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1 Introduction

In the past decades, considerable e↵orts have been devoted to the enhance-
ment of nonlinear systems and their stability and nonlinear phenomena. Al-
though the stability of these systems can be improved by Lyapunov analy-
sis. Because linear superposition is no longer available, explicit formula are
di�cult to come by, numerical approximations are not always su�ciently
accurate [1]. The advent of powerful computers has fomented a veritable
revolution in our understanding of nonlinear systems. Indeed, many of the
most important modern analytical techniques drew their inspiration from
early computer-aided investigations of nonlinear systems [2]. Most systems
are nonlinear with characteristics that change with time, since that, in a
dynamic operating mode, we cannot guaranteed the strong performance of
the linearized model-based controllers of nonlinear systems. Therefore, the
nonlinearities of nonlinear systems are required for an intelligent controller.
To improve the behavior of nonlinear controllers, many techniques have been
proposed for their design, such as fuzzy logic [3], adaptive antiswing con-
trol strategy for crane systems [4], artificial neural networks [5, 6], adaptive
switched non-strict-feedback nonlinear systems [7], metaheuristic algorithms
[8], nonlinear designs using variable structure control (sliding mode, syner-
getic control), design of an adaptive fuzzy control for stochastic nonlinear
systems with unmeasured states [9, 10], controlling underactuated systems
[11], stabilizing control strategy for underactuated ship-mounted crane sys-
tems [12], and many other nonlinear control techniques [13, 14]. The advan-
tage of fuzzy logic control methods is that we can obtain and adjust online
the parameters of the system. In order to make the design more adaptable,
the combination between fuzzy logic and other control methods such as syn-
ergetic control is made [15]. To reduce the algorithm complexity, simplified
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models of nonlinear systems are used. Furthermore, reduced computational
burdens for realistic models are required to design a robust controller under
di↵erent operating conditions. An adaptive nonlinear fuzzy control technique
has obtained a great attention based on the universal approximation theo-
rem, however, most results are limited to continuous nonlinear systems[2],
which cannot be extended to discrete-time nonlinear systems directly. The
implementation of a fuzzy control algorithms in digital calculators involve the
loss of some advantages of continuous time controllers. However, it should
be mentioned that the used controller is a discrete-time systems [16]. In
[17], an indirect fuzzy adaptive controller algorithm for uncertain nonlin-
ear systems was developed where Takagi-Sugeno (T-S) fuzzy input output
model was used to approximate the nonlinear system dynamics, an adaptive
feedback controller model was designed [18], [19] using the (T-S) fuzzy mod-
els. Authors in [20] had developed a solution framework and control design
for adaptive control discrete-time input-output multiple-delay T-S fuzzy sys-
tems. We have proposed a new adaptive fuzzy synergetic control scheme for
uncertain nonlinear discrete-time systems.
So we have organized our work as follows. Section 2 presents the basics in the
design of a synergetic control, in Section 3, the nonlinear systems described
by discrete-time equations for which the design of a synergetic controller is
performed. Fuzzy IF-THEN rules are presented in section 4 which show how
an adaptive synergetic controller can estimates the nonlinear dynamics of the
nonlinear systems based on the intelligent approach of the fuzzy logic. In sec-
tion 5, through the Lyapunov stability analysis, we demonstrate the stability
of the nonlinear discrete-time system and derive the adaptation law. The
e↵ectiveness of the proposed adaptive synergetic fuzzy controller (ASFC) is
illustrated by the design for a real world example in section 6. In Section 7,
conclusion and some perspectives are given.

2 Basics in Synergetic Control Design

The synergetic control is a novel nonlinear control technique that take into
account the nonlinearities of system in the control design. A systematic
design procedure which yields control laws suitable for digital implementation
are o↵ered [21, 22]. Moreover, synergetic control not only gives constant
switching frequency operation, but also provides asymptotic stability with
respect to the required operating conditions, and robustness in parameters
variation of the system [1, 15].
The designer can select the characteristics of the macro-variable according
to performances and control specifications (overshoot, control signal limits,
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etc...) which make the design more robust. Thus the control law, will not
cause chattering phenomena as in the sliding mode control approach.
The parameters were optimized and the implementation is easy to realize
due to use of measurable variables in the control law.
Let’s consider an nth order dynamic nonlinear systems described as :

x(k + 1) = f(x(k), u(k), k) (1)

Where x(k) represents the system vector, u(k) the control input vector and
f is an nonlinear function. The synthesis of a synergetic controller starts
with the selection of a function of the system state variables, which is called
the macro-variable and depend on the state variables.

 =  (x(k), k) (2)

The control objective is to force the system state to operate on the manifold
 = 0. The designer can select the characteristics of the macro-variable ac-
cording to performances and control specifications (overshoot, control signal
limits, etc...).
In continuous-time synergetic approach, to control theory (SACT) procedure,
T  ̇ +  = 0 defines the speed and trajectory of convergence to the invariant
manifold [23]. Considering sampling period Ts, the discrete counterpart is
derived as follows :

T

h
 (k + 1)�  (k)

Ts

i
+  (k) = 0 (3)

Where T is a design parameter that specifies the convergence speed to the
manifold.
Equation (3) can be rewritten as :

T

Ts

⇣
T

Ts � T

⌘
 (k + 1) +  (k) = 0 (4)

3 Design of Synergetic Controller

Consider a discrete-time nonlinear systems which have the state space rep-
resentation :

8
>>>>>>><

>>>>>>>:

x1(k + 1) = x2(k)
x2(k + 1) = x3(k)

...
xn�1(k + 1) = xn(k)
xn(k + 1) = f(x(k)) + u(k) + d(k)
y(k) = x1(k)

(5)
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where f(x(k)) is a nonlinear function, x(k) = [x1(k),
x2(k), ..., xn(k)]T 2 Rn is the state vector of the systems which is assumed
to be available for measurement, u(k) 2 R and y(k) 2 R are respectively,
the input and the output of the system, and d(k) is the external disturbance
which is assumed to be bounded.
Define the tracking errors as :

e1(k) = x1(k)� yd(k)

e2(k) = x2(k)� yd(k + 1)
...

en(k) = xn(k)� yd(k + n� 1)

where yd(k) denote the reference trajectory. The tracking error equation is
given as :

e(k + 1) = Ae(k) + B

h
f(x(k)) + u(k)

� yd(k + n) + d(k)
i (6)

Where

A =

2

666664

0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 1
0 0 0 0 · · · 0 0

3

777775
, B =

2

666664

0
0
...
0
1

3

777775
(7)

The objective of the control is to design a controller for the state x1(k) to
track a desired reference signal yd(k) in the presence of external disturbance
and uncertainties d(k). The control u(k) is calculated according to (4) and
(6), which gives a control signal that ensures a specified properties. Let’s
define the macro-variable as :

 (k) = 1e1(k) + e2(k) =
n�1X

i=1

iei(k) + en(k) (8)

 (k + 1) = 1e1(k + 1) + e2(k + 1) (9)

Where 1 is the SACT controller parameter.
Where :

e1(k + 1) = x1(k + 1)� yd(k + 1) (10)

e2(k + 1) = x2(k + 1)� yd(k) (11)
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 (k + 1) = 1x1(k + 1)� 1yd(k + 1)

+x2(k + 1)� yd(k)
(12)

 (k + 1) = 1x2(k)� 1yd(k + 1) + f(x(k))

+ u(k) + d(k)� yd(k)
(13)

The incremental change in  (k) can be expressed by :

� (k + 1) =  (k + 1)�  (k)

=
n�1X

i=1

iei(k + 1) + en(k + 1)

�
n�1X

i=1

iei(k)� en(k)

� (k + 1) =
n�1X

i=1

iei(k + 1) + xn(k + 1)

� yd(k + n)�
n�1X

i=1

iei(k)� en(k)

� (k + 1) =
n�1X

i=1

iei(k + 1) + f(x(k))

� yd(k + n) + ueq(k)

�
n�1X

i=1

iei(k)� en(k)

(14)

Let’s take

↵ =
T

Ts

⇣
T

Ts � T

⌘
(15)

Combining equations (12) and (4) yields :

↵

h
1x2(k)� 1yd(k + 1) + f(x(k))

+ u(k) + d(k)� yd(k)
i
+  (k) = 0

(16)

The synergetic control law is then deduced and given as (17) :

u(k) = �f(x(k))� 1x2(k) + 1yd(k)

+ yd(k)� d(k)� 1

↵
 (k)

(17)
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If f(x(k)) is known, we can easily construct the synergetic control law (17).
However, this controller contains a constraint : knowledge of f(x(k)) which
is not always possible making the implementation impossible.
Therefore, to overcome this obvious problem, an adaptive synergetic fuzzy
controller using fuzzy logic system is proposed in the next section.

4 Adaptive Synergetic Fuzzy Controller

Since f(x(k)) is unknown, we cannot implement the ideal controller (17), we
suppose that a fuzzy system can approximate f(x(k)). A fuzzy system is a
collection of IF-THEN rules in the form :

R
(l) : IF x1 is F l

1 and ... and xn is F l
n THEN y is Gl (18)

Where x = (x1, ..., xn)T is the input of the fuzzy systems, and y is it’s output,
F

l
i and G

l are fuzzy sets, for l = 1, ...,m.
Using singleton fuzzification method, product inference, and center-average
defuzzification, y(x) is given by [24, 25, 26, 27] :

y(x) =

mX

j=1

y
j
⇣ nY

i=1

µF j
i
(xi)

⌘

mX

j=1

nY

i=1

µF j
i
(xi)

(19)

Where µF j
i
(xi) is the membership function of the linguistic variable xi and y

j

is the point at which the membership function of Gl achieves its maximum
value.
Introducing the concept of fuzzy basis function vector ⇠(x), y(x) is given by
(19) and can be rewritten as :

y(x) = ✓
T
⇠(x) = ⇠(x)T ✓ (20)

Where ✓ = [y1, ..., ym]T , ⇠(x) = [⇠1(x), ..., ⇠m(x)]T are the fuzzy basis func-
tions given by :

⇠
j(x) =

nY

i=1

µF j
i
(xi)

mX

j=1

nY

i=1

µF j
i
(xi)

(21)
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Using the universal approximation theorem, we can use f̂(x(k)|✓f ) = ✓
T
f ⇠f (x(k))

in the form of (20) in order to approximate the function f(x(k)).
Therefore, a new control law is obtained :

uc(k) = �f̂(x(k))� x2(k) + yd(k)

+ yd(k)� d(k)� 1

↵
 (k)

(22)

5 Stability Analysis

Theorem :
Taking in account the control problem of the nonlinear system (5), with
the robust adaptive fuzzy synergetic controller given by (22), f̂ is used and
the parameter vector ✓f (k) can be tuned by the adaptive law given in (23),
the signals in the closed-loop are ultimately bounded and the tracking error
converges to neighborhood of origin [28, 29].

�✓f (k) = �⇠(k) (k) (23)

Where � is a real constant determining the adaptation rate. Let us defining
the optimal parameter vector :

✓
⇤
f = arg min

✓f2⌦✓f

(
sup
x2⌦x

���f(x(k))� f(x(k)|✓f )
���

)
(24)

Where ⌦✓f and ⌦x are constraint sets for ✓f and x respectively.
The minimum approximation error is as follows :

"(k) = f(x(k))� f(x(k)|✓⇤f ) + d(k) (25)

The fuzzy control u(k), is chosen in the closed-loop system as :

u(k) = uc(k) + ur(k) + u (k) = uc(k) + ur(k)� ⌧ (k) (26)

Where the term ur(k) is a robust controller which is used to attenuate the
external disturbance.

ur(k) = �1

2

h
� �(k) +

⇣
�(k)2 � 4A0(k)

⌘1/2i
 (k)

With A0(k) and �(k) to be defined later.
Then substituting (22)-(25) into (12), after simple manipulation, we obtain
:

� (k + 1) = u (k) + ur(k) + ✓̃
T
f (k)⇠(k) + "(k) (27)
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Let ✓̃f (k) = ✓
⇤
f � ✓f (k).

Now consider the candidate Lyapunov function :

V (k) =
1

2

⇣
 

2(k) +
1

�
✓̃
T
f (k � 1)✓̃f (k � 1)

⌘
(28)

�V (k + 1) can be calculated as :

�V (k + 1) = V (k + 1)� V (k)

=
1

2
 

2(k + 1)� 1

2
 

2(k)

+
1

2�
✓̃
T
f (k)✓̃f (k)

� 1

2�
✓̃
T
f (k � 1)✓̃f (k � 1)

(29)

Let

�✓tf =
1

2�
✓̃
T
f (k)✓̃f (k)�

1

2�
✓̃
T
f (k � 1)✓̃f (k � 1) (30)

By using (30), we can rewrite (29) as :

�V (k + 1) =
1

2
 

2(k + 1)� 1

2
 

2(k) +�✓tf

=
1

2
(� (k + 1) +  (k))2 � 1

2
 

2(k) +�✓tf

=
1

2
� 2(k + 1) +  (k)� (k + 1) +�✓tf

=
1

2
� 2(k + 1) +  (k)

h
u (k) + ur(k)

+ ✓
T
f (k)⇠(k)

i
+�✓tf

�V (k + 1) =
1

2
� 2(k + 1) +  (k)u (k) +  (k)ur(k)

+  (k)✓Tf (k)⇠(k) +�✓tf

(31)

From (30), �✓tf can be expressed as :

�✓tf =
1

2�

⇣
✓̃
T
f (k)✓̃f (k)�

h
✓̃f (k)��✓̃f (k)

iT

⇥
h
✓̃f (k)��✓̃f (k)

i⌘

�✓tf =
1

�
✓
T
f (k)�✓̃(k)�

1

2�
�✓̃Tf (k)�✓̃f (k)

(32)
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Substituting (32) into (31), yields :

�V (k + 1) =
1

2
� 2(k + 1) +  (k)u (k) +  (k)ur(k)

+ "(k) (k) +�✓̃Tf (k) (k) +�✓tf

=
1

2
� 2(k + 1) +  (k)u (k) +  (k)ur(k)

+ "(k) (k) + ✓
T
f (k)

h
⇠(k) (k)

� 1

�
�✓̃f (k)

i
� 1

2�
�✓̃Tf (k)�✓̃f (k)

(33)

Using the adaptive law (23), we get :

�V (k + 1) =
1

2
� 2(k + 1) +  (k).u (k) +  (k).ur(k)

+ "(k) (k)� 1

2�
�✓̃Tf (k)�✓̃f (k)

(34)

From (27), we have :

|� (k + 1)|  |u (k)|+ |ur(k)|+ |✓̃Tf (k)⇠(k)|+ |"(k)|
 s + sfk⇠(k)k+ |ur(k)|+ s"

 |A0(k)|+ |ur(k)|
(35)

With A0(k) = s + sfk⇠(k)k+ s"

Taking the square from both sides of (35), we get :

|� (k + 1)|2  |ur(k)|2 + 2|A0(k)||ur(k)|
+ 2| (k)||ur(k)|+ |A0(k)|2

� 2 (k)|ur(k)|


h
� �(k) +

⇣
�(k)2 � 4A0(k)

⌘1/2i
| (k)|

(36)

Where �(k) = 2(A0(k)� | (k)|).
Therefore, (34) becomes as follows :

�V (k + 1) = "(k) (k) +  (k)u (k)�
1

2�
�✓̃Tf (k)�✓̃f (k) (37)

Because  (k)u (k) < 0, �✓̃Tf (k)�✓̃f (k) > 0, and based on the universal
approximation theorem, the term "(k) (k) is very small.
So we have :

�V (k + 1)  0
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6 Results and discussions

A simulation is carried out for a real nonlinear discrete-time system model
[30], given in the canonical form of (5).

8
<

:

x1(k + 1) = x2(k)
x2(k + 1) = f(x(k)) + (K/T )u(k) + d(k)
y(k) = x1(k)

(38)

Where f(x(k)) = �[a1x2 + a2x
3
2(k)]/T represents the system dynamics.

yd(k) = sin(k⇡/20) is the trajectory of reference.

d(k) =

(
0, if k  500

0.1 tanh(0.5k), if k > 500
(39)

represents the external disturbance, the initial conditions are chosen as :
[x1(0), x2(0)]T = [0, 0], a1 = 0.5, a2 = 30, K = 0.5, T = 64. The
membership functions for the system states xi, i = 1, 2 are selected as :
µ(xi) = e

(�0.5(xi+6�2(j+1))2)
, j = 1, ..., 5, � = 10�3, the sampling period is

Ts = 0.02s.
The simulation is carried out where the time evolutions of the variable x1(k)
and the trajectory reference yd(k) is shown on figure 1. From this figure,
a good tracking performance is obtained, where the total sampling number
is 3000. Figure 2 indicates that the proposed adaptive Synergetic Fuzzy
Controller u(k) is bounded. The Trajectory of the macro-variable  (k) is
illustrated in figure 3 which converges to zero as k increases. Figure 4 indi-
cates the time evolutions of the dynamics of f(k) and it’s estimate f̂(k), it
is shown that ✓Tf ⇠f (x(k)) approaches f(k) as k increases, and the estimation
error converges to neighborhood of zero. Figure 5 shows the norm of adaptive
parameter vector ✓f (k) which is bounded.
Figure 6 illustrate that if we change the dynamic of the system by amont
of 10% of its actual value, the tracking performance is upheld. Comparing
our results with those of [30], we can see that better tracking performance is
obtained in this paper. The form of the curves in control input of our study
is smoother than in [30]. Thus, in conclusion, all signals in the closed-loop
system are bounded, illustrating the e↵ectiveness of the proposed technique.
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7 Conclusion

The work considered in this paper consists of a robust synergetic based adap-
tive fuzzy controller designed for a class of nonlinear discrete-time systems.
Stability analysis is based on Lyapunov theory, we have shown that all the
signals in the closed-loop system are bounded and the tracking error is very
small. As future work, we will engage to realize a state observer in the case,
where the system states are not all available, and we will use the same algo-
rithm for chaotic nonlinear systems such as Henon chaos system.
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Figure 1: Evolution of output trajectories of x1(k) and yd(k).
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Figure 2: Control input evolution u(k).
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Figure 3: Trajectory of the Macro-variable  (k).
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Figure 4: The nonlinear function f(k) and it’s estimation f̂(k).
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Figure 5: Norm of ✓f (k).
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Figure 6: parametric uncertainties f(k) +�f(k).
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