Geometric-preserving rigid motions of digital objects

Phuc Ngo

Joint work with
Nicolas Passat Yukiko Kenmochi Isabelle Debled-Rennesson

21 Juin 2018

Rigid motion on \mathbb{R}^{2}

A rigid motion is a bijection defined for $x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$, as

$$
\mathcal{T}_{a b \theta}(\mathrm{x})=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{\mathrm{x}_{1}}{\mathrm{x}_{2}}+\binom{a}{b}
$$

with $a, b \in \mathbb{R}$ and $\theta \in[0,2 \pi[$.

Rigid motion on \mathbb{Z}^{2}

A digital rigid motion on \mathbb{Z}^{2} is defined for $p=\left(p_{1}, p_{2}\right) \in \mathbb{Z}^{2}$ as

$$
T_{\text {Point }}(\mathbf{p})=D \circ \mathcal{T}_{a b \theta}(\mathbf{p})=\binom{\left[\mathbf{p}_{1} \cos \theta-\mathbf{p}_{2} \sin \theta+a\right]}{\left[\mathbf{p}_{1} \sin \theta+\mathbf{p}_{2} \cos \theta+b\right]}
$$

where $D: \mathbb{R}^{2} \rightarrow \mathbb{Z}^{2}$ is digitization (a rounding function).

Digitized motion and topology preservation

A digital rigid motion on \mathbb{Z}^{2} is defined for $p=\left(p_{1}, p_{2}\right) \in \mathbb{Z}^{2}$ as

$$
T_{\text {Point }}(\mathbf{p})=D \circ \mathcal{T}_{a b \theta}(\mathbf{p})=\binom{\left[\mathbf{p}_{1} \cos \theta-\mathbf{p}_{2} \sin \theta+a\right]}{\left[\mathbf{p}_{1} \sin \theta+\mathbf{p}_{2} \cos \theta+b\right]}
$$

where $D: \mathbb{R}^{2} \rightarrow \mathbb{Z}^{2}$ is digitization (a rounding function).
Topology is often altered by digitized rigid motions.

Problem induced by point-wise rigid motion model

Shape and digitization

Given a bounded and connected subset $X \subset \mathbb{R}^{2}$, its Gauss digitization is defined as:

$$
X=X \cap \mathbb{Z}^{2} .
$$

Digitization and topology preservation

Given a bounded and connected subset $X \subset \mathbb{R}^{2}$, its Gauss digitization is defined as:

$$
X=X \cap \mathbb{Z}^{2} .
$$

Topology can be altered under the digitization process.

r-regularity for topology preservation

Definition [Pavlidis, 1982]

A bounded and connected subset $X \subset \mathbb{R}^{2}$ is r-regular if for each boundary point of X, there exist two tangent open balls of radius r, lying entirely in X and its complement \bar{X}, respectively.

r-regularity for topology preservation

Definition [Pavlidis, 1982]

A bounded and connected subset $X \subset \mathbb{R}^{2}$ is r-regular if for each boundary point of X, there exist two tangent open balls of radius r, lying entirely in X and its complement \bar{X}, respectively.

The objects of \mathbb{R}^{2} with differentiable boundaries.

r-regularity for topology preservation

Proposition [Pavlidis, 1982]

An r-regular set $X \subset \mathbb{R}^{2}$ has the same topology as its digitized version $X=X \cap \mathbb{Z}^{2}$ if $r \geq \frac{\sqrt{2}}{2}$.

r-regularity for topology preservation

Proposition [Pavlidis, 1982]

An r-regular set $X \subset \mathbb{R}^{2}$ has the same topology as its digitized version $X=X \cap \mathbb{Z}^{2}$ if $r \geq \frac{\sqrt{2}}{2}$.

Objects with non-differentiable boundaries (e.g. polygons) ?

Digital regularity for topology preservation

Definition [Ngo et al., 2014]

Let $X \subset \mathbb{Z}^{2}$ be a well-composed set with no singular point. X is digitally regular if for any $\{\mathrm{p}, \mathrm{q}\} \subset \mathrm{X}($ resp. $\overline{\mathrm{X}}$) of 4-adjacent points, there exists a 2×2 square of points $\{x, y, z, t\}=\{x, x+(0,1), x+$ $(1,0), \mathrm{x}+(1,1)\}$ s.t $\{\mathrm{p}, \mathrm{q}\} \subset\{\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t}\} \subseteq \mathrm{X}$ (resp. $\overline{\mathrm{X}})$.

Digital regularity for topology preservation

Proposition [Ngo et al., 2014]

If a well-composed set $X \subset \mathbb{Z}^{2}$ is digitally regular, then it is topologically invariant under digitized rigid motions.

Digital regularity for topology preservation

Proposition [Ngo et al., 2014]

If a well-composed set $X \subset \mathbb{Z}^{2}$ is digitally regular, then it is topologically invariant under digitized rigid motions.

The topology is preserved but not the geometry!

Contributions

- How to preserve the topology of shape whose boundary is non-smooth?
\Rightarrow Quasi- r-regularity
- How to perform topological and geometric-preserving rigid motion of digital objets ?
\Rightarrow Approach via polygonization

Quasi-r-regularity

Definition [Ngo et al., 2018]

Let $X \subset \mathbb{R}^{2}$ be a bounded, simply connected set. If

- $X \ominus B_{r}$ (resp. $\bar{X} \ominus B_{r}$) is non-empty and connected, and
- $X \subseteq X \ominus B_{r} \oplus B_{r^{\prime}}\left(\right.$ resp. $\left.\bar{X} \subseteq \bar{X} \ominus B_{r} \oplus B_{r^{\prime}}\right)$ for $r^{\prime} \geq r>0, X$ is quasi- r-regular with "margin" $r^{\prime}-r$.

r-regularity

Definition (in Mathematical Morphology)

Let $X \subset \mathbb{R}^{2}$ be a finite, simply connected (i.e., connected and wihtout hole) set. If

- $X \ominus B_{r}$ (rep. $X \ominus B_{r}$) is non-empty and connected, and
- $X=X \ominus B_{r} \oplus B_{r}$ (resp. $\bar{X}=\bar{X} \ominus B_{r} \oplus B_{r}$)
for a given $r>0$, we say that X is r-regular.

r-regularity

Definition (in Mathematical Morphology)

Let $X \subset \mathbb{R}^{2}$ be a finite, simply connected (i.e., connected and wihtout hole) set. If

- $X \ominus B_{r}$ (rep. $X \ominus B_{r}$) is non-empty and connected, and
- $X=X \ominus B_{r} \oplus B_{r}$ (resp. $\bar{X}=\bar{X} \ominus B_{r} \oplus B_{r}$) for a given $r>0$, we say that X is r-regular.

Polygonal objects are not r-regular for any $r>0$.

Quasi- r-regularity for topology preservation

Proposition [Ngo et al., 2018]

If X is quasi-1-regular with margin $\sqrt{2}-1$, then $X=X \cap \mathbb{Z}^{2}$ and $\bar{X}=\bar{X} \cap \mathbb{Z}^{2}$ are both 4 -connected. In particular, X is then well-composed.

Quasi- r-regularity for topology preservation

Proposition [Ngo et al., 2018]

If X is quasi- 1 -regular with margin $\sqrt{2}-1$, then $X=X \cap \mathbb{Z}^{2}$ and $\bar{X}=\bar{X} \cap \mathbb{Z}^{2}$ are both 4 -connected. In particular, X is then well-composed.

Quasi- r-regularity for topology preservation

Proposition [Ngo et al., 2018]

If X is quasi-1-regular with margin $\sqrt{2}-1$, then $X=X \cap \mathbb{Z}^{2}$ and $\bar{X}=\bar{X} \cap \mathbb{Z}^{2}$ are both 4 -connected. In particular, X is then well-composed.

Idea of proof:

- $X \circ B_{1}=X \ominus B_{1} \oplus B_{1}$ is 1-regular, then $\left(X \circ B_{1}\right) \cap \mathbb{Z}^{2}$ is 4 -connected.

Quasi- r-regularity for topology preservation

Proposition [Ngo et al., 2018]

If X is quasi-1-regular with margin $\sqrt{2}-1$, then $X=X \cap \mathbb{Z}^{2}$ and $\bar{X}=\bar{X} \cap \mathbb{Z}^{2}$ are both 4 -connected. In particular, X is then well-composed.

Idea of proof:

- $X \circ B_{1}=X \ominus B_{1} \oplus B_{1}$ is 1-regular, then $\left(X \circ B_{1}\right) \cap \mathbb{Z}^{2}$ is 4-connected.
- With any position of \mathbb{Z}^{2}, if there exists $r \in \mathbb{Z}^{2}$ in $X \backslash\left(X \circ B_{1}\right)$, then r is 4-adjacent to a point of $\left(X \circ B_{1}\right) \cap \mathbb{Z}^{2}$.

H-convexity

Definition [Kim, 1981]

A digital object $\mathrm{X} \subset \mathbb{Z}^{2}$ is H -convex if

$$
\mathrm{X}=\operatorname{Conv}(\mathrm{X}) \cap \mathbb{Z}^{2}
$$

where $\operatorname{Conv}(\mathrm{X})$ is the convex hull of X .

Half-plane representation of H-convex object

Let X be a H -convex object containing at least three non-colinear points, $\operatorname{Conv}(X)$ be the convex hull of X. Then,

$$
X=\operatorname{Conv}(X) \cap \mathbb{Z}^{2}=\left(\bigcap_{H \in \mathcal{R}(X)} H\right) \cap \mathbb{Z}^{2}=\bigcap_{H \in \mathcal{R}(X)}\left(H \cap \mathbb{Z}^{2}\right)
$$

where $\mathcal{R}(\mathrm{X})$ is the minimal set of closed half-planes that include X . Each closed half-plane H has coefficients defined by two consecutive vertices of $\mathcal{C o n v}(\mathrm{X})$.

Rigid motion of H-convex object via convex hull

$$
T_{\mathcal{C o n v}}(\mathrm{X})=\mathcal{T}(\operatorname{Conv}(\mathrm{X})) \cap \mathbb{Z}^{2}=\mathcal{T}\left(\bigcap_{\mathrm{H} \in \mathcal{R}(\mathrm{X})} \mathrm{H}\right) \cap \mathbb{Z}^{2}
$$

$\mathcal{C o n v}\left(T_{\operatorname{Conv}}(\mathrm{X})\right) \subseteq \mathcal{T}(\mathcal{C o n v}(\mathrm{X}))$

Rigid motion non-convex object via polygonization

Polygonization

\Downarrow Rigid motion

(Re)digitization

$$
T_{\mathcal{P} o l y}(\mathrm{X})=\mathcal{T}(\mathcal{P o l y}(\mathrm{X})) \cap \mathbb{Z}^{2}
$$

Topological and geometric-preserving rigid motions

Proposition

Let X be a digital object and $T_{\text {Conv }}$ be the rigid motion induced by a rigid motion \mathcal{T}. If X is H -convex, then $T_{\text {Conv }}(\mathrm{X})$ is H -convex.

Proposition

Let X be an H -covnex digital object. If $\operatorname{Conv}(\mathrm{X})$ is quasi-1-regular with margin $\sqrt{2}-1$, then $T_{\text {Conv }}(\mathrm{X})$ is well-composed.

Proposition

Let $\mathrm{X} \subset \mathbb{Z}^{2}$ be a digital object. Let $P(\mathrm{X}) \subset \mathbb{R}^{2}$ be a polygon such that $P(\mathrm{X}) \cap \mathbb{Z}^{2}=\mathrm{X}$. If $P(\mathrm{X})$ is quasi-1-regular with margin $\sqrt{2}-1$, then $T_{\text {Poly }}(\mathrm{X})$ is well-composed.

Experimental results

Experimental results

Experimental results

$T_{\text {Poly }}(\mathrm{X})$

Experimental results

$T_{\text {Point }}(\mathrm{X})$
$T_{\mathcal{P} \text { oly }}(\mathrm{X})$
19 / 24

Online Demonstration

An online demonstration based on the DGtal library, is available at the following website:

http://ipol-geometry.loria.fr/~phuc/ipol_demo/RigidMotion2D

Rigid Motion of Quasi Regular Object: Online Demonstration

```
article demo archive
```

Please cite the reference article if you publish results obtained with this online demo.
This demonstration applies the Rigid Motion on Quasi Regular Objects.

Select Data

Click on an image to use it as the algorithm input.

image credits

Upload 2D Images

Upload your 2D binary image to use as the algorithm input. Note that the algorithm handles only a well-composed object in the image.

```
input image Choose file No file chosen
```


Conclusion

Contributions:

- A sufficient condition, namely quasi-regularity, for preserving the topology and certain geometric properties during the Gaussian digitization.
- A rigid motion scheme based on polygonal representation that preserves geometry and topology properties of the transformed digital object.

Perspectives:

- Geometric characterization of quasi-regularity.
- A polygonalization method providing quasi-regular polygons of digital objects.
- Regularization method for non quasi-regular polygons.

Thank you for your attention!

References I

Kim, C. E. (1981).On the cellular convexity of complexes.
IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-3(6):617-625.

图 Lien, J.-M. and Amato, N. M. (2006).
Approximate convex decomposition of polygons.
Comput. Geom. Theory Appl., 35(1-2):100-123.
Ngo, P., Passat, N., Kenmochi, Y., and Debled-Rennesson, I. (2018).

Geometric preservation of 2d digital objects under rigid motions.
Submitted to Journal of Mathematical Imaging and Vision.

References II

Ngo, P., Passat, N., Kenmochi, Y., and Talbot, H. (2014).
Topology-preserving rigid transformation of 2D digital images.
IEEE Transactions on Image Processing, 23(2):885-897.
圊 Pavlidis, T. (1982).
Algorithms for graphics and image processing.
Berlin: Springer, and Rockville: Computer Science Press.

Rigid motion non-convex object via polygonization

Rigid motion

Polygonization of digital objects

The method is based contour points and the convex hull

1. Extract 8-connected contour points of X
2. Compute convex hull of X
3. Determine the segments that best fit the concave parts of X

$$
\mathbf{X}=P(\mathbf{X}) \cap \mathbb{Z}^{2}
$$

Convex decomposition of polygons

The method [Lien and Amato, 2006] decomposes a simple polygon into convex pieces by iteratively removing the most significant non-convex features.

$$
\begin{gathered}
P=\bigcup P_{i} \\
\mathbf{X}=P(\mathbf{X}) \cap \mathbb{Z}^{2}=\bigcup\left(P_{i} \cap \mathbb{Z}^{2}\right) .
\end{gathered}
$$

Extension to 3D

Definition

Let $X \subset \mathbb{R}^{3}$ be a bounded, simply connected set. If

- $X \ominus B_{r}$ (resp. $\bar{X} \ominus B_{r}$) is non-empty and connected, and
- $X \subseteq X \ominus B_{r} \oplus B_{r^{\prime}}\left(\right.$ resp. $\left.\bar{X} \subseteq \bar{X} \ominus B_{r} \oplus B_{r^{\prime}}\right)$
for $r^{\prime} \geq r>0, X$ is quasi- r-regular with "margin" $r^{\prime}-r$.

Proposition

Let $X \subset \mathbb{Z}^{3}$ be a digital object. If X is quasi-1-regular with margin $\frac{2}{\sqrt{3}}-1$, then $X=X \cap \mathbb{Z}^{3}$ and $\bar{X}=\bar{X} \cap \mathbb{Z}^{3}$ are both 6-connected.

Experimental results

