, only two relevant order relations remain,

namely E2 and E3. In the sequel, they will be called
weak and strong orders on Θ, respectively.

Definition 2 (Strong order, weak order) The st-
rong order Es and the weak order Ew on Θ are defined

as follows

(X, v) Es (Y,w) ⇔ (X ⊆ Y ) ∧ (w 6 v) (14)

(X, v) Ew (Y,w) ⇔ (X ⊂ Y ) ∨ (X = Y ∧ w 6 v) (15)

The weak order is indeed a lexicographic order, whereas
the strong order is a conjunctive order.

From Equation (12), we have the following property.

Property 1 Let K,K ′ ∈ Θ. We have

K Es K
′ ⇒ K Ew K ′ (16)

In other words, the strong order relation implies the

weak one. The reverse is not true, in general. Indeed,
when X ⊂ Y (Equation (14)), the definition of strong

ordering implies that w 6 v, while the weak ordering

relaxes this constraint in that case (Equation (15)).

5 Component-graphs

In the sequel, the notation E (and its derived notations)

is used for dealing with both Es and Ew (and their
derived notations).

5.1 General definitions

The component-graph G of an image I : Ω → V is

defined as the Hasse diagram of the ordered set (Θ,E).

However, three variants of component-graphs can be

relevantly considered by defining two additional subsets
Θ̇, Θ̈ ⊆ Θ of valued connected components

Θ̇ =
⋃

X∈Ψ

{X} ×

6h
{v | X ∈ C[λv(I)]} (17)

Θ̈ =
⋂

{

Θ′ ⊆ Θ | I =

≤
∨

K∈Θ′

CK

}

(18)

Broadly speaking, Θ gathers all the valued connected

components induced by I; Θ̇ gathers the valued con-
nected components of maximal values for any connected

components; and Θ̈ gathers the valued connected com-

ponents associated to the cylinder functions which are

sup-generators of I (Equation (4)). A discussion and

some illustrations of these three families of nodes can
be found in [9].

Remark 4 The definition of Θ, Θ̇ and Θ̈ is indepen-

dent from the choice between strong Es and weak order

Ew.

We note ◭ (resp. ◭̇, resp. ◭̈) the cover relation as-

sociated to the order relation E on Θ (resp. to the re-
striction of E to Θ̇, resp. to the restriction of E to Θ̈).

From these definitions, we have

Θ̈ ⊆ Θ̇ ⊆ Θ (19)

and

Ej
Θ =

Ej
Θ̇ =

Ej
Θ̈ = (Ω,⊥) (20)

Ei
Θ =

Ei
Θ̇ =

Ei
Θ̈ (21)

In other words, despite decreasing cardinalities from Θ

to Θ̈, the (unique) maximum always remains the valued

connected component (Ω,⊥) obtained when threshold-
ing the whole support at the lowest value, whereas the

minimal elements are always the same, due to the fact

that the are necessarily the sup-generators of the image.

Remark 5 Equations (19–21) are valid for both strong
Es and weak order Ew.

We have the following definition for the three vari-
ants of component-graphs.

Definition 3 (Component-graph(s)) Let I : Ω →
V be an image. The Θ- (resp. Θ̇-, resp. Θ̈-)component-

graph of I is the Hasse diagram G = (Θ,◭) (resp.
Ġ = (Θ̇, ◭̇), resp. G̈ = (Θ̈, ◭̈)) of the ordered set (Θ,E)

(resp. (Θ̇,E), resp. (Θ̈,E)). The term Θ̊-component-

graph and the notation G̊ = (Θ̊, ◭̊) will sometimes be
used to unify the three kinds of component-graphs. The

elements of Θ̊ are called Θ̊-nodes (or simply, nodes);

the elements of ◭̊ are called Θ̊-edges (or simply, edges);

(Ω,⊥) is called the root; the elements of
aE

Θ̊ are
called the leaves of the Θ̊-component-graph.

5.2 Strong versus weak component-graphs

When a component-graph is defined from the strong

(resp. weak) order relation Es (resp. Ew), it is called
a strong (resp. weak) component-graph, and it is noted

G̊s (resp. G̊w).

Example 7 Figures 5 and 6 illustrate the strong and

weak component-graphs Gs and Gw of the image I de-

picted in Figure 3.



6

(1, l) (2,m) (5,n)

(1, j) (1, k) (3,k) (5, k)

(1, g)(3, g)(4,g)(5, g) (1, h) (3, h) (5, h) (5, i) (6, i)

(1, e) (5, e) (7, e) (1, f)

(1, b) (1, c) (1, d) (3, d)

(1, a)

Fig. 5 The strong component-graph Gs of the image I of
Figure 3. Each couple (ℓ, v) corresponds to a given node /
valued connected component of value v, obtained as a con-
nected component of the image I thresholded at v; for in-
stance, (1, h), (3, h) and (5, h) correspond to the three con-
nected components of the subgraph (λh(I),a) of Figure 4.
The meaning of the labels ℓ will be explained in Section 10; at
this stage, labels are only used to differentiate the nodes. The
nodes in bold correspond to leaves of the component-graph.
We can observe that for each node, the part of the component-
graph located below has exactly the same structure as the
corresponding part of the Hasse diagram of (V,6) (Equa-
tion (25)). Note that, contrary to the convention adopted in
Figure 2, the higher the nodes, the lower with respect to the
order Es. This reverse choice will allow us to better visual-
ize the links between the component-graphs and the Hasse
diagram of (V,6). In particular, the maximum (1, a) (that
corresponds to (Ω,⊥)) is located at the lowest position.

In the previous literature on this topic (and in par-
ticular, in [9]), the only considered component-graphs

were the weak ones. In this section, we discuss about

the relevance of strong versus weak component-graphs.

This discussion will lead us to conclude that the first
family is indeed to be preferred to the second, due to its

more regular structural properties, whereas both fami-

lies have globally the same image modelling abilities.

First, it was observed in Section 5.1 that strong and

weak component-graphs rely on the same sets of nodes.

(1, l) (2,m) (5,n)

(1, j)

(1, k) (3,k) (5, k)

(1, g)(3, g)(4,g)(5, g) (1, h) (3, h) (5, h) (5, i) (6, i)

(1, e) (5, e) (7, e) (1, f)

(1, b) (1, c) (1, d) (3, d)

(1, a)

Fig. 6 The weak component-graph Gw of the image I of Fig-
ure 3. By contrast with the strong component-graph, for each
node, the part of the component-graph located below does not
necessarily have the same structure as the corresponding part
of the Hasse diagram of (V,6) (Equation (24)). This is, for
instance, the case below the nodes (1, l) and (2,m) where the
nodes (1, j) and (1, k) are comparable with respect to Ew due
to the inclusion of their supports, whereas their values j and
k are not comparable with respect to 6.

In particular, G̊s and G̊w have the same root, the same

leaves, and the same subfamilies of nodes Θ, Θ̇ and Θ̈.

Second, both strong and weak component-graphs

are relevant generalizations of the notion of component-

tree. On the one hand, when 6 is a total order, both no-
tions are the same. On the other hand, the component-

graph is—such as the component-tree—a lossless image

model with respect to the (de)composition formula of
Equation (4). This is formalized in the following two

propositions.

Proposition 1 Let I : Ω → V be a grey-level image,

i.e. 6 is a total order on V . The component-tree T of
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I is isomorphic to its (strong and weak) component-

graphs Ġ and G̈.

Remark 6 This isomorphism does not hold for G, in
general, since T gathers the same connected components

obtained at successive values as a single node, contrary

to G.

Proposition 2 Let I : Ω → V be an image. We have

I =

≤
∨

K∈Θ̊

CK =

≤
∨

v∈V

≤
∨

X∈C[λv(I)]

C(X,v) (22)

At this point, strong and weak component-graphs
present the same properties. Their main difference,

discussed hereinafter, actually lies in their respective

structure with respect to the Hasse diagram (V,≺) of
the partially ordered set (V,6) of values.

As already observed in [9], the component-graph G

locally inherits from the structure of (V,≺). This is first

stated by the following property.

Property 2 ([9]) Let K : (X, v) ∈
aE

Θ. The func-

tion

∣

∣

∣

∣

σ : K↑ → v↓

(Y,w) 7→ w
(23)

is a bijection between K↑ and v↓.

Less formally, there is an exact mapping between the

nodes of Θ located between the root (Ω,⊥) and a leaf

K = (X, v), and the values of V located between the

minimum ⊥ and the value v.

However, this mapping does not take into account

the way these nodes / values are organized. The differ-
ence appears when observing the relationships between

6, Es and Ew within the subgraphs associated to the

leaves of the strong and weak component-graphs.

Property 3 ([9]) Let K = (X, v) ∈
aE

Θ. The func-

tion σ−1 : v↓ → K↑ induces a homomorphism from

(v↓,>) to (K↑,Ew), i.e. for any K1 = σ−1(v1), K2 =

σ−1(v2), we have

(v1 > v2) ⇒ (K1 Ew K2) (24)

Property 4 Let K = (X, v) ∈
aE

Θ. The func-
tion σ−1 : v↓ → K↑ induces an isomorphism be-

tween (v↓,>) and (K↑,Es), i.e. for any K1 = σ−1(v1),

K2 = σ−1(v2), we have

(v1 > v2) ⇔ (K1 Es K2) (25)

In other words, the part of a component-graph lo-

cated between the root (Ω,⊥) and each leaf K = (X, v)
contains some nodes that are directly associated to the

values of V located between ⊥ and v. In the case of

the strong component-graph, the structure of the Hasse
diagram of (K↓,Es) is exactly the same as the struc-

ture of the Hasse diagram of (v↑,>). By contrast, in

the case of the weak component-graph, this structure
is not always the same, and depends in priority on the

⊆ relation between the supports of the nodes.

Example 8 In the strong component-graph of Fig-

ure 5, the nodes between the leaf labeled as (1, l) (resp.

(2,m)) and the root (1, a) have exactly the same struc-

ture as the values located between l (resp. m) and a in
the Hasse diagram of (V,6) (Figure 2). By contrast,

this is no longer true in the weak component-graph of

Figure 6, where we can observe that (1, j) is lower than
(1, k) for Ew despite the fact that j and k are not com-

parable for 6. This is due to the fact that the support

of (1, k) is greater than that of (1, j) for ⊆.

Since both strong and weak component-graphs rely

on the same nodes, and are defined from order rela-
tions that are relevant (they depend on both ⊆ and 6)

and compliant with the component-tree in the case of

grey-level images, it is preferable to focus on the strong

component-graph, that presents a closer similarity with
the Hasse diagram of (V,6). This will allow us to take

advantage of this known data structure during the con-

struction process.

Before concluding this structural study, it is worth

mentioning that the strong and weak component-

graphs are the same under specific hypotheses.

Property 5 We have G̈s = G̈w. In other words, for

K,K ′ ∈ Θ̈ we have

(K ◭̈s K ′) ⇔ (K ◭̈w K ′) (26)

Property 6 If (V,6) is a lattice1, then we have Ġs =

Ġw. In other words, for K,K ′ ∈ Θ̇, we have

(K ◭̇s K ′) ⇔ (K ◭̇w K ′) (27)

In the next sections, we describe how to build the

(strong) component-graph of an image.

6 Flat zones and image reduction

Let I : Ω → V be an image defined on the graph (Ω,a),

and taking its values in the ordered set (V,6). Our

1 This means that for all v, w ∈ V , the two elements
∨

6{v, w} and
∧

6{v, w} exist and belong to V .
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Fig. 7 The flat zone image IΦ associated to the image I of
Figure 3. The maximal connected sets of same value linked
by double edges—namely, the flat zones—correspond to the
connected components for the equivalence relation↔V . Each
of these sets of Ω is then an element of Φ. The adjacency
relation aΦ between two elements of Φ is depicted by a single
edge between them. This adjacency aΦ is inherited from the
adjacency a on Ω (Equation (30)).

purpose is to build the strong component-graph Gs of

I.

As a preliminary step, we show hereafter that a

(weak or strong) component-graph is isomorphic to the

component-graph of the flat zone image [18] associated

to I. In the case of images where the number of flat
zones is significantly lower than the number of points

of the image support, this result will be useful for reduc-

ing the space and time cost of the algorithmic process of
component-graph construction. Otherwise, this step is

optional, and the remainder of the discussion (Section 7

and following) remains, of course, valid.

Let v ∈ V . Let av be the relation defined on Ω as

follows:

(x av y) ⇔ ((x a y) ∧ (I(x) = I(y))) (28)

Let ↔v be the reflexive–transitive closure av.

We define the relation ↔V as the union of the ↔v,

for all v ∈ V :

(x ↔V y) ⇔ (∃v ∈ V, x ↔v y) (29)

The relation ↔V is an equivalence relation that induces
a partition of Ω with respect to the maximal connected

sets of same value. These sets are called the flat zones.

Definition 4 (Flat zone) Let I : Ω → V be an im-

age. The set of the flat zones of I, noted Φ is the par-

tition of Ω defined by Φ = Ω/↔V .

Let us consider the relation aΦ defined on Φ, for

any distinct X,Y ∈ Φ, as follows:

(X aΦ Y ) ⇔ (∃x ∈ X, ∃y ∈ Y, x a y) (30)

This relation aΦ is the adjacency (irreflexive, symmet-

ric) relation on the flat zones of I induced by the adja-
cency relation on Ω.

From the graph (Φ,aΦ), we can define the flat zone

image IΦ induced by I as follows

∣

∣

∣

∣

IΦ : Φ → V

[x]↔V
7→ I(x)

(31)

Example 9 Figure 7 illustrates the flat zone image IΦ
associated to the image I of Figure 3. In the upper-left

part of this figure, one can observe three flat zones: a

first composed of one point of value e, a second com-
posed of three points of value k and a third composed of

two points of value d. These six points are grouped into

three flat zones, locally leading to a reduction ratio of 1
2

of the initial size of Ω. The number of adjacency links

is also reduced. For instance, there remains only one

edge between the flat zone of value k and the flat zone

of value e (resp. d) while there were two edges between
the points of value k and those of value e (resp. d) in

the initial image.

We note ΘΦ =
⋃

v∈V C[λv(IΦ)] × {v} the set of

the valued connected components of IΦ. The following

property is a direct consequence of the definitions of Φ
and aΦ.

Property 7 The function

∣

∣

∣

∣

φ : Θ → ΘΦ

(X, v) 7→ (X/↔V , v)
(32)

is a bijection between Θ and ΘΦ. Its inverse function is

∣

∣

∣

∣

φ−1 : ΘΦ → Θ

(A, v) 7→ (
⋃

X∈A X, v)
(33)

The following proposition establishes that we can

work indistinctly on an image I or its flat zone analogue

IΦ, in order to build and use a component-graph.

Proposition 3 The bijection φ induces an isomor-

phism between the component-graphs G̊ = (Θ̊, ◭̊) of I

and G̊Φ = (Θ̊Φ, ◭̊Φ) of IΦ. More precisely, we have

((X, v) ◭̊ (Y,w)) ⇔ ((φ(X), v) ◭̊Φ (φ(Y ), w)) (34)

Remark 7 The computation of (Φ,aΦ) from (Ω,a)

can be done in linear time O(|a|).
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Fig. 8 The 7 leaves of the image I of Figure 7 are depicted
in colour. From now on, IΦ will be noted as I for the sake of
concision. In particular, a flat zone is considered as a single
element of Ω (formerly, Φ). For instance, the blue flat zone
composed of 7 points x ∈ Ω of value I(x) = m is now a
single point, and it is adjacent to 9 other elements of (lower
or non-comparable) values l, f , b, h, g, f , f , e and a. However,
we keep the initial Cartesian grid formalism for the sake of
readability and for allowing comparisons with Figures 3 and
7.

Practically, it is then relevant to work with the flat zone

image IΦ, where each flat zone of I, composed of k ≥ 1
points, is replaced by an unique point. Doing so, the

space complexity of the input image I is reduced from

|Ω| to |Φ|, with |Φ| ≤ |Ω| (and |a| ≤ |aΦ|), and in the
most favourable cases |Φ| ≪ |Ω| (and |a|≪ |aΦ|). This
reduction of space complexity will also have an impact

on the time cost of the first steps of the component-
graph construction process. (The last steps, that al-

ready proceed at the scale of regions of the image, are

not impacted by the initial use of flat zones.)

From Equations (22) and (31), it follows that the
information carried by the component-graph of IΦ is

the same as that carried by I. Any image processing

operation based on G̊ can then be performed the same
way on G̊Φ.

Remark 8 From now on, we will no longer consider

the image I, but its flat zone image IΦ. For the sake

of readability, we will still note I instead of IΦ, and Ω

instead of Φ. In particular, we will assume that for a
given (flat zone) image I, we have for any x, y ∈ Ω

(x a y) ⇒ (I(x) 6= I(y)) (35)

Remark 9 In digital imaging, we have |a| = O(|Ω|).
For instance, with 4-, 8-, 6- and 26-adjacencies on Z

2

and Z
3, we have |a|= k.|Ω|, with k = 2, 4, 3 and 13,

respectively [19]. This generally still holds for the in-

duced flat zone images. For the sake of concision, we
will assume from now on that we have |a| = O(|Ω|).

7 Building the leaves of a component-graph

We are now ready to start building a (strong) compo-
nent-graph. The cornerstone of this algorithmic process

is the notion of a leaf.

A leaf L is a minimal element of G̊, i.e. L ∈
aE

Θ̊

(Definition 3 and Equation (21)).

Since Ω is finite and 6 is antisymmetric, there

exist one or many points x ∈ Ω such that for all

y a x, we have I(x) 6< I(y), i.e. I(x) ∈ V is a lo-

cally maximal value of the image I. Then, it is plain
that Lx = ({x}, I(x)) is a node of G̊, i.e. Lx ∈ Θ̊.

Example 10 Figure 8 illustrates the leaves of the im-
age I of Figure 7. In particular, this image presents

seven leaves. Let us consider the leaf of value g, de-

picted in green. The corresponding flat zone / point has
seven neighbours of values h, e, a, f , a, i and h, re-

spectively. Indeed, two of these neighbours have a value

lower than g, namely a (twice) whereas the other 5 have

a non-comparable value, namely h (twice), e, f and i.
Note that two (or more) leaves can be adjacent. This is

the case of the green one with the leaf of value i, de-

picted in cyan. When this happens, the values of these
leaves are, of course, non-comparable.

Remark 10 The characterization of a leaf relies on a

local criterion: it is sufficient to observe the values of
the adjacent points of a candidate point of I. Then,

we can compute all the leaves of G̊ by an exhaustive

scanning of (Ω,a), with a linear time cost O(|Ω|).

In the sequel, we will denote by Λ ⊆ Ω the set of all
the points of Ω that correspond to supports of leaves.

These points will be called leaf-points. In other words,

we have

Ei
Θ̊ = {Lx = ({x}, I(x)) | x ∈ Λ} (36)

The notion of a leaf is fundamental for understand-
ing the structure of a component-graph, and then for

building it. In particular, in the next section, we show

that the support Ω of the image I can be decomposed

into regions, each region being associated to a specific
leaf / leaf-point. From these regions, and more precisely

the adjacency relation between them, it will be possible

to build the strong component-graph.
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Fig. 9 Two reachable zones of the image I of Figures 3 and
7. Here, an arrow pointing from an element x ∈ Ω of value
I(x) ∈ V to an element y ∈ Ω of value I(y) indicates that x
and y are adjacent (i.e. x a y) and I(x) > I(y) (a segment
with no arrow indicates that x a y whereas I(x) and I(y) are
non-comparable). A first reachable zone ρ(x1) is depicted in
red and yellow for the leaf-point x1 ∈ Λ of value I(x1) = l. A
second reachable zone ρ(x2) is depicted in blue and yellow for
the leaf-point x2 ∈ Λ of value I(x2) = m. The overlapping
part between ρ(x1) and ρ(x2) is depicted in yellow; here, it
corresponds to only one point of value a.

8 Influence zones of an image

Each point x ∈ Ω has a given value I(x) ∈ V . It is also

adjacent to other points y ∈ Ω (i.e. x a y) with values
I(y). From Equation (35), we have either I(x) < I(y)

or I(x) > I(y) or I(x), I(y) non-comparable.

From a leaf-point x ∈ Λ corresponding to a leaf

Lx, we can reach certain points y ∈ Ω by a descent

paradigm. More precisely, for such points y, there exists
a sequence x = x0 a . . . a xi a . . . a xt = y (t ≥ 0)

in Ω such that for any i ∈ [[0, t − 1]], we have I(xi) >

I(xi+1). In such case, we note x ցΩ y. This leads to

the following notion of a reachable zone.

Definition 5 (Reachable zone) Let x ∈ Λ be a leaf-
point of I. The reachable zone of x (in Ω) is the set

ρ(x) = {y ∈ Ω | x ցΩ y} (37)

We note P = {ρ(x) | x ∈ Λ} the set of all the reachable

zones of I.

Example 11 Figure 9 illustrates the reachable zones

of two leaf-points, namely the red one of value l and the
blue one of value m. Let us focus on the reachable zone

of the first, red one. From this leaf-point of value l, one

can directly reach reach eight other points of value e, a,

h, h, c, d, k and g, respectively. Of course, these eight

values are strictly lower than l. From the point of value
k, one can then reach another point of value e; this

point then also belongs to the reachable zone. Note that

a point can be reached from various distinct paths. This
is the case of the one of value d that is reached from a

path of lenght 1 and another of length 2. In other words,

the oriented graph of these reaching paths is a directed
acyclic graph, but not a tree in general. Note also that

a point can be reached from various leaves. This is the

case of the yellow one, of value a, that can be reached

from both the red and the blue leaf-points.

Property 8 The set P is a cover of Ω.

The important fact of this property is that
⋃

x∈Λ ρ(x) =

Ω. However, the set of reachable zones is not a parti-
tion of Ω, in general, due to possible overlappings. For

instance, let x1, x2 ∈ Λ, y ∈ Ω, and let us suppose

that x1 a y a x2 and x1 > y < x2; then we have

y ∈ ρ(x1) ∩ ρ(x2) 6= ∅. This was already illustrated by
the yellow point of Figure 9, discussed above.

Remark 11 The computation of P can be carried out
by a seeded region-growing process [20], with Λ as

set of seeds. The time cost is output-dependent, since

it is linear with respect to the ratio of overlap be-
tween the different reachable zones. More precisely, it is

O(
∑

x∈Λ |ρ(x)|) = O((1+ γ).|Ω|), with γ ∈ [0, |Ω|/4] ⊂
R the overlap ratio, varying between 0 (no overlap be-
tween reachable zones, i.e. {ρ(x) | x ∈ Λ} is a parti-

tion of Ω) and |Ω|/4 (all reachable zones are maximally

overlapped). The upper bound of γ is (|Ω| − 1)2/4|Ω|,
and is reached when |Λ| = (|Ω|+ 1)/2.

Practically, in the worst cases, the time cost for com-

puting P is quadratic, namely O(|Ω|2). However, from
an algorithmic point of view, we need not computing P

as a whole. Actually, we only need a partition Σ of Ω

that satisfies the following properties. This leads us to
define a second notion of an influence zone.

Definition 6 (Influence zone) A set of influence
zones of I, noted Σ, is a partition of Ω defined such

that for any S ∈ Σ, we have:

(i) |Λ ∩ S| = 1

(ii) (x ∈ Λ ∩ S) ⇒ (S ⊆ ρ(x))
(iii) ∀y ∈ S, x ցS y

In other words, there exists a unique leaf-point x ∈ Λ∩S
and the set S is included in the influence zone ρ(x)

of this unique leaf-point; in addition, any point y of
S can be reached from x by a descending path in S.

For any leaf-point x ∈ Λ, the set σ(x) ∈ Σ such that

x ∈ σ(x) ⊆ ρ(x) is called an influence zone of x (in I).
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Fig. 10 A partition Σ of influence zones for the image I of
Figures 3 and 7. The seven colours correspond to the seven
influence zones, where each influence zone is associated to one
leaf-point (Figure 8).

Example 12 Figure 10 illustrates a partition of Ω into

seven influence zones induced by each of the seven leaf-

points. We use the same colour conventions as in Fig-
ure 8. By definition, the influence zone of a leaf-point is

a subset of its corresponding reachable zone. In the case

of the red leaf-point, the influence zone is the same as
its reachable zone (Figure 9). By contrast, in the case

of the blue leaf-point, the influence zone is a strict sub-

set of its reachable zone. Indeed, the yellow flat zone

of value a belongs to both reachable zones, and we had
to arbitrarily choose to include it into one of the two

associated influence zones.

Remark 12 Contrary to the cover P of reachable

zones, a partition Σ of influence zones is not unique,
in general, for a given image I. However, this non-

determinism corresponds to overlapping areas in reach-

able zones (namely, points accessible by a descent
paradigm from various leaf-points), and then it will not

have any impact on the component-graph construction

result. The influence zones can be computed by a con-
current seeded region-growing process, considering Λ as

set of seeds. The time cost for computing the partition

Σ is no longer output-dependent, and is linear, namely

O(|Ω|).

9 Influence zone graph of an image

The partition Σ subdivides the support Ω of the image

I into |Λ| regions (1 ≤ |Λ| ≤ |Ω|). Each of these regions

l m

k

g e

i n

Fig. 11 The influence zone graph Z = (Λ,aΛ) associated to
the partition Σ (Figure 10) of the image I of Figures 3 and
7. Each disk corresponds to a leaf-point x ∈ Λ. The value in
the disk is the value I(x) of this leaf-point, and the colour
indicates the corresponding influence zone in Figure 10. The
adjacency aΛ is represented by edges between the disks.

σ(x) contains exactly one leaf-point x ∈ Λ associated

to a leaf Lx = ({x}, I(x)) of the component graph G̊.
We are now describing the structure of these |Λ|

regions within the image support. In particular, we are

interested by the adjacency relations between them. In-

deed, this will allow us to further compute the nodes
and their relations in the strong component-graph.

To this end, we define a graph called the influence

zone graph, where vertices are the regions σ(x), x ∈ Λ,
and the adjacency relation is induced by the adjacency

relation a on Ω. Since the mapping σ : Λ → Σ is a

bijection, we can define, without loss of generality, this
adjacency relation, then noted aΛ, on Λ instead of Σ.

Definition 7 (Influence zone graph) The influen-
ce zone graph of an image I is the graph Z = (Λ,aΛ)

where aΛ is defined, for any distinct leaf-points x, y ∈ Λ

as

(x aΛ y) ⇔ (∃x′ ∈ σ(x), ∃y′ ∈ σ(y), x′ a y′) (38)

Example 13 Figure 11 illustrates the influence zone
graph of the partition Σ of I defined in Figure 10. This

graph has seven nodes, which correspond to the seven

leaf-points in Figure 8 and, equivalently, to the induced
seven influence zones in Figure 10. For instance, the

upper-left red node, labeled by the value l corresponds

to the red leaf-point of value l in the upper-left part of
the image, in Figures 8–10. This node is adjacent to

four other nodes, labeled by m (in blue), k (in pink),

g (in green) and i (in cyan). Indeed, in Figure 10, the

red influence zone is adjacent to the blue one via four
couples of adjacent points located on the first and sec-

ond zone, respectively. This is the same for the pink

zone (two adjacency links, between two pink points and
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a same unique red point), the green zone (two adjacency

links, between two red points and a same unique green
point), and the cyan zone (one adjacency link, between

a red point of value l and a cyan point of value i).

Let us consider two distinct leaf-points x, y ∈ Λ such

that x aΛ y. There exists a path x = x0 a . . . a xi =
x′ a y′ = xi+1 a . . . a xt = y (0 ≤ i < t ≥ 1)

in Ω, such that Sx = {xj | j ∈ [[0, i]]} ⊆ σ(x) and

Sy = {xj | j ∈ [[i+ 1, t]]} ⊆ σ(y).

By construction, for all p ∈ Sx (resp. Sy), we have
I(p) > I(x′) (resp. I(p) > I(y′)). Then, for all p ∈
Sx∪Sy, and for all v ∈ I(x′)↓∩I(y′)↓, we have I(p) > v.

This leads us to define a valuation of the edges of

aΛ as follows
∣

∣

∣

∣

ν : aΛ → 2V

(x, y) 7→
⋃

(x′,y′)∈E(x,y) I(x
′)↓ ∩ I(y′)↓

(39)

where

E(x, y) = {(x′, y′) | x′ ∈ σ(x), y′ ∈ σ(y), x′ a y′} (40)

The function ν provides the values v of V that allow

us to define sequences of points between two adjacent

influence zones, that connect the two associated leaf-

points, while remaining below v.
More formally, we have the following property.

Property 9 Let x, y ∈ Λ such that x aΛ y. The fol-

lowing two statements are equivalent

(i) v ∈ ν((x, y)); and

(ii) there exists a sequence x = x0 a . . . a xt = y

(t ≥ 1) such that for all i ∈ [[0, t]], xi ∈ σ(x) ∪ σ(y)
and I(xi) > v.

Example 14 In the graph of Figure 11, let us consider

the red node of value l and the cyan node of value i.

They correspond to the red and cyan influence zones in

Figure 10, respectively. These two nodes are adjacent
for the aΛ relation. Indeed, there exist a point of value

l in the red zone and a point of value i in the cyan zone

which are adjacent for the a relation. In other words,
this couple of points belongs to E(·, ·) (it is actually the

unique such pair). The value of ν for the corresponding

edge between the red and cyan leaf-points is then equal
to l↓ ∩ i↓ = {a, c, d, f}.

Remark 13 It is sufficient to consider the restricted

function ν
`
: aΛ → 2V defined, for any x aΛ y as

ν
`
((x, y)) =

6h
ν((x, y)) (41)

=

6h ⋃

(x′,y′)∈E(x,y)

6h
I(x′)↓ ∩ I(y′)↓ (42)

l m

k

g e

i n

d, f

a

b

j, k

b, c

a

b

c

c

b, d, f

e, f

a

a

Fig. 12 The influence zone graph Z = (Λ,aΛ) of Figure 11 is
now endowed with the function ν

`
. For each pair of adjacent

leaf-points x aΛ y, the set of values ν
`
((x, y)) is provided

as a valuation of the edge between the two related vertices
of Z. The computation of these sets of values first requires to
compute the sets E(x, y) (Equation (40)), and then ν

`
((x, y))

by following Equation (42).

(In practice, the formulation of Equation (42) is used
for actually computing ν

`
((x, y)).) Using ν

`
allows us

to reduce the space cost of ν, by only storing the minimal

set of values required to identify the paths between the
leaf-points x and y within σ(x) ∪ σ(y). In particular,

in Property 9, Statement (i) then rewrites as “∃w ∈
ν

`
((x, y)), v 6 w” or “v ∈

⋃

w∈ν
`
((x,y)) w

↓”.

Example 15 The value of ν
`

for the edge between the
red and cyan leaves (see previous example) is equal

to {d, f}, since c 6 f and a 6 d, f . Figure 12 il-

lustrates the valuation of the influence zone graph of

Figure 11 with the function ν
`
. For instance, for the

red and blue leaf-points, noted x and y, of value l

and m respectively, the set E(x, y) is composed of four

pairs of points, that correspond to the four edges of a
in Figure 10 linking a red point x′ and a blue point

y′. The associated four pairs of values (I(x′), I(y′))

are (e, f), (l,m), (a,m) and (a, e). Then the four sets`6
I(x′)↓∩I(y′)↓ are {c} (as c =

b6
e↓∩f↓), {j, k} (as

{j, k} =
`6

l↓ ∩m↓), {a} and {a} (as a 6 e,m). The

union of these four sets is
⋃

(x′,y′)∈E(xl,xm)

`6
I(x′)↓ ∩

I(y′)↓ = {a, c, j, k} and the set of maximal elements

is
`6 ⋃

(x′,y′)∈E(x,y)

`6
I(x′)↓ ∩ I(y′)↓ = {j, k} (Equa-

tion (42)), since a 6 j, k and c 6 j. We then have
ν

`
((x, y)) = {j, k}.

Remark 14 From an algorithmic point of view, ν
`

can be built independently for any distinct x aΛ y.

In particular, for each x aΛ y, the couples of points
(x′, y′) ∈ E(x, y) can be gathered during the construc-

tion of the influence zones σ(x) and σ(y), and ν
`

can

then be built on the flight.
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10 Component-graph modelling

10.1 Node modelling

A node K = (X, v) corresponds to a part X ⊆ Ω of
the support of I, and a value v ∈ V . By construction,

there exists (at least) one leaf Lx = ({x}, I(x)) ∈
aE

Θ̊

such that Lx E K. In particular, we have v 6 I(x) and
x ∈ X. In addition, K is the only node of value v such

that x ∈ X. As a consequence, the leaf-point x can be

used for identifying K. In other words, we can rewrite
K as N(x, v), that means “the (only) node of G̊ of value

v, whose support X contains x”.

More formally, we can define the function
∣

∣

∣

∣

∣

∣

N : Λ× V → Θ ∪ {α}

(x, v) 7→

{

K = (X, v) with x ∈ X if v 6 I(x)

α otherwise

(43)

We set N(x, v) = α whenever v 66 I(x). This is a con-

vention that allows us to make N fully defined on Λ×V
despite the fact that all the couples (x, v) are not nec-

essarily associated to a node of the component-graph.

The function N enables to identify all the nodes

of a component-graph G̊. In other words, N is surjec-
tive (note that if N−1({α}) = ∅, we can omit α in the

definition of N , and the surjectivity is still preserved).

However, a nodeK = (X, v) may be associated to many
couples (x, v), i.e. many leaf-points x can belong to X.

In other words, N may be non-injective.

In order to tackle this issue, we assign a numerical
label to each leaf-point. We define a bijective function
∣

∣

∣

∣

ℓ : Λ → [[1, |Λ|]] ⊂ N

x 7→ ℓ(x)
(44)

We note ℓx = ℓ(x) the label of the leaf-point x. If x has

a label ℓ(x) = k, it is also noted xk.
Then, we can define, for any K = (X, v) ∈ Θ a

canonical leaf-point x for K, noted xK . It is defined as

the leaf-point x ∈ X of minimal label, that is

xK = argΛ min{ℓ(x) | x ∈ X} (45)

The label of this canonical leaf-point xK is noted ℓK .
The node K is then characterized by the couple (ℓK , v).

Remark 15 A leaf Lx = ({x}, I(x)) ∈
aE

Θ is neces-

sarily characterized by the couple (ℓx, I(x)).

Example 16 In Figure 13, we provide a specific la-

bel ℓ for each leaf-point of the influence zone graph of

Figures 11 and 12. In particular, we set the label 1 to

the red leaf-point, 2 to the blue, 3 to the pink, 4 to the
green, 5 to the purple, 6 to the cyan and 7 to the or-

ange. The obtained couples (ℓ, v) then correspond to the

corresponding leaves of the associated component-graph.

(1, l) (2,m)

(3, k)

(4, g) (7, e)

(6, i) (5, n)

d, f

a

b

j, k

b, c

a

b

c

c

b, d, f

e, f

a

a

Fig. 13 The influence zone graph Z = (Λ,aΛ) of Figures 11
and 12, where each leaf-point x of value I(x) = v has now a
specific label ℓ. Each couple (ℓ, v) then characterizes one of

the seven leaves of the component-graph G̊ of the image I of
Figures 3 and 7.

Property 10 For any K1,K2 ∈ Θ, we have

(K1 E K2) ⇒ (ℓK2
≤ ℓK1

) (46)

In particular we have ℓ(Ω,⊥) = 1.

Remark 16 From now on, we will note indistinctly a

node K = (X, v) as K or (ℓK , v).

From a structural point of view, building the set of

nodes Θ̊ of a component-graph G̊ is then equivalent to
determining the subset of all the couples (ℓK , v) within

[[1, |Λ|]]× V that characterize these nodes.

10.2 Edge modelling

Until now, the discussions were valid for both strong

and weak component-graphs.

At this stage, we now focus on the strong

component-graph G̊s, and especially on Gs, that con-
tains all the nodes of Θ. In the next sections, we will

aim at building Gs.

The strong component-graph Gs is the Hasse dia-
gram (Θ,◭s) of the ordered set (Θ,Es). From the very

definition of Es, we have the following property.

Property 11 Let K1 = (X1, v1),K2 = (X2, v2) ∈ Θ.
We have

(K1 ◭s K2) ⇒ (v2 ≺ v1) (47)

This equation rewrites as

((ℓK1
, v1) ◭s (ℓK2

, v2)) ⇒ (v2 ≺ v1) (48)

In other words, an edge of Gs between K1 and K2 can

be modelled by the couple of labels (ℓK2
, ℓK1

) associ-

ated to the edge (v2, v1) of (V,≺).
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10.3 Strong component-graph modelling

We now show how the strong component-graph Gs can

be modelled—and then stored—by enriching the Hasse

diagram (V,≺).
First, we observed that a node K = (X, v) can be

characterized as (ℓK , v), where ℓK ∈ [[1, |Λ|]] ⊂ N is the

minimal label associated to the canonical leaf-point of
K. Consequently, we can define the function
∣

∣

∣

∣

θ : V → 2[[1,|Λ|]]

v 7→ {ℓK | K = (X, v) ∈ Θ}
(49)

In other words, θ provides, for each value of V , the set of

all the canonical labels characterizing the nodes defined

at this value.
Second, we observed that an edge between two

nodes K1 = (ℓK1
, v1) and K2 = (ℓK2

, v2) can be mod-

elled as the couple (ℓK2
, ℓK1

) associated to the edge be-
tween v2 and v1 in (V,≺). Consequently, we can define

the function

∣

∣

∣

∣

ε : ≺ → 2[[1,|Λ|]]×[[1,|Λ|]]

(v2, v1) 7→ {(ℓK2
, ℓK1

) | (ℓK1
, v1) ◭s (ℓK2

, v2)}

(50)

In other words, ε provides, for each edge of the Hasse

diagram of (V,6) between two successive values, the
set of all the pairs of canonical labels corresponding to

successive nodes associated to these two values, respec-

tively, in the component graph.

The information carried by the enriched Hasse di-
agram (V,≺, θ, ε) is sufficient for modelling the strong

component-graph Gs = (Θ,◭s). This is formalized by

the following proposition, that directly derives from the
above definitions and properties.

Proposition 4 Let Gs be the strong component-graph

of an image I, and (V,≺, θ, ε) the associated enriched

Hasse diagram. Let K = (X, v), K1 = (X1, v1), K2 =
(X2, v2). We have:

(K ∈ Θ) ⇔ (ℓK ∈ θ(v)) (51)

(K1 ◭s K2) ⇔ ((ℓK2
, ℓK1

) ∈ ε((v2, v1))) (52)

Example 17 The enriched Hasse diagram (V,≺, θ, ε)

associated to the strong component-graph Gs of Figure 5

is illustrated in Figure 14. Let us focus, for instance,
on the value k. We observe that θ(k) = {1, 3, 5}. This
means that there are three nodes of Θ at value k; they

correspond to the nodes labeled (1, k), (3, k) and (5, k)

in Figure 5. Regarding the nodes lower than these three
nodes, we have ε((k, l)) = {(1, 1)}, ε((k,m)) = {(1, 2)}
and ε((k, n)) = {(5, 5)}. This means that we have

(1, l) ◭s (1, k), (2,m) ◭s (1, k), and (5, n) ◭s (5, k).

l(1) m(2) n(5)

j(1) k(1,3, 5)

g(1, 3,4, 5) h(1, 3, 5) i(5,6)

e(1, 5,7) f(1)

b(1) c(1) d(1, 3)

a(1)

(1, 2)ց
← (1,2)

←
(1, 3)
(1, 4)
(1, 5)

(1,3)ց
→

(1, 3)
(1, 5)

ր
(3, 5)

(1, 5)
(1, 6)
ց

→
(1, 6)
(3, 5)

տր
(1, 5)
(1, 7)

(1,3)

Fig. 14 The strong component-graph Gs of the image I of
Figures 3 and 7. This component-graph is the same as in
Figure 5. However, it is modelled here as the Hasse diagram
of (V,6) (Figure 2) enriched with the functions θ and ε. For
each value v ∈ V , the labels of the set θ(v) are provided
into brackets. For each couple of adjacent values v ≺ w, the
elements of ε((v, w)) are provided as a valuation of the edge
between v and w. Note that when a couple (x, x) belongs to
ε((v, w)), it is useless to represent it, as we necessarily have
x ∈ θ(v) and x ∈ θ(w). The labels corresponding to leaves
are provided in bold and colour fonts (the colours correspond
to those used in Figures 8–13).

There is no node lower than (3, k), which means that
it is a leaf of Gs (Figure 5). Regarding the nodes

greater than these three nodes, we have ε((g, k)) =

ε((h, k)) = {(1, 1), (3, 3), (5, 5)}. This means that we

have (1, k) ◭s (1, g), (1, h); (3, k) ◭s (3, g), (3, h); and
(5, k) ◭s (5, g), (5, h) (Figure 5). Note that when a cou-

ple (x, x) belongs to ε((v, w)), it is useless to represent

it, as we necessarily have x ∈ θ(v) and x ∈ θ(w). In
particular, in the case of the edge between g (resp. h)

and k, no information has to be explicitly stored in the

enriched Hasse diagram (Figure 14).

In the next section, we explain how to build θ and

ε, and then the strong component-graph Gs.

11 Strong component-graph computation

11.1 Connected component computation

A node K = (X, v) is defined by its support X and

its value v. Its support X contains one or many leaf-
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point(s) x. In particular, X is subdivided by the in-

fluence zones of these leaf-points, and this subdivision
forms a partition

X =
⊔

x∈Λ∩X

ρ(x) ∩ λv(I) (53)

In other words, X can be retrieved from the set of the

leaf-points it contains.

By definition, all the leaf-points in the support of

a node are connected within the thresholded influence

zone graph Zv = (Λv,av
Λ) obtained at value v, defined

by

Λv = {x ∈ Λ | I(x) > v} (54)

a
v
Λ = {(x, y) | v ∈ ν((x, y))} (55)

In particular, building the nodes K = (X, v) at a

given value v ∈ V consists of building the connected
components of Zv = (Λv,av

Λ).

The connectedness relation ↔v
Λ is the reflexive–

transitive closure of the adjacency relation av
Λ. It is

convenient to model adjacency and connectedness rela-

tions in a Boolean matrix form. Indeed, this will allow

us to simply express the connected component compu-

tation (namely, a transitive closure problem) as a ma-
trix product procedure.

Let us consider the Boolean square, symmetric
matrix Av of dimension |Λ| × |Λ|, defined as Av =

[avi,j ]1≤i,j≤|Λ| with

avi,j =







1 if xi a
v
Λ xj

1 if i = j
0 otherwise

(56)

where Λ = {xi | i ∈ [[1, |Λ|]]}. This matrix models the

reflexive closure of the adjacency relation av
Λ.

The induced connectedness relation—that defines
the connected components of leaf-points, and thus the

supports of the nodes at value v—is modelled by the

Boolean square, symmetric matrix Cv of dimension
|Λ| × |Λ|, defined as Cv = [cvi,j ]1≤i,j≤|Λ| with

cvi,j =

{

1 if xi ↔
v
Λ xj

0 otherwise
(57)

and we compute Cv as

Cv = lim
n

An
v (58)

The time complexity for computing Cv is O(|Λ|3), that
is the standard time complexity for the transitive clo-

sure of a graph.

Remark 17 The matrix Av is sparse. In particular, it

has empty rows and columns for all the labels k such
that ak,k = 0. These labels k correspond to leaf-points

xk such that I(xk) 6> v. This allows us to reduce the |Λ|
term to |{x ∈ Λ | I(x) > v}| in O(|Λ|3).

Remark 18 The matrix Av is Boolean. As a conse-

quence, the matrix product involves Boolean operators

∧ and ∨ instead of . and +. Consequently, the result

of the calculus of an element is 1 as soon as one of
the operands of the ∨ combination between the |Λ| bi-
nary terms in ∧ is 1. This also allows us to reduce the

time cost of the overall computation by avoiding useless
elementary operations.

The time complexity of the Cv computation can be

optimized by considering the structure of the Es rela-

tion, that is directly linked to that of 6.

Property 12 Let v, w ∈ V . Let us assume that v 6 w.

Let Y be a connected component of Zw. Then, there

exists a connected component X of Zv such that Y ⊆ X.

The next result is an immediate corollary.

Corollary 1 Let v, w ∈ V . Let us assume that v ≺ w.
Let K ′ = (Y,w) ∈ Θ be a node of Gs. Then, there exists

a node K = (X, v) ∈ Θ such that K ′ ◭s K.

As a consequence, for any v ∈ V , the computation of

Cv—which is done from Av, in theory—can be carried
out recursively by determining the transitive closure of

the matrix Bv = [bvi,j ]1≤i,j≤|Λ| of dimension |Λ| × |Λ|
defined as follows

bvi,j =
∨







∨

v≺w cwi,j
v ∈ ν

`

((xi, xj))

(i = j ∧ I(xi) = v)

(59)

The computation of Bv simply consists of combin-

ing the connected component matrices at the directly

greater values, and then adding two kinds of informa-
tion: on the one hand, the adjacency links at value v

between pairs of leaf-points (these links justify a poste-

riori the definition of the influence zone graph); on the
other hand the reflexive links associated to the leaf-

points that correspond to leaves at value v.

Then, we compute Cv as

Cv = lim
n

Bn
v (60)

This computation converges more rapidly than the

transitive closure of Av, since a part of the calculus

was already carried out in the Cw matrices (v ≺ w).
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Remark 19 In Bv, the lines and columns k such that

xk,k is a leaf-point that satisfies I(xk,k) = v necessarily
contain 0 values everywhere but in (k, k). As a conse-

quence, these rows and columns can be omitted in the

computation of Bv, and updated only after the transi-
tive closure calculus. This allows to reduce the overall

time complexity for building Cv.

Example 18 An example of whole computation of the

connected components of the thresholded influence zone

graphs Zv associated to the influence zone graph Z of

Figure 13 is proposed in Appendix C. In the same ap-
pendix, we also derive from these results the θ and ε

functions that allow us to model the strong component-

graph Gs of the image I of Figures 3 and 7.

11.2 Building the nodes of the component-graph

Let v ∈ V , and let us suppose that the matrix Cv has

been computed. Each non-empty row of Cv corresponds
to a given node of Θ at value v. More precisely, for the

row k ∈ [[1, |Λ|]], this node is K = (X, v) where

X =
⋃

1≤i≤|Λ|
cv(k,i) 6=0

ρ(xi) ∩ λv(I) (61)

Practically, any node K can be modelled by its
canonical label ℓK . Each node is then identified by the

ℓK -th row. Any such row is empty in the lower trian-

gular matrix, that is

ℓK = min{i ∈ [[1, |Λ|]] | cv(ℓK ,i) = 1} (62)

Determining the nodes of Θ at value v is then sim-

ply done by scanning the lines of Cv. More precisely,
this research can be restricted to the rows that already

correspond to canonical labels of nodes at values w ∈ V

with w ≺ v plus, of course, the labels ℓx of leaf-points

x that satisfy I(x) = v, which correspond to leaves
({x}, I(x)).

Following the definition of the function θ (Equa-
tion (49)), we finally define the set of nodes of Θ at

value v as

θ(v) =
{

k ∈ [[1, |Λ|]] | (1− cv(k,k)) ∨
k−1
∨

i=1

cv(k,i) = 0
}

(63)

Example 19 In the matrix Ce (Equation (78), in Ap-

pendix C), we have 1 ∈ θ(e), since 1−ce(1,1) = 1−1 = 0.

However, we have 2 /∈ θ(e), since ce(2,1) = 1. We also
have 4 /∈ θ(e), since 1 − ce(4,4) = 1 − 0 = 1. Finally,

we have 5 ∈ θ(e), since 1 − ce(5,5) = 1 − 1 = 0 whereas

ce(5,i) = 0 for i = 1, . . . , 4.

Remark 20 The identification of the nodes of Θ̈ can

be made by scanning, for each node K = (X, v) of label
ℓK , if there exists a leaf-point x ∈ X (i.e., such that

cv(ℓK ,ℓx)
= 1) with a point y ∈ ρ(x) such that I(y) = v.

11.3 Building the edges of the component-graph

Let K ′ = (Y,w) be a node of Θ at value w, and let
us suppose that we have computed the set θ(v) of the

nodes at value v with v ≺ w and the associated matrix

Cv.

There is exactly one node K = (X, v) such that

K ′ ◭s K. By construction of Cv, the canonical label
ℓK of this node is defined as

ℓK = min{i ∈ [[1, Λ]] | cv(ℓK′ ,i) = 1} (64)

Then, following the definition of the function ε
(Equation (50)), we define the set of edges of ◭s be-

tween the values v ≺ w as

ε((v, w)) =
{

(ℓx, ℓy) | ℓy ∈ θ(w), ℓx = min
i
{cv(ℓy,i) = 1}

}

(65)

Example 20 Let us consider the function ε for the

couple of values (d, i). From the matrix Ci (Equa-

tion (71), in Appendix C), we know that θ(i) = {5, 6},
whereas from the matrix Cd (Equation (80), in Ap-

pendix C), we know that θ(d) = {1, 3}. From the 5th row

of matrix Cd, we have 3 = mini{c
d
(5,i) = 1}, and from

the 6th row of matrix Cd, we have 1 = mini{c
d
(6,i) = 1}.

It follows that ε((d, i)) = {(1, 6), (3, 5)}.

12 Data structure

Finally, the strong component-graph Gs can then be

modelled and stored as the enriched Hasse diagram
(V,≺, θ, ε). The space costs of θ and ε are the same as

that of Θ and ◭s, respectively, since each node is mod-

elled by its canonical label, whereas each edge is mod-
elled by a couple of such labels. The overall cost of the

induced data structure is then O(|V |+ |≺|+ |Θ|+ |◭s|),
which is generally equal to O(|◭s|).

Figure 14 illustrates the strong component-graphGs

of the image I of Figures 3 and 7, in this paradigm of

enriched Hasse diagram.

Such data structure describes the nodes from a sym-

bolic point of view, i.e. by their canonical labels. This
allows one to carry out a structural analysis of the

component-graph, for instance by observing the mod-

ifications of topology between the nodes. (By analogy
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with the component-tree, this would correspond to ob-

serving the bifurcations between branches, and the end-
ings of the branches.)

However, since a node K = (X, v) is stored as

K = (ℓK , v), we do not have a direct access to X. The
information X can be retrieved by various ways:

– by first determining all the leaf-points x ∈ X, and

then reconstructing X by a seeded-region growing

in λv(I); or

– by directly collecting the points x ∈ X that need
then to be stored in Gs.

The second option requires to store, at each node K

not only its canonical label ℓK , but also all the points

x ∈ X such that I(x) = v. This induces an extra space
cost of O(Ω). In addition the time cost for building one

X is then O(|K↓|), since all the nodes below K have

to be scanned for collecting the points x at each value
greater than v.

The first option requires either to store all the labels

of the leaf-points x ∈ X, or to retrieve them by scan-

ning the nodes below K. In the first case, the overall
extra space cost is O(

∑

x∈Λ L↑x), and the time cost for

building one X is O(|X|). In the second case, there is

no extra space cost, but the time cost for building X is
O(|X|+ |K↓|).

Remark 21 The computation of the supports X of the

nodes may also be carried out on the flight during the
processing of the component-graph, in the cases where

such processing requires to scan the data structure in a

bottom-up fashion, i.e. from the leaves up to the root.

13 Conclusion

In this article, we explained how to build the
component-graph of an image taking its values in any

(totally or partially) ordered set. In particular, we de-

veloped strategies for reducing as much as possible the

space cost of the processed data, by considering first a
flat zone model of the image, and second an influence

zone model based on the local maxima of the image.

This led to the symbolic representation of the image
as an influence zone graph. Then, we observed that

the strong component-graphs have structural regular-

ity properties, compared to the Hasse diagram of the
considered ordered value set. This regularity allowed

us to develop a recursive strategy for building the con-

nected components at each value. Indeed, this step of

connected component construction is the most costly
(with a polynomial complexity). Then, reducing both

the size of the input (thanks to the notion of influence

zone graph) and the time cost (thanks to incremental

computation of the connected components and efficient

calculus on Boolean matrices) is a relevant way to de-
crease the time complexity of this crucial step. Finally,

we also emphasized how a component-graph could be

modelled and stored by enriching the Hasse diagram of
the associated ordered set of values.

Building component-graphs in a simple and efficient

fashion opens the way to their actual involvement in
image processing and analysis procedures. In particu-

lar, our next works will consist of extending the stan-

dard attribute-based antiextensive filtering process [2,

21] initially developed for component-trees, in the case
of grey-level images, in order to make it tractable with

component-graphs, in the case of multivalued images.
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A Proofs of propositions

Proposition 1 We assume that (V,6) is totally ordered.
The component-tree is the Hasse diagram of (Ψ,⊆), whereas

the (strong and weak) component-graphs Ġ and G̈ are the
Hasse diagrams of (Θ̇,E) and (Θ̈,E), respectively. Prov-
ing the isomorphism between the Hasse diagrams is indeed
the same as proving the isomorphism between the ordered
sets. Let X ∈ Ψ . There exists a value v ∈ V such that
X ∈ C[λv(I)]. We choose v as the maximal value of V sat-
isfying this property (such maximum exists, as 6 is total).
It is plain that (X, v) ∈ Θ̇. As v is the maximal value such
that X ∈ C[λv(I)], it follows that for any w > v, we have
X 6⊆ λw(I), and more generally, X 6⊆

⋃

w>v λw(I). Then,
there exists x ∈ X 6⊆

⋃

w>v λw(I), and this point satisfies

I(x) = v. It follows from Equation (18) that (X, v) ∈ Θ̈.
Let us now assume that (X, v) ∈ Θ̈. From Equation (19), we
have (X, v) ∈ Θ̇. Finally, let us assume that (X, v) ∈ Θ̇.
From Equation (17), we directly have X ∈ Ψ . In other
words, the projective mapping π = (X, v) → X between
Θ̇, Θ̈ and Ψ is a bijection, whereas Θ̇ = Θ̈. At this stage,
since the orders Es and Ew are the same for Θ̇ and Θ̈ it is
plain that (Θ̇,Es) and (Θ̈,Es) (resp. (Θ̇,Ew) and (Θ̈,Ew))
are isomorphic. More strongly, we have Es = Ew. Indeed,
for two nodes K = (X, v),K′ = (Y,w) ∈ Θ̇, we have
X ⊂ Y ⇒ w 6 v due to the totality of 6. Now, let us
consider that K = (X, v),K′ = (Y,w) ∈ Θ̇ and K E K′.
From Equation (8), we have X ⊆ Y . Conversely, let us con-
sider that X,Y ∈ Ψ and X ⊆ Y . By considering the inverse
function π−1, and by setting K = (X, v) = π−1(X) and
K′ = (Y,w) = π−1(Y ), we have, by construction, w 6 v, and
it follows that K E K′. Finally, the three ordered sets are
then isomorphic, and so are the associated Hasse diagrams,
namely the component-tree T and the two component-graphs
Ġ and G̈. �

Proposition 2 Let x ∈ Ω. Let X ∈ C[λI(x)(I)] be such that

x ∈ X. We have K = (X, I(x)) ∈ Θ̈ ⊆ Θ̊, and we also have
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CK(x) = I(x). For any K′ = (Y,w) ∈ Θ̊, if w < v, we have
CK′(x) 6 w < v; if w > v, we have CK′(x) = ⊥ < v; and if

w = v, we have CK′(x) ≤ v. It follows that I =
∨≤

K∈Θ̊
CK .

The term
∨≤

v∈V

∨≤

X∈C[λv(I)]
C(X,v) is simply a rewritting of

∨≤

K∈Θ̊
CK for Θ̊ = Θ. �

Proposition 3 Let X,Y ∈ Θ. From the definition of φ,
we have X ⊆ Y ⇔ φ(X) ⊆ φ(Y ). Then, it follows from
the definition of Ew and Es (simply noted E hereinafter),
that ((X, v) E (Y,w)) ⇔ ((φ(X), v) EΦ (φ(Y ), w)). This is
a fortiori true for the transitive reductions ◭ and ◭Φ of E

and EΦ, respectively. Still from the definition of φ, we have
φ(Θ̈) = Θ̈Φ, and finally, the isomorphism between (Θ,E) and
(ΘΦ,EΦ) also implies that φ(Θ̇) = Θ̇Φ. As a consequence,
Equation (34) holds in any cases. �

Proposition 4 Equation (51) is a rewritting of the definition
of θ (Equation (49)). Equation (52) is a rewritting of the
definition of ε (Equation (50)).

B Proofs of properties

Property 1 Equation (16) is simply a rewritting of a part of
Equation (12) with Ew = E2 and Es = E3. What we aim to
prove is then the part K E3 K′ ⇒ K E2 K′ of Equation (12).
We set K = (X, v) and K′ = (Y,w). From Equations (8–9),
we have K E3 K′ ⇔ (X, v) E3 (Y,w) ⇔ X ⊆ Y ∧ w 6 v ⇔
(X ⊂ Y ∨ X = Y ) ∧ w 6 v ⇔ (X ⊂ Y ∧ w 6 v) ∨ (X =
Y ∧ w 6 v) ⇒ (X ⊂ Y ) ∨ (X = Y ∧ w 6 v) ⇔ (X, v) E2

(Y,w)⇔ K E2 K′. �

Property 2 Let w ∈ v↓. We have w 6 v, and then
X ⊆ λw(I). As X is connected in Ω, it belongs to a
unique connected component X′ ∈ C[λw(I)]. In particu-
lar, we have X ⊆ X′ and then (X′, w) ∈ K↑. Thus,
σ is surjective. Let (Y1, w1), (Y2, w2) ∈ K↑ be such that
σ((Y1, w1)) = σ((Y2, w2)). Then, we have w1 = w2. It follows
that (Y1, w1), (Y2, w2) ∈ C[λw1

(I)]. But we have X ⊆ Y1 and
X ⊆ Y2 with X nonempty. Then, we have Y1 ∩Y2 6= ∅, which
implies Y1 = Y2. Thus, σ is injective. The result follows. �

Property 3 We set K1 = (X1, v1) and K2 = (X2, v2). We
have K Ew K1 (resp. K Ew K2) and then X ⊆ X1 (resp.
X ⊆ X2). Then, we have X1 ∩X2 6= ∅. Since X1 ∈ C[λv1

(I)]
and X2 ∈ C[λv2

(I)], the connectedness of X1 and X2, to-
gether with the fact that v1 > v2 leads to X1 ⊆ X2. Thus,
we have (X1 ⊆ X2)∧ (v2 6 v1), i.e. K1 Es K2, and a fortiori
K1 Ew K2. �

Property 4

We set K1 = (X1, v1) and K2 = (X2, v2). The “⇒” part of
Equation (25) follows the same scheme as Property 3. Then,
v2 6 v1 implies X1 ⊆ X2, and it follows that K1 Es K2

(and a fortiori, K1 Ew K2). The “⇐” part of Equation (25)
derives from the very definition of Es. �

Property 5 Let K = (X, v),K′ = (Y,w) ∈ Θ̈. Let us sup-
pose that K Ew K′. Then, we have either (1) X ⊂ Y or (2)
X = Y and w 6 v. In case (2), we directly have K Es K′.
Now, let us consider that case (1) holds. Since K ∈ Θ̈, there
exists x ∈ X such that I(x) = v. Since X ⊂ Y , we have
x ∈ Y . But Y ⊆ λw(I) and then w 6 v. It follows that
K Es K′. We then have K Ew K′ ⇒ K Es K′, and from

Property 1, it comes that K Ew K′ ⇔ K Es K′. The result
follows by transitive reduction of Ew and Es. �

Property 6 Let K = (X, v),K′ = (Y,w) ∈ Θ̇. Let us
suppose that K Ew K′. Then, we have either (1) X ⊂ Y
or (2) X = Y and w 6 v. In case (2), we directly have
K Es K′. Now, let us consider that case (1) holds. Let
u =

∨

6{v, w} ∈ V . Let us consider K′′ = (Z, u) such
that K′′ Ew K and K′′ Ew K′. Such a node necessar-
ily exists. Let x ∈ X. Then, we have x ∈ λv(I), and thus
v 6 I(x). Since x ∈ X ⊂ Y , we have x ∈ λw(I), and thus
w 6 I(x). But then, we have u =

∨

6{v, w} 6 I(x). It follows
that X ⊆ Z, and since K′′ Ew K, we also have Z ⊆ X,
and then X = Z. It comes from the definition of Θ̇ (Equa-
tion (17)) that K′′ = K, and thus u = v. It follows that
w 6

∨

6{v, w} = u = v. Then we have K Es K′. Conse-
quently, we haveK Ew K′ ⇒ K′ Es K, and from Property 1,
it comes that K Ew K′ ⇔ K′ Ew K. The result follows by
transitive reduction of Ew and Es. �

Property 7 Let v ∈ V . Let X ∈ C[λv(I)]. Let x ∈ X.
We have I(x) 6 v, and then [x]↔V

⊆ X. It follows that
X =

⋃

x∈X [x]↔V
. The definition and bijectivity of the two

inverse functions φ and φ−1 defined in Equations (32–33)
directly follows from this equality for each value v ∈ V . �

Property 8 Let ρ(x) ∈ P . By definition, we have x ∈ ρ(x),
and then ρ(x) 6= ∅. Let y ∈ Ω. We can build sequences of
adjacent points of Ω, namely x = x0 a . . . a xi a . . . a

xt = y (t ≥ 0) such that for any i ∈ [[0, t − 1]], we have
I(xi) > I(xi+1). Since Ω is finite, such sequences are also
finite. By choosing a sequence of maximal length, we have
x = x0 ∈ Λ, and thus y ∈ ρ(x). It follows that Ω =

⋃

P .
Then, P is a cover of Ω. �

Property 9 Let us assume that v ∈ ν((x, y)). Then, there
exists x′ a y′ such that x′ ∈ σ(x) and y′ ∈ σ(y), and v ∈
I(x′)↓ ∩ I(y′)↓ (from Equations (39–40)). Since x′ (resp. y′)
is in the influence zone of x (resp. y), then there exists a
sequence x = x0 a . . . a xs = x′ (resp. y = y0 a . . . a xu =
y′) of points within σ(x) (resp. σ(y)) such that for all i ∈
[[0, s]] (resp. i ∈ [[0, u]]), we have I(xi) > v (resp. I(yi) > v).
By concatenating the first sequence and the reverse second
sequence, we build a sequence x = x0 a . . . a xt = y (t ≥ 1)
such that for all i ∈ [[0, t]], xi ∈ σ(x) ∪ σ(y) and I(xi) > v.
Now, let us assume that there exists a sequence x = x0 a

. . . a xt = y (t ≥ 1) such that for all i ∈ [[0, t]], xi ∈ σ(x) ∪
σ(y) and I(xi) > v. Let j ∈ [[0, t]] be the maximal index such
that xj ∈ σ(x). Then, we must have j < t and xj+1 ∈ σ(y).
In particular, we have (xj , xj+1) ∈ E(x, y). In addition, we
have v 6 I(xj) and v 6 I(xj+1), i.e. v ∈ ν((x, y)), from
Equation (39). �

Property 10 Let K1 = (X1, v1),K2 = (X2, v2) ∈ Θ. Let us
suppose that K1 E K2. Let x ∈ Λ be the leaf-point such that
ℓK1

= ℓ(x). In particular, we have x ∈ X1. For any other
leaf-point y ∈ X1, we have ℓ(x) 6 ℓ(y). Let z ∈ Λ be the leaf-
point such that ℓK2

= ℓ(z). For any other leaf-point y ∈ X2,
we have ℓ(z) ≤ ℓ(y). In particular, we have ℓ(z) ≤ ℓ(x), i.e.
ℓK2
≤ ℓK1

. �

Property 11 Let K1 = (X1, v1),K2 = (X2, v2) ∈ Θ. Let
us suppose that K1 ◭s K2. We have K1 Es K2, and it
follows that v2 6 v1. We also have X1 ⊆ X2. Let v3 ∈ V
with v3 6= v1, and let us assume that v2 6 v3 6 v1. Let
K3 = (X3, v3) ∈ Θ be the node such that X1 ⊆ X3; such
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node exists and is unique. Then, we must have X3 ⊆ X2. It
comes K1 Es K3 Es K2, and K1 6= K3. Then, K1 Es K2

implies that K3 = K2, and then v3 = v2. It follows that
v2 ≺ v1. �

Property 12 Let v, w ∈ V . Let us assume that v 6 w.
Let x ∈ Λw. Then, from Equation (54) and since v 6 w,
we have x ∈ Λw. Let (x, y) ∈ aw

Λ . We have w 6 I(x) and
w 6 I(y), and then v 6 w 6 I(x) and v 6 w 6 I(y). Thus,
from Equation (55), we have (x, y) ∈ av

Λ. It follows that any
connected component Y of Zw is a subset of a connected
component X of Zv. �

C Computation of the connected components

For the three maximal values v = l, m and n of V , the 3 ma-
trices Bv are defined only by terms bvi,j = (i = j ∧ I(xi) = v)
(Equation (59)). In other words, they only carry information
corresponding to leaves. We have

Cn = B1
n =



















0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0



















(66)

Cm = B1
m =



















0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0



















(67)

Cl = B1
l =



















1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0



















(68)

We then have one valued connected component for each of the
three values, namely (5, n), (2,m) and (1, l). In other words,
we have θ(n) = {5}, θ(m) = {2} and θ(l) = {1}.

For v = k, the matrix Bk is defined as the disjunction
of the three matrices Cl, Cm and Cn. This leads to bk1,1 =

bk2,2 = bk5,5 = 1. Moreover, we have k ∈ ν
`
((x1, x2)), that

implies bj1,2 = bj2,1 = 1. In addition, the leaf-point x3 satisfies

I(x3) = k; then, we set bk1,1 = 1. We have

Ck = B1
k =



















1 1 0 0 0 0 0
1 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0



















(69)

Then, we have three valued connected components, namely
(1, k), (3, k) and (5, k). In other words, we have θ(k) =

{1, 3, 5}. From the analysis of Cl, Cm and Cn, it also comes
ε((k, l)) = {(1, 1)}, ε((k,m)) = {(1, 2)} and ε((k, n)) =
{(5, 5)}.

For v = j, the matrix Bj is defined as the disjunc-
tion of the two matrices Cl and Cm. Moreover, we have
j ∈ ν

`
((x1, x2)), that implies bj1,2 = bj2,1 = 1. We have

Cj = B1
j =



















1 1 0 0 0 0 0
1 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0



















(70)

Then, we have one valued connected component, namely
(1, j). In other words, we have θ(j) = {1}. From the anal-
ysis of Cl and Cm, it also comes ε((j, l)) = {(1, 1)} and
ε((j,m)) = {(1, 2)}.

For v = i, the matrix Bi is defined from the matrix Cn.
Moreover, the leaf-point x6 satisfies I(x6) = i; then, we set
bk6,6 = 1. We have

Ci = B1
i =



















0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0



















(71)

Then, we have two valued connected components, namely
(5, i) and (6, i). In other words, we have θ(i) = {5, 6}. From
the analysis of Cn, it also comes ε((i, n)) = {(5, 5)}.

For v = h, the matrix Bh is defined from the matrix Ck.
We have

Ch = B1
h =



















1 1 0 0 0 0 0
1 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0



















(72)

Then, we have 3 valued connected components, namely
(1, h), (3, h) and (5, h). In other words, we have θ(h) =
{1, 3, 5}. From the analysis of Ck, it also comes ε((h, k)) =
{(1, 1), (3, 3), (5, 5)}.

For v = g, the matrix Bg is defined as the disjunction
of the two matrices Cj and Ck. Moreover, the leaf-point x4

satisfies I(x4) = g; then, we set bg4,4 = 1. We have

Cg = B1
g =



















1 1 0 0 0 0 0
1 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0



















(73)

Then, we have four valued connected components, namely
(1, g), (3, g), (4, g) and (5, g). In other words, we have θ(g) =
{1, 3, 4, 5}. From the analysis of Cj and Ck, it also comes
ε((g, j)) = {(1, 1)} and ε((g, k)) = {(1, 1), (3, 3), (5, 5)}.

For v = f , the matrix Bf is defined as the disjunc-
tion of the two matrices Ch and Ci. Moreover, we have
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f ∈ ν
`
((x1, x6)), that implies bf1,6 = bf6,1 = 1. The same

holds for ν
`
((x2, x3)) and ν

`
((x3, x5)). We have

Bf =



















1 1 0 0 0 1 0
1 1 1 0 0 0 0
0 1 1 0 1 0 0
0 0 0 0 0 0 0
0 0 1 0 1 0 0
1 0 0 0 0 1 0
0 0 0 0 0 0 0



















(74)

B2
f =



















1 1 1 0 0 1 0
1 1 1 0 1 1 0
1 1 1 0 1 0 0
0 0 0 0 0 0 0
0 1 1 0 1 0 0
1 1 0 0 0 1 0
0 0 0 0 0 0 0



















(75)

Cf = B4
f =



















1 1 1 0 1 1 0
1 1 1 0 1 1 0
1 1 1 0 1 1 0
0 0 0 0 0 0 0
1 1 1 0 1 1 0
1 1 1 0 1 1 0
0 0 0 0 0 0 0



















(76)

Then, we have one valued connected component, namely
(1, f). In other words, we have θ(f) = {1}. From the analysis
of Ch and Ci, it also comes ε((f, h)) = {(1, 1), (1, 3), (1, 5)}
and ε((f, i)) = {(1, 5), (1, 6)}.

For v = e, the matrix Be is defined from the matrix Ch.
Moreover, the leaf-point x7 satisfies I(x7) = e; then, we set
be7,7 = 1. Moreover, we have e ∈ ν

`
((x2, x3)), that implies

be2,3 = be3,2 = 1. We have

Be =



















1 1 0 0 0 0 0
1 1 1 0 0 0 0
0 1 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1



















(77)

Ce = B2
e =



















1 1 1 0 0 0 0
1 1 1 0 0 0 0
1 1 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1



















(78)

Then, we have three valued connected components, namely
(1, e), (5, e) and (7, e). In other words, we have θ(e) =
{1, 5, 7}. From the analysis of Ch, it also comes ε((e, h)) =
{(1, 1), (1, 3), (5, 5)}.

For v = d, the matrix Bd is defined as the disjunc-
tion of the two matrices Ch and Ci. Moreover, we have
d ∈ ν

`
((x1, x6)), that implies bd1,6 = bd6,1 = 1, and this is

also the case for ν
`
((x3, x5)). We have

Bd =



















1 1 0 0 0 1 0
1 1 0 0 0 0 0
0 0 1 0 1 0 0
0 0 0 0 0 0 0
0 0 1 0 1 0 0
1 0 0 0 0 1 0
0 0 0 0 0 0 0



















(79)

Cd = B2
d =



















1 1 0 0 0 1 0
1 1 0 0 0 1 0
0 0 1 0 1 0 0
0 0 0 0 0 0 0
0 0 1 0 1 0 0
1 1 0 0 0 1 0
0 0 0 0 0 0 0



















(80)

Then, we have two valued connected components, namely
(1, d) and (3, d). In other words, we have θ(d) = {1, 3}.
From the analysis of Ch and Ci, it also comes ε((d, h)) =
{(1, 1), (3, 3), (3, 5)} and ε((d, i)) = {(1, 6), (3, 5)}.

For v = c, the matrix Bc is defined as the disjunc-
tion of the two matrices Ce and Cf . Moreover, we have
c ∈ ν

`
((x2, x7)), ν

`
((x5, x6)) and ν

`
((x5, x7)). This im-

plies bc5,6 = bc6,5 = 1 (which was already the case), but also
bc2,7 = bc7,2 = 1 and bc5,7 = bc7,5 = 1. We have

Bc =



















1 1 1 0 1 1 0
1 1 1 0 1 1 1

1 1 1 0 1 1 0
0 0 0 0 0 0 0
1 1 1 0 1 1 1

1 1 1 0 1 1 0
0 1 0 0 1 0 1



















(81)

Cc = B2
c =



















1 1 1 0 1 1 1

1 1 1 0 1 1 1

1 1 1 0 1 1 1

0 0 0 0 0 0 0
1 1 1 0 1 1 1

1 1 1 0 1 1 1

1 1 1 0 1 1 1



















(82)

Then, we have one valued connected component, namely
(1, c). In other words, we have θ(c) = {1}. From the analysis
of Ce and Cf , it also comes ε((c, e)) = {(1, 1), (1, 5), (1, 7)}
and ε((c, f)) = {(1, 1)}.

For v = b, the matrix Bb is defined as the disjunc-
tion of the two matrices Ce and Cg. Moreover, we have

b ∈ ν
`
((x1, x4)), that implies bj1,4 = bj4,1 = 1, and this is

also the case for ν
`
((x3, x4)), ν

`
((x3, x5)) and ν

`
((x2, x7)).

We have

Bb =



















1 1 1 1 0 0 0
1 1 1 0 0 0 1

1 1 1 1 1 0 0
1 0 1 1 0 0 0
0 0 1 0 1 0 0
0 0 0 0 0 0 0
0 1 0 0 0 0 1



















(83)

B2
b =



















1 1 1 1 1 0 1

1 1 1 1 1 0 1

1 1 1 1 1 0 1

1 1 1 1 1 0 0
1 1 1 1 1 0 0
0 0 0 0 0 0 0
1 1 1 0 0 0 1



















(84)

Cb = B4
b =



















1 1 1 1 1 0 1

1 1 1 1 1 0 1

1 1 1 1 1 0 1

1 1 1 1 1 0 1

1 1 1 1 1 0 1

0 0 0 0 0 0 0
1 1 1 1 1 0 1



















(85)

Then, we have one valued connected component, namely
(1, b). In other words, we have θ(b) = {1}. From the analysis
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of Ce and Cg, it also comes ε((b, e)) = {(1, 1), (1, 5), (1, 7)}
and ε((b, g)) = {(1, 1), (1, 3), (1, 4), (1, 5)}.

For v = a, we necessarily have

Ca =



















1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1



















(86)

Then, we have one valued connected component, namely
(1, a). In other words, we have θ(a) = {1}. From the anal-
ysis of Cb, Cc and Cd, it also comes ε((a, b)) = {(1, 1)},
ε((a, c)) = {(1, 1)} and ε((a, d)) = {(1, 1), (1, 3)}.

D Pseudo-code and complexity discussion

D.1 Input

The algorithm takes as input:

– a graph (Ω,a);
– an ordered value set (V,6) or its Hasse diagram (V,≺);

and
– a valuation of I : Ω → V .

The set Ω contains vertices xi for i ∈ [[1, |Ω|]]. Each vertex xi

can be modelled by its index i. As a consequence, Ω can be
represented as an integer vector VΩ of length |Ω| such that
VΩ [i] = xi for any i ∈ [[1, |Ω|]]. The space cost of VΩ is |Ω|.

The set V contains values vi for i ∈ [[1, |V |]]. Each value
vi can be modelled by its index i. As a consequence, V can be
represented as an integer vector VV of length |V | such that
VV [i] = vi for any i ∈ [[1, |V |]]. The space cost of VΩ is |V |.

The valuation I is a mapping between Ω and V . It can
be modelled as an integer vector VI of length |Ω| such that
I(VΩ [i]) = VV [VI [i]] for any i ∈ [[1, |Ω|]]. The space cost of
VI is |Ω|.

The adjacency relation a is a part of Ω × Ω. It may
be modelled as a |Ω| × |Ω| Boolean matrix, but this would
require a space cost |Ω|2. In general, each vertex xi has its
number of adjacent vertices bounded by a low constant value
mΩ ≪ |Ω|, and the induced Boolean matrix is then sparse.
Under this hypothesis, it is relevant to handle a as a mapping
from Ω to 2Ω that associates to each vertex xi the set of its
adjacent vertices. Practically, a is then modelled as a vector
of integer vectors Va of length |Ω| such that for each i ∈
[[1, |Ω|]], the integer vector Va[i] of size mΩ,i ≤ mΩ , is such
that for all j ∈ [[1,mΩ,i]], the vertices VΩ [i] and VΩ [Va[i][j]]
are adjacent. Note that Va[i][j] is an element of Va[i] if and
only if i is an element of Va[Va[i][j]]. In other words, we store
twice each adjacency link. The space cost of Va is O(|Ω|).

The order relation ≺ is a part of V × V . It may be mod-
elled as a |V | × |V | Boolean matrix, but this would require a
space cost |V |2. In general, each value of V has its number
of successors bounded by a low constant value m≺ ≪ |V |,
and the induced Boolean matrix is then sparse. Under this
hypothesis, it is relevant to handle ≺ as a mapping from V
to 2V that associates to each value v the set of its successors.
Practically, ≺ is then modelled as a vector of integer vectors
V≺ of length O(|V |). For each i ∈ [[1, |V |]], the vector V≺[i]
contains all the indices j such that VV [i] ≺ VV [V≺[i][j]]. The
space cost of V≺ is O(|V |).

If the provided input is the ordered value set (V,6) in-
stead (V,≺), then we have to explicitly compute (V,≺) from

(V,6). The time cost for this process depends on the nature
of (V,6). It may vary from O(|V |) in the simplest cases (e.g.
numerical lattices) up to O(|V |α) with 2 ≤ α ≤ 3 when we
have to carry out a transitive reduction on (V,6) in order to
obtain (V,≺), which has the same time cost as a transitive
closure [22].

D.2 Remarks on the partially ordered value sets

We assume that we are able to compare two values v, w ∈ V ,
with respect to 6, in constant time O(1). In general, this hy-
pothesis is relevant since most order relations are derived from
computable relations (e.g. order relations on Boolean, inte-
ger or floating values in standard programming languages).
However, in few cases, it may happen that we need the ex-
plicit computation and storage of the order relation as a data
structure, which generally implies a O(|V |2) space cost and
possibly a polynomial time cost O(|V |α) (with, generally,
2 ≤ α ≤ 3) for its computation if the only input was the
Hasse diagram (V,≺) of the ordered set (V,6).

The overall space and time cost of the construction of a
component-graph is also conditioned by the nature of (V,6).
Indeed, the time cost of the algorithm depends, in part, on the
ability to rapidly determine

`
6 v↓ ∩w↓ for given two values

v, w ∈ V . This is, in particular, the algorithmic foundation of
function ν

`
(Equation (42)).

In the case where v and w are comparable, i.e. v 6 w or
w 6 v, the definition of

`
6 v↓∩w↓ is simply {v} or {w}, and

the issue is then related to the time cost for assessing which
of v or w is greater (see paragraph above).

In the case where v and w are non-comparable, i.e. v 66 w
and w 66 v, the access to

`
6 v↓ ∩w↓ may be more tricky. In

the simplest cases (e.g. for numerical lattices),
`

6 v↓ ∩ w↓

remains a singleton set, and it can be determined in con-
stant time O(1) if the Hasse diagram (V,≺) is available
(which is mandatory for building the component-graph). In
less favourable cases, the cost for having access to this infor-
mation for a couple of values (v, w) may be up to |v↓ ∪ w↓|,
that is O(|V |) in the worst cases. In the sequel, and in par-
ticular in Section D.6, we will note this cost C. We will keep
in mind that O(1) ≤ C ≤ O(|V |), but we encourage the in-
terested readers to consider the construction of component-
graphs in the cases of ordered sets (V,6) such that C = O(1).

D.3 Flat zone image computation (see Section 6)

Building a flat zone image consists of partitioning Ω into
a new set of regions Φ, which are the vertices for a more
compact graph. Each of these new vertices pi ∈ Φ, that can
be indexed by an integer value i ∈ [[1, |Φ|]], gathers one or
many vertices of Ω. It is relevant to handle the mapping from
Φ to 2Ω (or equivalently, the inverse non-injective mapping
from Ω to Φ) that associates to each vertex pi ∈ Φ the set of
the corresponding vertices in Ω. Practically, this mapping is
modelled as a vector of integers VΦ of length |Ω| such that for
each i ∈ [[1, |Ω|]], the vertex VΩ [i] ∈ Ω is one of the vertices
forming the flat zone corresponding to the vertex pVΦ[i] ∈ Φ
of label VΦ[i]. The space cost of VΦ is |Ω|. The time cost for
its construction (Algorithm 1) is O(|Ω|).

A new valuation IΦ on Φ is induced by the valuation I in
Ω (Equation (31)). It is modelled as an integer vector VIΦ

of
length |Φ| such that for any i ∈ [[1, |Ω|]] we have VIΦ

[VΦ[i]] =
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VI [i]. The space cost of VIΦ
is |Φ|, and it can be built in

parallel to VIΦ
with no extra-cost (Algorithm 1).

We then have to define the adjacency relation aΦ between
the vertices of Φ, induced by the adjacency a between those
of Ω (Equation (30)). Practically, aΦ is modelled as a vector
of integer vectors VaΦ

of length |Φ|, similarly to Va. For each
i ∈ [[1, |Φ|]], the integer vector VaΦ

[i] of size mΦ,i ≤ mΦ (mΦ

may differ from mΩ , but can still be assumed to be a low
constant value mΦ ≪ |Φ|), is such that for all j ∈ [[1,mΦ,i]],
the vertices of index i and VaΦ

[i][j] are adjacent. Note that
VaΦ

[i][j] is an element of VaΦ
[i] if and only if i is an element of

VaΦ
[VaΦ

[i][j]]. In other words, we store twice each adjacency
link. The space cost of VaΦ

is O(|Φ|). The time cost for its
construction (Algorithm 2) is O(|Ω|).

Algorithm 1: Construction of VΦ and VIΦ

Input: VI , Va
Output: VΦ, VIΦ

1 foreach i ∈ [[1, |Ω|]] do
2 VΦ[i]← 0

3 k ← 0
4 foreach i ∈ [[1, |Ω|]] do
5 if VΦ[i] = 0 then

6 k ← k + 1
7 VΦ[i]← k
8 VIΦ [k]← VI [i]

9 L ← ∅
10 foreach j ∈ Va[i] do
11 if VI [i] = VI [j] then
12 L.push(j)

13 while L 6= ∅ do

14 h← L.pop()
15 if VΦ[h] = 0 then

16 VΦ[h]← k
17 foreach j ∈ Va[h] do
18 if VI [h] = VI [j] then
19 L.push(j)

Algorithm 2: Construction of VaΦ

Input: VI , Va, VΦ
Output: VaΦ

1 foreach i ∈ [[1, |Φ|]] do
2 VaΦ

[i]← ∅

3 foreach j ∈ [[1, |Ω|]] do
4 foreach k ∈ Va[j] do
5 if VI [j] 6= VI [k] then
6 VaΦ

[VΦ[j]].add(VΦ[k])

D.4 Leaves computation (Section 7)

The leaf-points constitute a subset of the vertices of Φ. Each
vertex λℓ of this subset Λ ⊆ Φ can be modelled by its index
ℓ ∈ [[1, |Λ|]] (Equation (44)). In particular, each index ℓ in
[[1, |Λ|]] is simply a renaming of an index of [[1, |Φ|]] with re-
spect to Φ. We model this injective mapping from [[1, |Λ|]] to
[[1, |Φ|]] by defining a vector of integers VΛ of length |Λ| such

that for any ℓ ∈ [[1, |Λ|]], the leaf-point λℓ in Λ is equal to the
vertex pVΛ[ℓ] of index VΛ[ℓ] ∈ [[1, |Φ|]] in Φ. The space cost of
VΛ is |Λ|. The time cost for its construction (Algorithm 3) is
O(|Φ|).

Algorithm 3: Construction of VΛ

Input: VIΦ , VaΦ
Output: VΛ

1 ℓ← 0
2 foreach i ∈ [[1, |Φ|]] do
3 b← true
4 foreach j ∈ VaΦ[i] do

5 if VIΦ [i] < VIΦ [j] then
6 b← false

7 if b then

8 ℓ← ℓ + 1
9 VΛ[ℓ]← i

D.5 Influence zones computation (Section 8)

Building the influence zones of the flat zone image consists
of assigning to each vertex of Φ the label of the leaf-point
of Λ that defines the influence zone where it lies. We model
this mapping from [[1, |Φ|]] to [[1, |Λ|]] by defining a vector of
integers Vρ of length |Φ| such that the vertex pi in Φ of index
i ∈ [[1, |Φ|]] lies in the influence zone ρ(pVΛ[Vρ[i]]) of the leaf-
point λVρ[i] of Λ of index Vρ[i] in [[1, |Λ|]]. The space cost of
Vρ is |Φ|. The time cost for its construction (Algorithm 4) is
O(|Φ|).

Algorithm 4: Construction of Vρ

Input: VIΦ , VaΦ
, VΛ

Output: Vρ
1 foreach i ∈ [[1, |Φ|]] do
2 Vρ[i]← 0

3 foreach ℓ ∈ [[1, |Λ|]] do
4 i← VΛ[ℓ]
5 Vρ[i]← ℓ
6 L ← ∅
7 foreach j ∈ VaΦ

[i] do
8 if Vρ[j] = 0 and VIΦ [i] > VIΦ [j] then
9 L.push(j)

10 while L 6= ∅ do

11 k ← L.pop()
12 Vρ[k]← ℓ
13 foreach j ∈ VaΦ

[k] do
14 if Vρ[j] = 0 and VIΦ [k] > VIΦ [j] then
15 L.push(j)

D.6 Influence zones graph construction (Section 9)

The vertices of the influence zone graph are the influence
zones of the leaf-points or, equivalently, the leaf-points them-
selves. The only task for building this graph is then to define
the adjacency relation aΛ between the vertices of Λ, induced
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by the adjacency aΦ between those of Φ (Equation (38)).
Practically, aΛ is modelled as a vector of integer vectors
VaΛ

of length |Λ|, similarly to VaΦ
. For each ℓ ∈ [[1, |Λ|]],

the integer vector VaΛ
[ℓ] of size mΛ,ℓ ≤ mΛ (mΛ may differ

from mΦ, but can still be assumed to be a low constant value
mΛ ≪ |Λ|), is such that for all k ∈ [[1,mΛ,ℓ]], the vertices
of index ℓ and VaΛ

[ℓ][k] are adjacent. Note that VaΛ
[ℓ][k]

is an element of VaΛ
[ℓ] if and only if ℓ is an element of

VaΛ
[VaΛ

[ℓ][k]]. In other words, we store twice each adjacency
link. The space cost of VaΛ

is O(|Λ|). The time cost for its
construction (Algorithm 5) is O(|Φ|).

It is then necessary to define the valuation ν of the edges
of the graph (Λ,aΛ) (Equation (39)). As discussed in Sec-
tion 9, it is not necessary to store the whole function ν. In par-
ticular, a less costly function, namely ν

`
can be considered

(Equation (42)). We observe that ν
`

will then be involved in
the construction of the connected components of the thresh-
olded graph of (Λ,aΛ) at each value v ∈ V (Equation (59)).
In this context, it is indeed relevant to associate to each value
v ∈ V the set of all edges e of aΛ such that v ∈ ν

`
(e), instead

of associating to each edge e the set of values ν
`
(e). In other

words, we model the mapping ν
`

−1 instead of ν
`
. This is

done by defining a vector of integer vectors Vν of length |V |.
For each i ∈ [[1, |V |]], the integer vector Vν [i] provides all the
couples of indices (ℓ, k) such that (VΛ[ℓ],VΛ[k]) is an edge of
aΛ that satisfies VV [i] ∈ ν

`
((VΛ[ℓ],VΛ[k])). The space cost

of Vν is O(|V | + |Φ|), since the vector Vν is of length |V |,
whereas the total amount of edges stored is at most the same
as for aΦ, multiplied by a low value (assumed constant) that
bounds |

`
6 u↓ ∩ v↓| for any u, v ∈ V . The time cost for its

construction (Algorithm 6) is (|V | + |Φ|.C) (see Section D.2
for the definition of C). Note that for each i ∈ [[1, |V |]], the size
of Vν[i] is in average O(|Φ|/|V |), that can be considered as
a constant value β. In particular, ensuring that Vν[i] has no
extra occurrence of each element (that is equivalent to main-
taining the set sorted) has a time cost O(β log β) whereas
ensuring that each of its elements is a maximal one has a
time cost O(β2). These costs are then assumed to remain
constant, and not to impact the overall cost (|V |+ |Φ|.C).

Algorithm 5: Construction of VaΛ

Input: VΛ, VaΦ
, Vρ

Output: VaΛ

1 foreach ℓ ∈ [[1, |Λ|]] do
2 VaΛ

[ℓ]← ∅

3 foreach i ∈ [[1, |Φ|]] do
4 foreach j ∈ VaΦ

[i] do
5 if Vρ[i] 6= Vρ[j] then
6 VaΛ

[VΛ[i]].add(VΛ[j])

D.7 Connected component computation (Section 11.1)

At this stage, we have to build the connected components of
the thresholded influence zone graphs for each value v of V .
As stated in Section 11.1, this consists of computing, for each
value v, the matrix Cv, which is a Boolean matrix of size |Λ|×
|Λ| corresponding to the reflexive–transitive closure of the
adjacency matrix Av of the thresholded influence zone graph
at value v. More efficiently, this adjacency matrix Av can be
replaced by a matrix Bv (Equation (59)) defined from the

Algorithm 6: Construction of Vν

Input: VΛ, VIΦ , VaΦ
, Vρ

Output: Vν
1 foreach i ∈ [[1, |V |]] do
2 Vν ← ∅

3 foreach i ∈ [[1, |Φ|]] do
4 foreach j ∈ VaΦ

[i] do
5 if Vρ[i] 6= Vρ[j] then

6 M ←
`6 VIΦ [i]↓ ∩ VIΦ [j]↓

7 foreach k ∈M do

8 Vν [k].add((VΛ[i],VΛ[j]))
9 Vν [k].add((VΛ[j],VΛ[i]))

matrices Cw for any values w ≻ v, the set of edges belonging
to ν

`
−1({v}) (Section D.6), and the set of leaves of value v.

In particular, the Bv and Cv matrices are built in a recursive,
top-down fashion from the maximal values of (V,6) to its
minimium ⊥.

For each value v, the matrix Cv is most often a sparse ma-
trix. Indeed, it is a |Λ| × |Λ| Boolean matrix, but the number
of rows / columns containing at least one non-zero value is
the number Nv ≤ |Λ| of leaf-points of value u > v. Then, Cv

can be handled and stored as a Nv ×Nv matrix. In addition,
each remaining row / column of Cv can contain a number of
non-zero values that is lower than Nv. Storing the indices of
these elements is indeed sufficient for preserving the informa-
tion of the whole matrix. Then, Cv is stored as a vector of
integer vectors VCv

of length Nv. For each i ∈ [[1, Nv]], Cv[i]
is a vector that contains as first element Cv[i][0] the index i of
a leaf-point VΛ[i] of Λ of value u > v. Note that the Cv[i][0]
indices are sorted from the lowest (for i = 1) to the greatest
(for i = Nv). For a given vector Cv[i], the elements Cv[i][j]
for j > 0 are the indices of the leaf-points VΛ[VCv

[i][j]] which
are connected to VΛ[i] in the thresholded influence zone graph
at value v. Note that the Cv[i][j] indices are sorted from the
lowest (for j = 1) to the greatest. The space cost of VCv

is
equal to the number of non-zero values of Cv and is in partic-
ular in O(N2

v ). The time cost for its computation is O(Nα
v )

with 2 ≤ α ≤ 3, and α close to 2 in many cases. Indeed, it
proceeds in two steps.

First, we have to build the vector of integer vectors VBv
of

the matrix Bv (which is structured the same way as VCv
). It

is simply the element-wise disjunction of the matrices Cw for
w ≻ v, and two other matrices corresponding to the vector of
Vν [a] with v = VV [a] and the subset of indices ℓ of VΛ such
that VIΦ

[VIΛ
[ℓ]] = v, respectively. These last two matrices

are structured the same way as VCv
. By assuming that the

number of successors for the relation ≺ is bounded by a low
constant value m≺, the cost for building this disjunction is
O(N2

v ), since it corresponds to the merging of several sorted
lists while maintaining the values ordered.

Second, we have to compute the reflexive–transitive clo-
sure of VBv

. This is a simple matrix product procedure that

consists of computing B2k

v for k > 0 until convergence. In the
worst case, the number of iterations is log2 Nv. In average, it
is in general a low constant value. Each iteration consists of a
self-product which time cost is, in theory, N3

v . However, since
Bv is initially reflexive, the non-zero values in Bv remain non-
zero in the next product matrices. Concerning the other, zero
elements, only those corresponding to a couple of row and
column that was modified at the previous step need to be
recomputed (otherwise, the value remains necessarily zero).
Finally, only the zero elements corresponding to rows and /
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or columns that were modified at the previous steps need an
update, which cost is in the worst case linear with respect to
the number of non-zero values in the corresponding row and
column. In practice, this computation can be stopped when
a couple of equal values is identified in the couple of row /
column. The overall cost for this computation is then O(Nα

v )
with 2 ≤ α ≤ 3, and α close to 2 in many cases.

D.8 Hasse diagram enrichement (Sections 11.2 and

11.3)

The final step for building the component-graph consists of
defining the function θ (resp. ε) that provides, for each value
v of V (resp. each edge (v, w) of ≺) the set of the labels of the
canonical leaf-points corresponding to the valued connected
components at value v (resp. the couples of labels of canonical
leaf-points that are linked by the ◭ relation between values
v and w in the component-graph).

On the one hand, the mapping θ is modelled by a vector
of integer vectors Vθ of length |V |. For each i ∈ [[1, |V |]],
the vector Vθ[i] contains all the indices j such that VΛ[j] ∈
θ(VV [i]). The space cost of Vθ is |Θ|. The time cost for the
computation of each of its |V | vectors Vθ[i] (from VCv

) is Nv

with v = VV [i] since it is sufficient to scan the vector VCv

and to add to Vθ[i] all the indices VCv
[j][0], for 1 ≤ j ≤ Nv,

such that VCv
[j][0] = VCv

[j][1].
On the other hand, the mapping ε is modelled by a vector

of vectors of vectors of couples of integers Vε of length |V |.
For each valid couple of indices (i, j), the vector Vε[i][j] con-
tains all the couples (ℓ, k) of indices such that VΦ[VΛ[ℓ]] and
VΦ[VΛ[k]] are leaf-points satisfying VIΦ

[VΦ[VΛ[ℓ]]] = VV [i]
and VIΦ

[VΦ[VΛ[k]]] = VV [j] and (k,VV [j]) ◭ (ℓ,VV [i]). The
space cost of Vθ is |◭|. The time cost for the computation of
each of its |≺| vectors Vε[i][j] (from Vθ[j] and VCVV [i]

) is Nv

with v = VV [i]. Indeed, for each a in Vθ[j] one has to add the
couple (VCVV

[b][1], a) such that VCVV
[b][0] = a.
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