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Abstract. Morphometric analysis of brain structures is of high interest
for premature neonates, in particular for defining predictive neurodevel-
opment biomarkers. This requires beforehand, the correct segmentation
of structures of interest from MR images. Such segmentation is however
complex, due to the resolution and properties of data. In this context, we
investigate the potential of hierarchical image models, and more precisely
the binary partition tree, as a way of developing efficient, interactive and
user-friendly 3D segmentation methods. In particular, we experiment the
relevance of texture features for defining the hierarchy of partitions con-
stituting the final segmentation space. This is one of the first uses of
binary partition trees for 3D segmentation of medical images. Exper-
iments are carried out on 19 MR images for cerebellum segmentation
purpose.

Keywords: 3D segmentation · Binary partition tree · Texture features
· MRI · Cerebellum · Premature neonates

1 Introduction

Each year, about 15 million babies are born premature, i.e. before 37 weeks of
gestation. A part of them will develop cerebral palsy [9] while others will experi-
ment troubles in cognitive performance or behavioral issues [19]. This motivates
an active clinical research devoted to predict, at an early stage, the most probable
pathologies. In particular, specific information on newborn brain structures can
be used as biomarkers. For instance, a correlation between early life cerebellar
anatomy and neurodevelopmental disorders was shown recently [32].

In this context, Magnetic Resonance Imaging (MRI) provides an efficient
way of observing the newborn brain in a safe fashion. However, MR images
of newborns are of lower quality than with adults. Indeed, the used coils are
? The research leading to these results has been supported by the ANR MAIA project
(http://recherche.imt-atlantique.fr/maia), grant ANR-15-CE23-0009 of the French
National Research Agency; and the American Memorial Hospital Foundation.
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often not adapted to babies. Moreover, newborns are likely to move during MR
acquisitions. As a consequence, specific adaptations are made on standard MR
sequences; but they generally result in images with a lower resolution, a decreased
signal-to-noise ratio, and possible artifacts. In addition, due to a non-complete
maturity of tissues, contrast variations of MR signal and partial volume effects
can occur, for instance caused by uncomplete myelination.

An accurate segmentation of brain structures is a prerequisite for carry-
ing out efficiently morphometric measures, further used as biomarkers. While
MRI brain structure segmentation in adults has been an active research area for
decades, the case of the newborn is more recent. Dedicated (in general, auto-
matic) segmentation methods can be classified into four types [17]: unsupervised
[8,21]; parametric [15]; classification [3,18,20,22,36] / atlas fusion [5,12,31]; and
deformable models [34, 35]. These methods aim at segmenting the whole brain,
cerebral tissues, or specific structures (e.g., cortex, ventricles, hippocampus), but
none of them focused on the cerebellum. Indeed, to our best knowledge, cerebel-
lum segmentation was only considered in adults, in a few papers. In particular,
the related approaches were based on texture analysis [28], deformable models
[2, 11,16], or atlases [13,26,37].

Cerebellum segmentation from neonate MR images is a difficult task, both in
an automated and in a manual way. On the one hand, automated segmentation
is hardly tractable due to the image properties (low resolution, poor signal-
to-noise ratio), and the methods initially designed for adult MRI reach their
limits in neonate images. On the other hand, manual segmentation remains a
complex and error-prone task: it is time-consuming, has to be carried out by
an expert, and generally leads to inter- and intra-operator variability. Based on
these considerations, we investigate mixed approaches that consist of selecting,
in a first, automated step, a reduced subspace of potential segmentation results.
In a second, interactive step, the expert-user is then allowed to navigate in this
sub-space in order to interactively select and tune a segmentation result.

To reach that goal, we consider hierarchical image models, mainly developed
in the field of mathematical morphology, and used for developing connected
operators [30]. More precisely, we focus on a specific data-structure, the Binary
Partition Tree (BPT, for brief) [29]. The BPT is relevant for two main reasons.
First, it enables one to model the image in a multiscale way, from fine anatomical
structures to larger classes of tissues. Second, it is built by taking into account
not only the intrinsic image information, but also prior knowledge [23] that can
be specifically geared towards the selection of structures of interest. As many
morphological hierarchies, the BPT is a partially ordered subset of partitions
of the image support, organized as a tree structure. It is then possible to easily
navigate inside a BPT for interactively defining a cut of the tree, that directly
leads to a segmentation result.

In this article, we focus on the first step of our two-step approach, namely the
way of building a BPT dedicated to cerebellum segmentation from neonate MR
images. Beyond the applicative interest of this work, namely the ability to seg-
ment neonates cerebellum, the methodological novelties are manifold. First, we
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consider BPTs for 3D imaging, while they were mainly dedicated to 2D imaging,
until now. Second, we propose space / time cost reduction strategies, by coupling
BPT construction with a superpixel preprocessing step (Sec. 2.2). Third, we in-
vestigate the relevance of texture features for BPT construction (Sec. 2.4). Four,
we propose a way of assessing the relevance of a BPT with respect to ground-
truth via a Pareto front paradigm (Sec. 3.2). Section 2 describes our methological
pipeline. Section 3 provides an experimental discussion. Concluding remarks on
perspective works are finally provided in Section 4.

2 Building a BPT From Neonate MR Images

In this section, we describe the pipeline that allows us to build a BPT, i.e. a
subspace of potential partitions, from the MR image of a neonate, for cerebel-
lum segmentation purpose. We describe the data and the preprocessing steps;
we recall the BPT construction algorithm; and we present the chosen features
that enable to guide the construction process for finally obtaining a cerebellum-
oriented BPT.

2.1 MR Images and preprocessing

We worked on two MRI datasets: the Neonatal Brain Atlas (ALBERTs4) [6, 7],
and the French Epirmex5 dataset; see Fig. 1. ALBERTs data are acquired on
a 3T Philips Intera scanner. Images have a resolution of 0.82 × 0.82 × 1.60
mm, and dimensions 155 × 155 × 189 voxels, with TE = 17 ms and TR = 4.6
ms. Epirmex data are T1 MR images acquired in Reims Hospital (Neonatology
Service), on a 3T Philips MR Imaging DD005 scanner. Images have a resolution
of 3 × 3 × 3 mm, and dimensions 560 × 560 × 90 voxels, with TE = 17 ms and
TR = 1019 ms.

In the sequel, an MR image is noted I. It is handled as a function I : Ω → V
that associates to each point x of the space Ω a value I(x) of the set V . In our
specific case, Ω is a matrix of voxels, namely a subset of Z3 of the Cartesian
grid. The set V is an interval of grey-level values within N.

The MR images are preprocessed. In particular, a denoising by non-local
means is performed, based on the BTK library [27]. Then, a bias field correc-
tion is applied, based on the N4 algorithm [33]. Finally, in order to reduce the
spatial complexity of the BPT construction, an intracranial mask registration
is performed, for subdividing the support Ω of the image I into intra- and ex-
tracranial volumes (by abuse of notation, from now on, we will call Ω the only
intracranial area).

4 c© Imperial College of Science, Technology and Medicine and I. S. Gousias 2013.
5 Epirmex is a part of the French epidemiologic study Epipage 2 [1],
http://epipage2.inserm.fr.
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Fig. 1. Examples of MR images (left: axial view; right: coronal view). First row:
Epirmex. Second row: ALBERTs.

2.2 Initial partitioning: Waterpixels

The BPT models a family of partitions of an initial set (in general, the image
support Ω of I). The size of the BPT is Θ(n) where n is the size of this initial
set, and the time cost of its construction is O(n logn). In practice, these (quasi-
)linear space / time complexities can lead to high costs, when considering 3D
images composed of several millions of voxels.

In order to reduce the space cost of Ω, we investigated superpixel paradigms
for simplifying the initial partition induced by Ω into a reduced partition Λ. In
particular, we considered the waterpixels [14], namely a superpixel approach that
applies a seeded watershed on a mixed gradient / distance, saliency map. More
precisely, we developed a 3D version of this 2D superpixel model, namely the
watervoxels [4], in order to allow for a relevant partitioning of an MR image. The
main two parameters of waterpixels are the density of seeds (that determines the
number of elements of the partition Λ) and the trade-off between the gradient
map and the distance map. The experimental setting of these parameters is
discussed in Sec. 3.1.

2.3 BPT construction: Algorithmics

A BPT is a tree; each of its nodes is a connected region of the image support Ω.
A node is either a leaf representing an element of Λ, or the union of two other
neighbouring regions; the root node corresponds to the whole image support Ω.

The BPT construction is a bottom-up process. It proceeds from the leaves,
up to the root. This is done by choosing and merging iteratively two adjacent
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regions that minimize a criterion reflecting their similarity. This choice relies on
two main notions:

– a region model M(N) which specifies how a region N is characterized (e.g.
intensity, texture, geometry); and

– a merging criterion O(N1, N2) which defines the similarity of neighbouring
regions N1, N2 and thus the merging order.

A strategy commonly adopted for representing each region is, for instance, to
consider their average intensity, and to merge adjacent regions being the most
similar.

To model the fact that two points x and y of Ω are neighbours, we define
an adjacency relation on Ω. In practice, in Z3, the standard 6 or 26-adjacencies
defined in digital topology are considered. For the partition Λ of Ω, we define an
adjacency relation AΛ inherited from that of Ω. We say that two distinct sets
N1, N2 ∈ Λ are adjacent if there exist x1 ∈ N1 and x2 ∈ N2 such that x1 and x2
are adjacent in Ω. Then, GΛ = (Λ,AΛ) is a non-directed graph.

The construction of a BPT is indeed a graph collapsing process. More pre-
cisely, the BPT is the data-structure that describes the progressive collapsing of
GΛ onto the trivial graph ({Ω}, ∅). This process consists of defining a sequence
(Gi = (Γi, AΓi

))ni=0 (with n = |Λ| − 1) as follows. First, we set G0 = GΛ. Then,
for each i from 1 to n, we choose the two nodes Ni−1 and N ′i−1 of Gi−1 linked
by the edge (Ni−1, N

′
i−1) ∈ AΓi−1 that minimizes the chosen merging criterion.

We define Gi such that Γi = (Γi−1 \ {Ni−1, N
′
i−1}) ∪ {Ni−1 ∪N ′i−1}; in other

words, we replace these two nodes by their union. The adjacency AΓi
is defined

accordingly from AΓi−1 . We remove the edge (Ni−1, N
′
i−1), and we replace each

edge (Ni−1, N
′′
i−1) and / or (N ′i−1, N

′′
i−1) by an edge (Ni−1 ∪N ′i−1, N

′′
i−1).

In particular, two former edges may be fused into a single.
The BPT T is the Hasse diagram of the partially ordered set (

⋃n
i=0 Γi,⊆).

It is built in parallel to the progressive collapsing from G0 to Gn. In particular,
T stores the node fusion history. More precisely, we define a sequence (Ti)ni=0
as follows. We set T0 = (Γ0, ∅) = (Λ, ∅). Then, for each i from 1 to n, we
build Ti from Ti−1 by adding the new node Ni−1 ∪ N ′i−1, and the two edges
(Ni−1 ∪N ′i−1, Ni−1) and (Ni−1 ∪N ′i−1, N

′
i−1). The BPT T is then defined as

Tn.

2.4 Features for BPT construction

The construction of a BPT requires to choose features involved in the definition
of the region model (M), and a merging criterion (O) for assessing the relevance
of merging two nodes / regions.

Region model For defining the region model that describes each region / node
of the BPT, we first consider the mean grey-level value (µ). This feature is
classically chosen, as it provides a necessary criterion for merging two nodes (i.e.
two nodes with very different mean values will not be merged in priority).
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We also consider texture features. Indeed, our hypothesis is that the cere-
bellum has a specific structure that may be characterized by texture analysis.
In particular, we focus on texture indices computed from Haralick co-occurrence
matrix [10], that carries second-degree statistics on the image. This co-occurence
matrix provides, for each couple of grey-levels of the MR images, the probability
of co-occurence between voxels located at a given distance in a chosen direc-
tion. In our case, we consider the matrices Mei

(i = 1, 2, 3) corresponding to
co-occurence between neighbouring voxels in the 3 principal orientations, i.e. the
6-adjacent voxels. More precisely, for any v, w ∈ V with V ⊂ N the interval of
MRI values, we have:

Mei
(v, w) = 1

|Ω|

∣∣∣{x ∈ Ω | I(x) = v ∧ I(x+ ei) = w
}∣∣∣ (1)

where {e1, e2, e3} is the canonical orthonormal basis of Z3. From these matrices,
we consider the homogeneity (H), contrast (C) and entropy (E) indices, as
texture information:

H =
3∑
i=1

∑
v∈V

∑
w∈V

Mei
(v, w)

1 + |v − w| (2)

C =
3∑
i=1

∑
v∈V

∑
w∈V
|v − w|2 ·Mei(v,w) (3)

E = −
3∑
i=1

∑
v∈V

∑
w∈V

(v − w) · log(Mei
(v, w)) (4)

Merging criterion For each pair of adjacent regions N1, N2, endowed with
one of the four features described above (µ, H, C, E), we compute the absolute
difference of feature values between both regions, noted O(N1, N2). The lower
this value, the more similar the two regions, and the higher the priority for their
merging during the BPT construction.

3 Experiments and Results

We carried out experiments on ALBERTs (10 MR images) and Epirmex (9 MR
images). ALBERTs data are endowed with ground-truth; in particular, the cere-
bellum region is obtained by union of various labeled subregions. For Epirmex,
the 9 MR images were manually segmented by a medical expert in neonatology,
for providing cerebellum ground-truth.

3.1 Watervoxel partition: Parameter setting

As a preprocessing step to the BPT construction, a simplification of the initial
image support Ω is first carried out. This is done with watervoxels, for subdivid-
ing Ω into a partition Λ. This partition Λ should ideally be composed of regions
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either fully inside or fully outside the cerebellum, in order to avoid initialization
errors that the construction of the BPT will not be able to correct (indeed, it
merges regions, but never split them).

For a given partition Λ of the image support Ω, we define the associated error
δ based on a measure called discordance, introduced in [25]. For the ground-truth
segmentation C ⊂ Ω of the cerebellum, and the partition Λ ⊂ 2Ω , we define δ
as follows:

δ = 1
|C|

∑
L∈Λ

min{|L \ C|, |L ∩ C|} (5)

In other words, the discordance measure is defined as the relative quantitative
error on the false positives and false negatives with respect to C induced by Λ,
and more precisely by the nodes that partially intersect G.

Note that from the very definition of δ, the set Ŝ ⊆ Λ that best matches C
with respect to the discordance measure is such that:

∀L ∈ Λ,L ⊆ C ⇒ L ∈ Ŝ (6)

∀L ∈ Λ,L ⊆ C ⇒ L /∈ Ŝ (7)

In other words, the discordance error depends only on the acceptance or rejection
of the k regions L of Λ partly meeting C. Due to the additive / separable
formulation of Eq. (5), the computation of δ is carried out in linear time Θ(k),
whereas other (similar, although non-equivalent) metrics, e.g. the Dice error,
would lead to an exponential O(2k) time.

Practically, the partition Λ is controlled by two parameters: (1) the density
d ∈ [0, 1] of seeds in the image support, that defines the number of regions in
the partition as d.|Ω|; and (2) the trade-off parameter α ∈ [0, 1] between the
(normalized) distance map ∆(Ω) and the (normalized) gradient ∇I of the MR
image, that leads to a map (1 − α).∇I + α.∆(Ω). Then, the error defined in
Eq. (5) is a 2-dimensional function δ(d, α) : [0, 1]2 → R. (Note that for d = 1,
we have the trivial partition Λ = {{x} | x ∈ Ω} and then, δ(1, .) = 0.)

Based on the experimental results summarized in Fig. 2, we set d = 2, 32.10−3

(resp. d = 1, 56.10−2) and α = 0, 1 (resp. α = 0, 6) for Epirmex (resp. AL-
BERTs). With these parameters, the mean value of discordance is δ = 0, 311
(resp. δ = 0, 156) for Epirmex (resp. ALBERTs). These values are indeed suf-
ficient for further computing BPTs based on the partition Λ, with respect to
the provided ground-truth of the 9 (resp. 10) MR images. It is however worth
mentioning that the discordance error with Epirmex data is much higher than
that of ALBERTs. One can then expect worse BPT quality results with clinical
images from Epirmex than with ALBERTs images.

3.2 Segmentation / BPT evaluation

We then assess the ability of a BPT to provide a correct segmentation. As
observed in Sec. 2.3, the nodes of a BPT are regions of the image support Ω. By
construction, two nodes N1 and N2 of the BPT are either disjoint or included:
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Fig. 2. Discordance δ (y-axis) depending on the trade-off parameter α between the
gradient map and the distance map (x-axis), for various densities d. Left: Epirmex
dataset. In blue: d = 2, 32.10−3 (initial Voronoi cells of 12 × 12 × 3 voxels). In red:
d = 1, 11.10−3 (15×15×4 voxels). In yellow: d = 5, 54.10−4 (19×19×5 voxels). In green:
d = 3, 15.10−5 (23 × 23 × 6 voxels). Right: ALBERTs dataset. In blue: d = 1, 56.10−2

(initial Voronoi cells of 4 × 4 × 4 voxels). In red: d = 8, 00.10−3 (5 × 5 × 5 voxels). In
yellow: d = 2, 92.10−3 (7× 7× 7 voxels). In green: d = 1, 95.10−3 (8× 8× 8 voxels).

N1 ∩ N2 6= ∅ ⇒ N1 ⊆ N2 ∨ N2 ⊆ N1. A cut of a BPT is a subset C = {N?} of
pairwise disjoint nodes. Their union S = ∪N? ⊆ Ω provides a segmentation of
the image I.

The quality of a cut C / segmentation S is characterized from two points of
view. First, S has to fit at best the target (here the cerebellum C), i.e. it should
maximize a quality measure [24]. Here, we consider the Dice index, defined as:

D(S, C) = 2|S ∩ C|
|S|+ |C| (8)

Second, C should contain a minimal set of nodes [25]. Indeed, the less numerous
the nodes, the easier the task of defining the cut by automated and/or interactive
investigation of the BPT. Then, we consider a second quality measure, namely
the size |C| of the cut.

The best segmentation Ŝ, given by the best cut Ĉ of a BPT, should optimize
both measures, that is:

Ŝ = arg maxD(S, C) (9)

Ĉ = arg min |C| (10)

But, in practice, these are antagonistic.
Thus, in order to assess the relevance of a given BPT, we compute the

Pareto front for Eqs. (9–10), that is the set of optimal elements for the cou-
ple (D(S, C), |C|) in the space [0, 1]× N, for the order relation (≥[0,1],≤N).

For each cut C of the BPT, associated to a segmentation S of Ω, three
information are useful: a = |S ∩C|, b = |S|, and c = |C|. From this triple (a, b, c),
one can recover the Dice and cardinality information of the cut, as 2.a

b+|C| and c.
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A cut can be (1) empty; (2) equal to a singleton set corresponding to the root
of the BPT; or (3) formed by the union of two cuts, i.e. one in each subtree of
the BPT. Based on these facts, the Pareto front can then be built in a recursive,
bottom-up fashion as follows.

Let N be a node of the BPT, and N1, N2 its children nodes (if N is not
a leaf). If N is a leaf, only two cuts can be built from the associated subtree,
corresponding to {N} and ∅. They correspond to the triples (|N ∩ C|, |N |, 1)
and (0, 0, 0), respectively, that lead to the points of coordinates (2|N ∩C|/(|N |+
|C|), 1) and (0, 0) in the Pareto space, respectively. These two triples are stored in
a set TN . If N is not a leaf, for any triple (a1, b1, c1) of TN1 and any (a2, b2, c2) of
TN2 , one can build a new triple (a, b, c) = (a1+a2, b1+b2, c1+c2) that corresponds
to a unique cut of the (sub-)BPT of rootN . This includes in particular the empty
cut. A supplementary cut, namely {N}, is not formed by union of two cuts. It
corresponds to the triplet (a, b, c) = (a1 + a2, b1 + b2, 1) where (a1, b1, c1) (resp.
(a2, b2, c2)) is the triple of maximal value c1 (resp. c2) in TN1 (resp. TN2).

Following this divide-and-conquer algorithmic process, one may build all the
points of the Pareto space. However, each computation at a node N creates
new triples by Cartesian product between those of the two children nodes. This
leads to an exponential space and time complexity, that makes an exhaustive
computation practically untractable.

To tackle this issue, three remarks can be made. First, it is not required
to process the whole BPT. Indeed, the nodes fully outside C and those with a
parent node fully inside C are useless for computing the Pareto front. Then, one
can omit them when scanning the BPT, and thus process an ad hoc subtree of
the BPT, with a limited subset of leaves.

Second, the computation of the Pareto front for high values of cardinality
|C| is not practically relevant. Indeed, the quality of a BPT lies in its ability
to allow for the computation of cuts leading to correct segmentations. However,
such cuts should have a reasonably low cardinality for making their selection
tractable, both for a human user or an optimal cut procedure. As a consequence,
at each stage of the computation, all the triples (a, b, c) with a value c > t for a
given threshold value t corresponding to the maximally allowed cardinality may
be removed. Note that this optimization requires that each node N stores the
two values |N ∩ C| and |N |, in addition to its set of triples, for allowing the
computation of the singleton cut {N}. This information can be computed in an
additive bottom-up fashion, as for the triples (a, b, c).

Third, even with such optimizations, a combinatorial explosion may occur.
As a consequence, it is better to compute a (limited but relevant) subset of the
points in the Pareto space by only preserving, for each node, a list of t+1 triples
that lead to the best Dice scores, i.e. one triple for each of the k ∈ [[0, t]] distinct
size of cuts |C|. Doing so, the size of the list of triples is bounded by t+1 at each
node, and the time cost of generation of such list is also bounded by a constant
value (t + 1)2. The obtained Pareto front is not guaranteed to be optimal, but
the way to choose the preserved triples allows us to expect a near-to-optimal
approximated result.
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Fig. 3. Pareto front (Dice D in y-coordinate vs. size of the cut |C| in x-coordinate)
for the BPTs constructed with the four texture features µ (in blue), H (in red), C (in
yellow) and E (in green). The results are obtained by averaging the Dice values over
the datasets Left: Epirmex dataset. Right: ALBERTs dataset.

We investigated the BPTs built for each of the four textures µ, H, C, E
(Sec. 2.4). The average results are depicted in Fig. 3. We restricted our study to
cuts of maximal cardinality t = 30.

4 Conclusion and Perspective Works

The analysis of the Pareto fronts allows us to observe that the resolution of
the MR images has a strong influence on the relevance of using texture features
for BPT construction. In particular, for Epirmex data, due to a low resolution,
texture features are not able to guide the BPT construction process better than
the standard mean feature (µ). In the case of ALBERTs, i.e. with MR images of
higher resolution, one can observe that Homogeneity (H) provides better results
than the standard mean feature (µ) up to cuts of 10 nodes. For cuts of higher
cardinalities, the behaviour of the four features are quantitatively comparable.

This tends to prove that (well-chosen) texture features are indeed relevant
for carrying out the segmentation of the cerebellum based on BPT paradigms.
This robustness remains, however, to be confirmed. Indeed, on the one hand, the
current Pareto fronts are built in a near-to-optimal, but non-exhaustive, fashion.
On the other hand, the obtained Dice values for a cut of the BPT remain lower
than expected for a fully satisfactory segmented cerebellum.

This emphasizes two perspective works. First, we will investigate BPTs built
from several features, instead of one. For that purpose, we may rely on recent
works on multi-feature BPT [23]. This will allow us to couple texture features,
but also to mix them with prior knowledge modeled by atlases. On the other
hand, we will experiment various paradigms of gradient, in order to improve the
ability of the watervoxel preprocessing to provide initial partitions with greater
voxel sizes. As a side effect, we may be able to produce BPT cuts with better
Dice scores for a same cardinality.
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Further works will also consist of developing visualization / interaction para-
digms to allow a medical expert to easily navigate within a BPT, and observe /
define in real time the segmentation associated to a given cut in 3D MR images.
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