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Abstract 

The rapid innovations in metabolite profiling, bioassays and chemometrics have led to a paradigm shift 

in natural product (NP) research. Indeed, having partial or full structure information about possibly 

“all” specialized metabolites and an estimation of their levels in plants or microorganisms provides a 

way to perform pharmacognostic or chemical ecology investigations from a new and holistic 

perspective. The increasing amount of accurate metabolome data that can be acquired on massive 

sample sets, notably through data-dependent LC-HRMS/MS and NMR profiling, allows the mapping of 

natural extracts at an unprecedented level of precision. 

Most progress made recently in accelerating metabolite identification has been pushed by the need 

for metabolomics to have tools that provide a confident annotation of the biomarkers highlighted as 

the results of data mining through multivariate analysis, often on important datasets of complex 

samples. Historically, NP chemists have been involved in the unambiguous full de novo identification 

of unknown compounds from complex natural biological matrices. This process is classically performed 

by the tedious isolation of pure bioactive NPs through comprehensive bioactivity-guided isolation 

workflows involving orthogonal chromatographic steps at the preparative level. Increasingly advanced 

metabolomics metabolite profiling methods are of strategic importance in dereplication workflows in 

NP research as well as for the full metabolome composition assignment of relevant organisms from 

both drug discovery and chemical ecology perspectives. 

In this review, we describe the latest developments in metabolite profiling by both LC-MS and NMR-

based methods and related databases from a natural product chemist perspective. We assess the 

current possibilities and limits of such methods and the workflows for manual and automated NP 

annotations by equally treating the MS and NMR approaches that are both key for the “as confident 

as possible” NP annotation in crude natural extracts. We also propose future lines of development in 

the field that are important for NP research but are also generally needed for metabolite annotation 

in metabolomics because NPs represent perfect candidate compounds for identification due to their 

intrinsic structural complexity and chemodiversity across organisms. This review does not aim to 

provide a comprehensive survey of all metabolite profiling applications made in NP research to date. 

Typical case studies are discussed, and an update of a selection of the latest advanced original studies 

and numerous specialized reviews is made with links to tools and DBs regarded as useful for their 

current or future usage in NP research. Evaluations of what can be readily implemented and what is 

still required for confident NP structural elucidation are made, especially concerning access to generic 

structural and spectral DBs as well as the use of orthogonal detection methods for improved 

confidence in metabolite annotation. 
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1 Introduction 

Natural product research aims to characterize specialized metabolites from various living organisms 

and assess their biological properties from either a chemical ecology or drug discovery viewpoint. 

These “specialized” metabolites, which are oftentimes referred to as “secondary metabolites”, are 

non-essential to sustain the life of a given organism but necessary for its survival in a given 

environment, in contrast to “primary metabolites”, including amino acids, lipids, and carbohydrates, 

which are necessary for physiology purposes.1 Specialized metabolites are small-molecular-weight 

molecules (typically < 1500 Da) mainly involved in processes like defense against other biotic as well 

as abiotic agents, or used as attractants for reproduction purposes due to the sessile lifestyles of many 

organisms, such as plants and microorganisms.2 Throughout this review, we will refer to such 

metabolites as natural products (NPs). 

NPs from all living organisms have evolved and diversified for increased fitness within a specific 

environment. This has resulted in plants and microorganisms achieving the synthesis of distinct sets of 

NPs. Such pressure of evolution has generated the huge chemodiversity of NPs in nature. In plants, for 

example, and as stated by Pichersky and Lewinsohn, the total number of NPs found in the kingdom by 

far exceeds the capacity of any one plant genome to encode the necessary enzymes, and just as a plant 

lineage acquires the ability to elaborate new specialized compounds during evolution, it also loses the 

ability to produces others.2 

NPs thus include a large and diverse group of compounds from a variety of sources, mainly plants, 

bacteria, and fungi, from terrestrial and aquatic biotopes. They play significant biological roles in all 

organisms and have evolved to interact with enzymes, receptors and ion channels. Some are active in 

living cells and are even from different organisms, able to cross cell membranes and interfere with 

enzymes or even act against parasites.3 Due to their co-evolution in natural systems, NPs are therefore 

encoded to be bioactive and of high interest in the drug discovery field. They have long been used as 

medicines, and today, they continue to be a reservoir of potential drugs.3-4 Thus, NPs and their related 

structures serve as essential sources of new chemical entities for the pharmaceutical industry due to 

their immense variety of functionally relevant compounds.5 

The chemical space encompassed by NPs is very large,6 and more than 250,000 NPs have been 

reported to date in the dictionary of natural products (DNP).7 The DNP surveys literature data of all 

NPs characterized worldwide as the result of the isolation work and full de novo identification of varied 

organisms with their taxonomic origin.7 It is important to note that the DNP mainly focuses on plant 

resources, implying that when the microbial chemical space is added, the number above can easily 

quadruple. The chemical space is characterized by a “multi-dimensional descriptor space” in which NPs 
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can be associated with a wide range of “descriptors” and “properties”, such as their molecular mass, 

lipophily (their affinity for a lipidic environment), compound class, and the topological features of their 

molecular structure.8 A measurement of the chemodiversity of NPs can be obtained by evaluating the 

size of the chemical space visualized by the principal component analysis (PCA) of sets of molecular 

descriptors. This space has been shown to be much larger for NPs than those occupied by new chemical 

entities coming from combinatorial chemistry.9 Both drugs and NPs cover similar parts of chemical 

space, demonstrating the potential of many NPs to become leads for drug discovery.10 The methods 

used to navigate this chemodiversity space have constantly evolved. For example, ChemGPS-NP assists 

in compound selection and prioritization, property description and interpretation, cluster analysis and 

neighborhood mapping, as well as the comparison and characterization of large compound data sets.11 

Notwithstanding the potential of NPs to become effective drugs, the drug discovery workflow that 

leads from crude natural extracts to well-characterized bioactive NPs as hits and then as lead 

compounds is considered complex, slow, costly, and often not compatible with the pace of high-

throughput screening campaigns. This explains in part why many pharmaceutical industries slowed 

down and then terminated most of their NP-oriented research programs in the early 2000s.3, 12 

This difficulty of working with NPs is in part related to the very high complexity of the biological 

matrices (natural crude extracts) in which they are embedded, which in turn causes their chemical 

richness. NPs as pure active ingredients are typically extracted from plants and microorganisms with 

solvents of different polarities (usually hydroalcoholic mixtures, methanol, ethyl acetate or methylene 

chloride). Each of these extracts typically contains 10’s of main natural products and 100’s or 1,000’s 

of less abundant ones. In addition, polar extracts are dominated by primary metabolites, mainly 

saccharides, and lipophilic extracts are dominated by various types of lipids and pigments. These 

compounds are part of the metabolome but are often not of interest for bioactivity. There are, 

however, exceptions; for example, polysaccharides are known to exhibit immuno-stimulating effects13 

and the high number of bioactive suggesting their functional roles.14 Potentially all NPs, even minor 

constituents, may have interesting biological properties (e.g., potent defense toxins, hormones). Their 

identification requires using metabolite profiling methods that are able to work over a large dynamic 

range and generate information-rich spectral data for their full or partial identification.15 

The identification of bioactive NPs from such complex matrices is classically performed in 

pharmacognosy (search for bioactive compounds form natural sources) by bioactivity-guided 

isolation approaches. Here, crude extracts exhibiting given biological activity are fractionated by a 

combination of preparative chromatographic methods. All fractions are submitted to bioassays, and 

those fractions continuing to exhibit activity are carried through further isolation and purification steps 
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until pure active ingredients are obtained. These ingredients are then fully characterized by a 

combination of NMR, HR/MS and chiroptical spectroscopic methods (i.e. sensitive to molecular 

chirality, such as electronic circular dichroism – ECD – and vibrational circular dichroism – VCD) until 

their structure and absolute configuration are obtained.16 This process is slow but effective and has led 

to major breakthroughs in NP research, such as the discovery of artemisinin (a sesquiterpene lactone 

containing an unusual peroxide) isolated from Artemisia annua. Artemisinin has become a reference 

drug for the treatment of malaria, and its discovery by Professor Tu Youyou led her to be awarded the 

Nobel Prize of Medicine in 2015.17 

To rationalize the process that yields interesting active ingredients, the metabolite profiling of crude 

extracts and dereplication prior to isolation has been underway for years in classical NP research.18 

Dereplication is the process of differentiating novel compounds from those that have already been 

studied.12, 19 Since its appearance in 1990, dereplication has significantly evolved over the last decades. 

It has been used in different workflows ranging from major compound identification and the 

acceleration of activity-guided fractionation up to the chemical profiling of collected extracts.18 

In parallel to these advances in metabolite profiling, the field of metabolomics appeared at the 

beginning of the millennium for life science applications20 and experienced exponential growth until 

today, as is the case for other omics approaches. Metabolomics is defined as a non-selective, 

universally applicable, comprehensive analytical approach for the identification and quantitation of 

metabolites in a biological system. This area of research strives to obtain complete metabolite 

fingerprints, detect differences between metabolites and generate hypotheses to explain these 

differences.19 Metabolomics is practically considered the large-scale analysis of metabolites of a given 

organism during various physiological states,21 but it also extends to the comparative comprehensive 

metabolite profiling for deep/full metabolome analyses for chemotaxonomic investigations and NP 

prioritization studies in drug discovery. Tools in metabolomics have tremendously evolved over the 

last decade because such an unbiased data-driven approach has served many fields of life sciences and 

has also strongly influenced various aspects of NP research, notably in giving additional dimensions to 

dereplication. These developments were partly driven by the progress made in the acquisition 

techniques of the metabolite profiles in complex biological matrices in both the MS and NMR fields in 

terms of sensitivity, resolution and throughput, but also more recently by the introduction of in silico 

and chemometric associated methods.22 It was recognized that traditional analysis methods only 

slightly dipped into the complete pool of molecules present in complex mixtures, thereby leaving a 

large amount of “dark matter.”23 These unknowns potentially represent much-needed novel bioactive 

molecules that could, for example, be used to combat antibiotic resistance. 
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In metabolomics, putative or partial metabolite identification from metabolite profiles or fingerprints 

of complex extracts is referred to as “annotation”. Today, this process still represents a major 

bottleneck in metabolomics because annotation is often not unambiguous, and only putative or partial 

assignments can be made. When compared to biological fluid metabolomics, this aspect is even more 

striking in NP research because NP chemodiversity is very extensive, and sample compositions vary 

substantially based on the organisms that are screened. In contrast, in biological fluid analysis, 

redundant metabolites are often profiled, and in this case, quantitation aspects are key to observing 

sometimes minute but significant changes in profiles (e.g., those related to disease or diet changes). 

To assess the level of confidence of metabolite annotation, different reporting standards for 

identification have been defined by metabolomics researchers. This resulted in a four-level system 

ranging from Level 1 (identified compound) via Levels 2 and 3 (putatively annotated compounds and 

compound classes) to Level 4 (unidentified or unclassified metabolites that can be differentiated based 

on analytical data).24 

In typical NP research, unknown metabolites must be fully characterized de novo after isolation.25 This 

also occurs redundantly for known NPs when the dereplication process is not sufficiently efficient. The 

additional full assessment of their absolute configuration by chiroptical methods and sometimes X-ray 

crystallography is also often required because 3D structural characterization is key to understanding 

ligand target interactions in pharmacological investigations of NPs.26 

Full characterization clearly provides the high-quality unambiguous identification of metabolites but is 

time-consuming and often not worth the effort, especially when known compounds are redundantly 

characterized and their spectroscopy data have been published several times. Moreover, the isolation 

and full identification of minor compounds requires large amounts of biological material. Additionally, 

the pace of this work is not compatible with the pace at which HTS screening campaigns are performed 

on extracts for drug discovery purposes.3 

The rapid high-quality identification of NPs is not only necessary for rationally characterizing active 

ingredients but also increasingly needed for obtaining detailed exhaustive composition information for 

herbal products used in traditional medicine, nutraceutical products or botanicals with claimed clinical 

efficacy.27 This can facilitate linking composition with possible efficacy, screening for possible toxic NPs, 

and establishing composition trends for given therapeutic usage in evidence-based approaches.28 It is 

also needed to support quality control studies that increasingly rely on fingerprints rather than on 

single marker determination for herbal products.29 This need for accurate composition determination 

is even more complex when studying drugs used by traditional Chinese medicine (TCM), where 

multiherb preparations are often used.30 
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Altogether, only a few “complete” workflows exist that can take the researcher from raw data to 

performing the robust annotations and identifications of metabolites in complex mixtures; in 

particular, when investigating completely novel bioresources, existing tools often fail to identify 

reliable candidate molecules. Moreover, their usage is not always straightforward for NP researchers, 

which hampers their interpretation of downstream results. Thus, there is a strong need for metabolite 

profiling methods and data mining workflows that provide a much higher confidence of NP 

identification with reliable annotation scores that can be achieved with a high degree of automation. 

In this review, we will describe state-of-the-art metabolite profiling and data analysis methods based 

on both LC-MS and NMR profiling that are currently used in NP research and metabolomics or related 

fields or can be implemented. In particular, their coverage in terms of full metabolome analysis will be 

discussed; however, this review will focus on the structure elucidation of NPs from complex mixtures. 

The present spectral NMR and MS/MS databases (DBs) suitable for NP annotation will be surveyed 

together with the different tools that can be used to generate searchable spectra generated in silico 

from structural NP DBs. Various recent workflows that can lead to annotation will be described and 

assessed, especially in terms of their usage/implementation in NP research and their ease of operation 

and level of automation for natural product chemists. Because both MS and NMR data are important 

for the characterization of NPs, their corresponding dereplication workflows will be treated equally. 

Current approaches integrating both MS and NMR analytical dimensions will be highlighted, and ideas 

for progress that can be made for better practical integration will be provided. Future prospects that 

may also come from the addition of orthogonal methods to LC-MS, such as collisional cross section 

(CCS) obtained with ion mobility measurements or retention time (RT) predictions, will be put in 

perspective. Finally, we will share our views on the development that is needed in terms of the 

contextualization (e.g., taxonomical data) of the metabolomics data generated from NP extracts. The 

creation of a novel method to combine scores from different and, if possible, orthogonal 

spectral/physico-chemical information for more reliable annotation and the expansion of in silico 

candidate DBs through predictions of structural variation by exploiting knowledge of natural 

biosynthesis pathways will also be discussed. We will end by presenting our views and 

recommendations on the most important and exciting avenues toward more efficient and automated 

large-scale metabolite annotation and identification workflows. 

2 General description of annotation/dereplication strategies and 

databases 

2.1 Annotation/dereplication strategies 
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A pure compound isolated in a typical NP bio-guided workflow needs to be identified. At this stage, 

the NP can either have been previously reported and is a “known NP” or has never been described and 

is an “unknown NP”. In the former case, effort must be directed to reuse already available knowledge 

from the literature,31 while in the latter case, the elucidation of its structure must be carried out de 

novo. The rapid identification of known molecules, previously defined as dereplication, is normally the 

process demanding the least effort, provided that the corresponding spectral data are available and 

easily searchable. The same applies not only to isolated compounds but also to all NPs within complex 

mixtures, such as crude extracts or enriched fractions, for which spectral data can be acquired. 

In this context, spectroscopic methods are used to obtain indirect partial information about the 

structures of all metabolites (Figure 1). A compound isolated from two biological matrices is expected 

to produce identical spectral descriptions under identical conditions. However, in cases of complex 

mixtures or enriched fractions, such spectral descriptions may overlap, thus complexifying the 

dereplication process. The question of the extent to which identical spectral signals constitute a proof 

of compound identity is still pending.32 The answer depends on the spectroscopic method with which 

the comparison is achieved; often, a single type of spectral data is not sufficient. The collection of 

analytical results from various techniques thus provides a more reliable identification tool than the 

results from a single one. The choice of such methods results from a balance between various criteria, 

such as accessibility, ease of sample preparation, sensitivity, degree of reproducibility, of information 

content, ability to provide a quantitative response, etc. Two analytical methods, namely, nuclear 

magnetic resonance spectroscopy (NMR) and high-resolution mass spectrometry (HRMS) - usually 

hyphenated with liquid chromatography (LC) as LC-HRMS - are commonly used (see sections 3 and 4) 

for the rapid annotation of NPs in extracts. 
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Figure 1. Schematic workflow of structure elucidation/dereplication in natural product chemistry. The principal task consists of 
connecting the space of samples such as extracts, chemically simplified fractions (FRs), or isolated compounds (NPs) (left panel) 
and the space of molecular structures (right panel). Extracts are obtained by different extraction processes that lead to complex 
mixtures of NPs with given physicochemical properties according to the nature of the solvent used. Fractions and pure NPs are 
obtained after single or multiple preparative chromatographic steps. This task is achieved by a combination of physicochemical 
spectroscopic methods, mainly MS and NMR (central panel). “Others” indicate additional methods, e.g., X-ray diffractions for 
pure NPs, LC−ECD for fractions or extracts. When a mixture of NPs is submitted to spectroscopic analysis, often an orthogonal 
analytical separation method is used prior to spectral acquisition (liquid chromatography, ion mobility, etc.). The space of 
physicochemical spectroscopic data is divided into two subspaces: (i) acquired “raw data” (e.g., FID time domain data in NMR, 
LC−MS raw data files) and (ii) “processed data” (e.g., NMR spectra expressed in Hz/ppm calculated by the Fourier 
transformation FIDs, peak picking of MS features, and combination of related MS and MS/MS spectra in LC−MS). Molecular 
structure determination results from data interpretation through two different strategies: de novo structure elucidation or 
dereplication. The latter is generally computer-assisted for the database search step, whereas the de novo approach resorts 
from manual or computer-assisted strategies interpretation of the spectroscopic data. Connection between NP mixtures and 
the space of molecular structures may involve the use of chemometrics for deconvolution purposes for finally generating 
composition information on extracts or fractions. Consistency of the structural data generated are checked based on taxonomy 
and the known biosynthetic pathways of the organisms studied. 

 

Ideally, the set of spectroscopic data acquired for every newly described compound, along with 

structural data, should be preserved for future comparison purposes. Such raw spectral data should 

be as close as possible to the acquisition format, provided that this format is exchangeable. Initiatives 

have recently been proposed to the scientific community to preserve data in this way,33 as for example 

free induction decay signals (FIDs) in case of NMR. Most often, however, only extracted spectral 

parameters are preserved, such as chemical shifts, coupling constants and relative peak area values 

for NMR. Spectral parameters are supposed to be sufficiently informative to represent the original 

data and therefore allow the identification of compounds based on the comparison of their parameter 
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values.34 Spectroscopy-based dereplication thus reduces the search for already known compounds 

whose spectral parameters match those of an unknown compound. Ideally, each newly reported 

compound should have, at least, its well-defined and preferably computer readable molecular 

structure, spectral data and spectral parameters preserved in a publicly accessible DB so that 

dereplication can be carried out with minimal effort. 

Ideally, for NP dereplication, each DB should contain searchable structure information and link to its 

biological sources as well as all possible types of spectral information; if possible, these data should be 

deposited in raw format and universally readable by open-source software. However, in reality, this 

situation is far from ideal, as most existing DBs display partial structural/spectral information and are 

often only restricted to a limited number of NPs (Table 1). 

 

Table 1. NP databases which can be used for dereplication purposes are listed in alphabetical 
order. This list was compiled from previously published ones.19, 35 Some databases that focus 
on the constitutive metabolome and lipids were added in this table when accurate spectral 
information is provided. The columns provide a large range of DB properties that facilitate the 
reader to choose the correct DBs for dereplication of metabolites in their sample type with 
specific spectral data. Also, the presence of in silico (simulated) spectral data is indicated that 
could assist in tentative structural assignments. Finally, the availability of an automated search 
(such as API) is indicated; something relevant for uptake of the DB in a computational 
framework for automated metabolite annotation. 

Name Type of NP Number 

of 

entries 

P
u

b
lic

al
ly

 a
va

ila
b

le
 

Complementary information* 
Ex

p
er

im
en

ta
l d

at
a 

Si
m

u
la

te
d

 d
at

a 

SO
A

P
 o

r 
A

P
I f

o
r 

au
to

m
at

ed
 s

ea
rc

h
 

M
S/

M
S 

sp
ec

tr
a 

U
V

 s
p

e
ct

ra
 

N
M

R
 s

p
ec

tr
a 

B
io

lo
gi

ca
l s

o
u

rc
e

s 

P
at

h
w

ay
 

Fu
n

ct
io

n
al

 in
fo

 

AntiBase36 Specialized 

metabolites 

>40,000 No Yes Yes 13C Yes No Yes Yes Yes No 

BMRB37 Constitutive 

and specialized 

metabolites 

1,800 Yes No No Yes No No No Yes No Yes 

CH-NMR-NP38 Specialized 

metabolites 

30,500 Yes No No Yes No No No Yes No No 

ChEBI39 Constitutive 

and specialized 

metabolites 

55,000 Yes No No No Yes No Yes No No Yes 

DEREP-NP40 Molecular 65 Yes No No No No No Yes No No No 
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features 

Dictionary of 

Marine Natural 

Products41 

Marine 

specialized 

metabolites 

>25,000 No No Yes No Yes No Yes No No No 

Dictionary of 

Natural 

Products7 

Specialized 

metabolites 

275,000 No No Yes No Yes No No No No No 

E. coli 

Metabolome 

Database 

(ECMDB)42 

Constitutive 

and specialized 

metabolites 

3,800 Yes Yes No Yes Yes Yes Yes Yes Yes No 

FooDB43 Metabolites 

present in food 

stuff 

26,600 Yes Yes No Yes Yes No No Yes Yes No 

Global Natural 

Product Social 

(GNPS)44 

Specialized 

metabolites 

- Yes Yes No No Yes No No Yes No No 

Golm 

Metabolome45 

Constitutive 

and specialized 

metabolites 

3,500 Yes No No No Yes No No Yes No Yes 

Human 

Metabolome 

database 

(HMDB)46 

Constitutive 

metabolites 

and lipids 

42,000 Yes Yes No No Yes No No Yes No Yes 

KNApSAcK47 Specialized 

metabolites 

51,000 Yes No No No Yes No No No No Yes 

Madison 

Metabolomics 

Consortium 

Database48 

Constitutive 

and specialized 

metabolites 

20,000 Yes No No Yes Yes No No Yes No No 

MarinLit49 Specialized 

metabolites 

50,000 No No Yes 1H Yes No No No No No 

MassBank50 Various 

metabolites 

- Yes Yes No No No No No Yes No Yes 

European 

MassBank 

(NORMAN 

Various 

metabolites 

- Yes Yes No No No No No Yes No Yes 
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MassBank)51 

MetaboLights52 Constitutive 

and specialized 

metabolites 

26,000 Yes Yes No Yes Yes Yes No Yes No No 

MetaCyc53 Constitutive 

and specialized 

metabolites 

15,000 Yes No No No Yes Yes Yes No No Yes 

MetIDB54 Flavonoids 5,700 Yes No No Yes No No No Yes Yes No 

MetLin55 Constitutive 

and specialized 

metabolites 

240,000 Yes Yes No No No No No Yes No No 

MFSearcher56 Constitutive 

and specialized 

metabolites 

with a focus on 

flavonoids 

- Yes No No No No No No No No Yes 

MoNA57 Various 

metabolites 

70,000 Yes Yes No No No No No Yes Yes Yes 

MZedDB58 Constitutive 

and specialized 

metabolites 

- Yes No No No No No No  No Yes 

NANPDB59 Specialized 

metabolites 

from native 

organisms from 

Northern Africa 

4,500 Yes No No No Yes No Yes No No No 

Natural 

Product NMR 

DB38 

Specialized 

metabolites 

30,500 Yes No No 13C No No No Yes No No 

NIST60 Constitutive 

and specialized 

metabolites 

13,800 No Yes No No No No No Yes No No 

NPatlas61 Specialized 

molecules from 

microorganisms 

>20,000 Yes No No No Yes No Yes No No No 

Norine62 Non ribosomal 

peptides 

1,200 Yes No No No Yes No No No No Yes 
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NPCARE63 Specialized 

metabolites 

with a focuss on 

antitumoral 

compounds 

- Yes No No No No Yes No No No No 

Plant 

Metabolic 

Network 

(PMN)64 

Constitutive 

and specialized 

metabolites 

4,500 Yes No No No No Yes Yes No No Yes 

ResPect65 Specialized 

metabolites 

3,500 Yes Yes No No No No No Yes Np Yes 

Seaweed 

Metabolite 

Database66 

Specialized 

metabolites 

from seaweeds 

1,000 Yes No No No Yes No No No No No 

StreptomeDB67 Specialized 

metabolites 

from 

Streptomyces 

spp. 

>4,000 Yes Yes Yes No Yes No Yes No Yes  

SuperNatural 

II68 

Constitutive 

and specialized 

metabolites 

326,000 Yes No No No No Yes Yes No No No 

UNPD-ISDB69 Specialized 

metabolites 

170,000 Yes Yes No No No No No No Yes Yes 

Yeast 

Metabolome 

database 

(YMDB)70 

Constitutive 

and specialized 

metabolites 

16,000 Yes Yes No Yes Yes Yes Yes Yes Yes No 

*complementary data is usually not available for all DB entries. 
 

The role of these DBs is not limited to the acceleration of dereplication but constitutes the basis for 

the development of spectral parameter prediction, which in turn is needed for dereplication and de 

novo structure elucidation. Such tools may then enlarge existing experimental spectral DB by adding 

simulated spectral (in silico data) (see sections 2.2 and 3.2). Today, it is relatively easy to find catalogs 

of NP structures but more difficult to find DBs in which each structure is associated with corresponding 

spectral data tables or raw genuine spectroscopic information. Table 1 provides some of the DBs 

containing spectral data for either only NPs or those that are parts of larger sets of compounds. 
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In such DBs, information about the biological origin of NPs provides additional information for 

metabolite annotation. As far as the phylogenic classification of living organisms reflects genetic 

peculiarities and the production of specialized metabolites is under genetic control, preserving access 

to the relationship between a compound and the classification information about the source organism 

is key. Chemotaxonomic considerations can indeed be decisive in the identification process of an 

unknown compound. Ideally, an NP DB should provide relationships between structures, spectroscopic 

properties, and a compound’s biological origin (as reported in Table 1). Similarly, it is important to 

provide information about the biosynthetic pathway of fully de novo characterized NPs. Ideally, this 

should help fill the gap between NP structures, their biosynthetic origin and spectral data.71 

Interestingly, recent metabolic pathway reconstruction in the genus Penicillium has revealed that NP 

pathways within DBs were much more available than expected.72 

As far as the search for biological activity is the underlying motivation for undertaking NP research, 

associating biological activity with compound structures is also an important feature of NP DBs. Indeed, 

NPs with specific biological activity can raise interest in the scientific community, and having the means 

to establish a link between various NP structures and their activities, if well documented, may provide 

ways to infer the potential pharmacological effects of given compounds and thus considerably extend 

the significance of a given metabolic profiling investigation.73 

2.2 Toward in silico databases? 

Currently, no single exhaustive DB exists where all reported NPs are listed with exhaustive metadata 

(Table 1). However, increasing numbers of structural DBs have evolved and begun to aggregate 

experimental and simulated spectra (in silico data), while some spectral DBs are enriched with more 

metadata (i.e., structures reported by SMILES and InChIs code74 with derived information, such as 

molecular formulas (MFs), accurate mass, molecular mass, related bibliographic resources, and 

phylogeny information about the source organism). In this respect, for microorganism metabolite 

profiling, the NPatlas initiative is worth mentioning because the DB aims to bring together structural 

and functional information for a wide range of microbial NPs.61 Access to searchable experimental 

spectral data remains a key aspect of achieving high-confidence annotation. However, based on these 

requirements, available NP DBs have various limitations, of which the impact differs from DB to DB: 

 Limitation 1 - DB lack of exhaustivity: None of the available NP DBs are exhaustive, and several 

of them need to be browsed to determine all reported NPs for a given organism of interest, 

which renders this step time-consuming. An alternative solution is to perform searches in more 

exhaustive DBs that are not limited to NPs and encompass compounds of synthetic origin 

(ChemSpider,75 PubChem76 or SciFinder77). Such an approach generally rapidly yields a 
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comprehensive list of candidate molecules. Most of them are, however, irrelevant for NP 

scientists, and in this case, the selection of coherent NP candidates is again very time-

consuming. 

 Limitation 2 - DB inconsistency: Differences in chemical identifiers between the various DBs 

exist when they are compared.74b For example, the same name may be linked to different 

structures in various DBs.78 Such inconsistencies may drastically increase the time spent 

gathering coherent information and establishing a final list of plausible candidate structures. 

 Limitation 3 - DB long-term availability: Maintaining publicly available DBs has a cost, and the 

lack of funding may lead to their disappearance, as was the case for the Universal Natural 

Product Data Base (UNPD)79 or the MoTo DB.80 Compiling information from the literature to 

create such DBs comes with a cost and explains why more persistent and exhaustive DBs need 

to be purchased, such as the Dictionary of Natural Products7 or AntiBase.36 The usage of those 

DBs in combination with open-source workflows is thus problematic. Recently, many open-

source DB initiatives have emerged, as is the case for the GNPS platform, which encompasses 

many DBs relevant to NP scientists and can be searched and downloaded as well.44 

 Limitation 4 - DB querying versatility: All DBs have different intrinsic structural organizations 

and thus various ways to query them. Some DBs can be searched by MW, accurate mass, 

molecular formula (MF), substructure and/or spectral features. These differences hamper the 

performance of simultaneous streamlined searches in a range of DBs. 

 Limitation 5 - Data acquisition inconsistency: The spectral data reported within DBs may vary 

significantly. It is important to keep in mind that for MS, fragmentation spectra are strongly 

dependent on the instrument and fragmentation settings (see section 3.1). Similarly, in NMR, 

spectral information, even if they are much more consistent across platforms, may vary 

significantly based on the nature of the solvent and the intensity of the magnetic field used for 

measurements. This complexifies spectral comparisons; therefore, the spectra of a given 

compound should ideally be measured in different conditions, and the sample preparation and 

acquisition parameters should be well documented. 

As a consequence of these limitations, searching a DB for known NPs is impaired and the data mining 

process is considerably slowed down; in contrast, the acquisition of metabolite profiling data is usually 

rapid. Therefore, we advocate the need to improve the NP DB search efficiency. Although the existence 

of organism-specific DBs is useful (such as ECMDB42 for E. coli),35a it would be highly advantageous if a 

common template could make their use easier.73 This effort was already initiated with some DBs from 

the Wishart group (ECMDB,42 HMDB,46 YMDB70 and FooDB43), which share similar architectures. 

Another historical issue is that NPs that have been described decades ago may have well-reported 
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melting points, optical rotations, and UV and IR spectral peak positions but very few details, if any, on 

their NMR and MS spectra. Furthermore, NMR and MS data are presently scattered in scientific 

journals in formats that do not favor any kind of automatic extraction for DB-building purposes. 

Unfortunately, all of these data, if available in the literature, are not always reported in DBs. This, 

unfortunately, limits the ability to achieve efficient annotation. Therefore, there is a huge gap between 

the number of NPs reported in the largest DBs (> 300 000 NPs) and the number of NPs with reported 

spectra.81 

Thus, the idea of predicting spectral features has emerged as a way to rationally expand spectral DBs 

from the structures of NPs providing generic tools for compound annotation.82 Spectral parameter 

prediction can be undertaken either from first principles (in other words, ab initio, by quantum 

mechanical methods)83 or from the mathematical (or chemometric) analysis of a set of high-quality, 

carefully curated reference data. The latter approach has been proven to be very efficient in terms of 

accuracy and computing time, while the former is more universal and can be applied even in the 

absence of reliable reference data. Considering the widely used chemometric approach to prediction, 

each description of the experimental spectroscopic data of a new compound is a possible source of 

improvement for a prediction algorithm that in turn will facilitate the dereplication or de novo 

structure elucidation of other compounds. Filling the holes of missing or low-quality experimental 

spectral data with predicted data results in so-called in silico DBs. The constitution of such a DB requires 

“only” a list of molecular structures and a prediction algorithm. Obviously, this prediction technique is 

strongly dependent on the spectroscopic method, and specific approaches will be detailed in dedicated 

sections of this article. Currently, such simulated spectral DBs are currently being used to complement 

existing DBs (i.e., ECMDB,42 HMDB,46 YMDB70 and FooDB43). This combined approach allows for a 

drastic expansion of available spectral information, thus potentially yielding improved annotation.84 

3 The LC-HRMS/MS side 

3.1 Global overview of metabolite profiling by LC-HRMS/MS 

3.1.1 UHPLC with different-phase chemistries (polar/non-polar) 

Microorganism or plant samples can be profiled by mass spectrometry-based methods either directly 

or in hyphenation with chromatographic methods. Deciphering the composition of biological samples 

based only on MS is effective, especially with the recent advances in HRMS and ultra-HRMS. 19 This can 

be achieved by the direct infusion of samples in the MS interface (DIMS), particularly by using nano-

infusion devices.85 Alternatively, samples can also be analyzed without performing any extraction step 

using ambient mass spectrometry methods (AMS), such as desorption electrospray ionization DESI or 

direct analysis in real time (DART).86 
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Metabolite fingerprints can also be acquired from plant or microorganism surfaces using either a laser 

or an ion beam in imaging MS experiments, which provide not only compositional information but also 

the spatial locations of metabolites by rastering across an entire surface.87 All of these methods provide 

either single MS and/or MS/MS spectra on potentially all metabolites (as none of them are filtered by 

a chromatography step) and usually have high throughput. Without a chromatography step, the effects 

of ion suppression become even more pronounced with such direct MS methods, and a significant 

number of analytes may not be ionized. Such direct MS profiling methods are effective but will not be 

further reviewed in detail here because they have drawbacks for the structural elucidation process, 

such as isomers that are not detected separately. Indeed, to obtain a comprehensive survey of the 

highest possible number of metabolites, i.e., “deep metabolome analysis”, MS methods that are 

hyphenated with a chromatography step are mostly used because natural extracts, in particular, 

oftentimes hold numerous structural isomers that need to be separated with an orthogonal method 

to MS for deconvolution. The orthogonal chromatography dimension also helps with “feature 

reduction” because it allows for deconvolution by assigning MS features to single metabolites, which 

facilitates the metabolite identification process.25 As mentioned earlier, this step also considerably 

reduces the ion suppression issues that frequently occur when dealing with complex biological 

matrices, such as plant or microbial extracts.88 

Liquid chromatography mass spectrometry (LC-MS) is thus by far the most commonly used method for 

the metabolite profiling of NPs. For a recent review of its applications to various plant extract 

metabolites, the reader is referred to Ganzera et al.89 Gas chromatography (GC) also plays an important 

role in both the analysis of volatile compounds found in the essential oils of plant extracts90 and the 

profiling of primary metabolites after their derivation in metabolomics studies.91 Capillary 

electrophoresis (CE)92 can also be used but is more rare, as it is mainly restricted to charged or ionizable 

metabolites and is often not used in hyphenation with MS. Due to space restrictions, GC-MS and CE-

MS methods will not be discussed here in detail. Interested readers are referred to selected 

references.93 

Today, the state-of-the-art LC-MS for metabolite profiling consists of the hyphenation of ultra-high-

pressure liquid chromatography (UHPLC) with HRMS mass spectrometer detectors that can provide 

MS and MS/MS spectra with high sensitivity, mass resolution, accuracy, and throughput. To improve 

the quality of the generated data, the chromatographic and mass spectrometric dimensions must both 

be optimized, and none of these dimensions should be neglected from neither a mass spectrometry 

nor a chromatographic viewpoint. 

In UHPLC, the reduction of the support particle size (i.e., sub-2 µm) has allowed for a shorter analysis 
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time and higher separation efficiency at the price of dedicated LC systems that can withstand pressures 

greater than 400 bars. Since its introduction more than a decade ago, considerable increases in peak 

capacity, sensitivity and reproducibility have been achieved.94 A peak capacity exceeding 800 could be 

attained on typical plant extracts over gradients exceeding an hour, thus demonstrating its use for 

natural extracts.95 Sufficient peak capacities in metabolomics applications where throughput has been 

maximized could, however, be reached in runtimes of less than 10 minutes. 

As mentioned before, NPs from plants and microorganisms exhibit a very wide chemodiversity, and it 

is thus not practically feasible to develop generic metabolite profiling that can encompass the vast 

majority of metabolites in a single analytical run. From a chromatographic perspective, various 

stationary phase chemistries must be considered to achieve the best selectivity, while from the MS 

side, different ionization methods of fragmentation and energies need to be used to generate the 

richest possible sets of structural information. The majority of studies in natural products research deal 

with generic linear gradients on reversed-phase (RP) chromatography and electrospray in both positive 

and negative ion modes, and electrospray (ESI) is the preferred ionization method.25 Such an approach 

is efficient but mainly compatible for the analysis of NPs of medium polarity, and this has to be kept in 

mind if a full naturally extracted metabolome is to be characterized or if expected biomarkers do not 

have physicochemical properties that are compatible with standard RP phase analysis. 

An extensive study on a large set of 120 representative natural compounds belonging to 22 chemical 

classes was recently performed using LC-HRMS, using 59 different analytical conditions, including 29 

columns (RPLC, HILIC and mixed-mode) and several mobile-phase pH conditions to determine what 

conditions were sufficient for the retention and detection of the vast majority of NPs. This 

demonstrated that four RPLC conditions were suitable to retain and detect 89% of the set of 

representative NPs. HILIC offered extended and complementary retention to RPLC for polar 

compounds, but no universal conditions that would detect the complete set of selected NPs could be 

highlighted over the entire set of tested columns. The HILIC mode, in particular, was found to be very 

limited in the extension of the panel of NPs detected.96 

Supercritical fluid chromatography (SFC) hyphenated to MS is potentially a complementary method 

to RPLC for profiling extracts with metabolites spread over a large chemical space and has been claimed 

to be compatible with a far broader chemical spectrum. In addition to being a green chemistry method 

for the isolation of NPs at the industrial scale, it is also a powerful analytic profiling tool that is now 

compatible with the use of a sub 2-µm column in a mode of acquisition that has been defined as 

“convergence chromatography”.97 For ultra-high-pressure SFC (UHPSFC), a set of NPs covering more 

than 18 logP units on 15 different stationary phases was evaluated, and it was demonstrated that the 
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technique performed well for the analysis of almost 90% of the selected compounds.98 For example, 

this method was used in an offline multidimensional mode with RPLC (UHPSFC C18 x UHPLC C30) for the 

analysis of apolar carotenoids, and chlorophyll characterization in different sweet bell peppers allowed 

for the determination of 115 different compounds.99 This latter example indicates that 2D-LC 

techniques bring orthogonal dimensions in the chromatographic separation of NPs prior to MS 

detection, thus allowing additional previously non-separated species to be detected. Such an LCxLC 

mode has been applied for the profiling of natural extracts, but its applications are still scarce 

compared to those of comprehensive GCxGC methods, which represent the gold standard in the 

profiling of essential oils.100 This is probably due to mobile-phase incompatibility problems and the 

complexity of setups that restrict easy automation for acquisition over a large number of varied 

samples.101 

Because natural extracts ideally require additional selectivity in chromatography due to their 

intrinsically convoluted nature (i.e., the close co-elution of isomeric species), an interesting orthogonal 

dimension to RPLC is ion mobility (IMS). IMS is a post-ionization separation technique that separates 

ions on a millisecond timescale based on their shape, size and charge. This can be performed using a 

chamber filled with an inert gas in either a drift tube or travelling wave devices (in low-pressure drift 

tube IMS, the electric field is only applied in a small region of the drift tube).102 Such a technique is well 

compatible for hyphenation between the LC and the MS and adds selectivity to the separation of 

compounds prior to MS detection. This is usually achieved on fast-scanning instruments such as a time-

of-flight (TOF) detectors, and recently, coupling with Orbitrap detectors has also been shown to be 

feasible.103 IMS-MS can also introduce additional features, such as collision cross section values (CCS). 

CCS is also a unique physicochemical property of the analytes that can be used to improve annotation, 

as discussed in section 7.1. LC-IMS-MS is still an emerging technique for natural extract profiling, but 

it has been successfully applied to the separation of alkaloids104 and has shown very interesting 

potential for the analyses of polyphenols after metabolization.105 

Regardless of the level of metabolite separation achieved on the chromatographic side, on the MS 

side, the acquisition should aim for the recording of the highest possible number of MS and MS/MS 

spectra with the best possible quality. The recording of denoised deconvoluted spectra with high-

resolution ion statistics and a sufficient S/N ratio is indeed key for the unambiguous detection of 

molecular ion species (MS) and the generation of rich fragmentation information (MS/MS). The 

generation of such MS raw data is a prerequisite for carrying metabolite identification to the best 

possible level.106 

The structural information that can be recorded by MS during NP identification are the molecular 
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weight, the MF, and the fragmentation pattern of each molecular ion species, which is structure-

specific and fragmentation energy/ionization mode-dependent: different collision energies yield 

different numbers of mass fragments with different abundances, and both ionization modes 

oftentimes have different preferred fragmentation paths that are activated by collision. Such mass 

spectrometry data are usually very complementary to NMR, as discussed in section 6. 

In a typical LC-MS metabolite profiling analysis using atmospheric pressure ionization methods, NPs 

will be ionized in positive or negative modes, or both, depending on their physicochemical properties.19 

This process is mostly performed by an electrospray interface (ESI), which provides the ionization of 

the analytes in solution and after final transfer of the ion in the gas phase. Alternatively, ionization can 

take place in the gas phase after the evaporation of the analytes, as is the case for atmospheric 

pressure chemical ionization (APCI).25 This process may simply lead to protonated [M+H]+ or 

deprotonated [M−H]− molecules but will also often generate different adducts (e.g., addition of salt, 

solvents, dehydration, dimerization) that complexify the MS spectra. The presence of several adducts 

can, however, be important for the unambiguous determination of the accurate mass of unknown NPs. 

Additionally, the comparison of positive ionization (PI) and negative ionization (NI) MS spectra may 

help to unambiguously determine the molecular weight (MW). The reader can refer to very interesting 

tutorial to learn more on these aspects with practical tips and tricks emphasized.107 When acquiring 

spectra with high resolution, it is possible to retrieve information about the MF, generally considered 

as the first important step towards structural identification. Today, a mass accuracy of less than 5 ppm 

can routinely be obtained on most benchtop instruments, while mass accuracies of less than 1 ppm 

can be achieved on state-of-the-art platforms, which has drastically reduced the number of possible 

MFs to consider.108 Even when such mass accuracies (<1 ppm) are obtained, MF determination remains 

a difficult task if the number of atoms is substantial and the MW of the analytes is high.109 This is 

especially true for NPs that have MWs exceeding 500 Dalton. A good way to reduce the number of 

possible MFs is to apply heuristic filtering, as discussed below.110 In NP profiling studies, the MF 

annotation obtained for an average MW (ca. 400 DA) on a modern instrument in combination with 

heuristic filtering is generally reliable provided that the determination of the MW is correct. 

Established software tools such as SIRIUS also include isotopic patterns when available which can 

further increase confidence in MF assignments.111 

3.1.2 Untargeted MS/MS acquisition 

In untargeted LC-MS metabolomics and deep metabolome analyses, the automated acquisition of 

MS/MS spectra for all detected metabolites (MS2) is a prerequisite to generate the necessary 

complementary structural information to MF.106 Tandem mass spectrometry (MS/MS) is indeed an 

invaluable experimental tool for providing analytical data to support the identification of small 
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molecules.112 The primary strategies used to achieve this task are data-dependent acquisition (DDA) 

and data-independent acquisition (DIA).113 DDA is a mode of acquisition responsive to the signals 

detected in a given sample: MS/MS spectra are acquired if the selected criteria (e.g., threshold, charge 

of the detected compound, and dynamic exclusion list) are met in a full scan survey to ensure that the 

highest possible number of non-redundant dependent MS/MS scans are acquired. This process is 

efficient and automatically generates MS/MS spectra for each selected molecular ion species and co-

eluting species in a narrow m/z window detected in the MS survey scan in decreasing order of intensity. 

However, it is limited by the number of cycles that are necessary to acquire the MS/MS-dependent 

scan. Depending on the frequency of acquisition of a given instrument, the number of DDA MS/MS 

spectra will vary, and low-abundance ions in MS will not be sampled in the recording of their 

corresponding MS/MS spectra, thus limiting the coverage of metabolite annotation for a given sample. 

DDA has been successfully applied to plant metabolomics studies, for example, for the metabolite 

profiling of large series of Euphorbiaceae extracts in the frame of the prioritization of bioactivity in 

conjunction with MN analysis.114 This acquisition mode has been applied in most NP studies where 

annotation was based on molecular networking (see section 3.3).115 

A significant improvement in traditional DDA was recently proposed in the form of data-set-dependent 

MS/MS (DsDA). The principles of such an acquisition mode are based on repeated injections of a given 

sample, and the feedback between data processing and data acquisition can allow for the 

approximately real-time optimization of MS/MS acquisition parameters to obtain nearly complete 

MS/MS sampling coverage. Using such an approach on a complex mixture with a quadrupole time-of-

flight mass spectrometer (Q-TOF), it was demonstrated that the DsDA approach generates significantly 

more MS/MS events than traditional DDA by temporally isolating data processing from acquisition, 

thereby maximizing the data acquisition time during the chromatographic gradient by minimizing the 

competing processing time.112 It will be interesting to follow future developments in this direction. 

Data-independent approaches (DIA), in theory, offer greater MS/MS coverage than DDA, typically at 

the expense of selectivity or sensitivity.116 DIA is not biased toward the detection of the most abundant 

ions in a full scan spectrum because it does not use a selection step prior to fragmentation.19 For the 

MS/MS recording of all ions present at any time in the chromatographic separation, DIA can be 

performed by simultaneously broad-banding all ions (entering the MS at a single chromatographic time 

point) or by multiplexing a full m/z range into smaller m/z isolation windows.117 Various DIA acquisition 

modes exist depending on the manufacturer. In the so-called “MS to the E” (MSE), the simultaneous 

acquisition of MS spectra at low and high collision energies occurs over the entire mass range. In all-

ion fragmentation (AIF), multiplexed MS/MS data-independent acquisition (MSX-DIA) occurs. In 
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Sequential Window Acquisition of all Theoretical mass spectra (SWATH), all ions entering a given mass 

range are fragmented in m/z window increments.19 This increased coverage comes at a price: the 

spectra produced by these acquisition modes are convoluted and, in contrast to DDA, the challenge 

lies in producing clean deconvoluted MS/MS spectra linked to their precursor ions. This is done by 

associating all ions with overlapping elution profiles at a given retention time (RT) or, more recently, 

with the usage of LC-IMS-MS, by taking into consideration all ions having the same CCS value and 

coming from a single LC peak.118 

An example of a typical UHPLC-HRMS/MS metabolite profiling analysis by DDA and DIA from an 

artificial mixture of 5 herbs is presented in Figure 2.119 Up to 18,000 MS/MS spectra were recorded in 

the DIA versus ca 2,600 in the DDA mode over a generic reversed phase gradient, as displayed by MS-

Dial.120 All spectra (HRMS, MS/MS in DDA and DIA modes) recorded for isoginkgetin a flavonoid present 

in the extract of the well-known medicinal herb Ginkgo biloba are displayed. The comparison of these 

spectra shows that some characteristic fragments (not all) are common between the DDA and DIA 

modes and match those obtained in a simulated in silico spectra of isoginkgetin obtained by CFM-ID.121 

It has to be noted that richness of fragment information generated is dependent on the type of NP 

scaffolds analysed. Such information in addition to the MF formula assignment already allows a 

significant reduction of structural candidates. In this case, the isoginkgetin standard was also analysed 

in the same conditions and formally identified. 
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Figure 2. Example of data acquisition in a typical UHPLC−HRMS/MS metabolite profiling of plant extracts in both data 
dependent (DDA) and data independent (DIA) MS/MS modes. The analysis of a mixture of five plants extracts presenting a 
broad chemodiversity is shown.119 The HRMS and MS/MS spectra are displayed for a specific feature m/z 567.17 at 3.66 min 
corresponding to the [M + H]+ of the biflavonoid isoginkgetin (accurate mass, 566.1213; formula, C32H22O10) present in the 
extract of Gingko biloba, one the extracts of the mix. (A) UHPLC−ESI-HRMS metabolite profile acquired in the in PI mode (m/z 
150−1200) on an Orbitrap mass spectrometer on a C18 column (50 mm × 2.0 mm i.d.; 1.7 μm) with a generic acetonitrile 
gradient 5−95% in 8 min for a broad profiling over a large NP polarity range. (B) Visualization in the form of an ion map (m/z vs 
RT) of all features having an associated MS/MS with the MS-Dial software120 (2631 features with MS2). On the attached panel 
isotopic clustering of MS-Dial of all features corresponding to a given analyte. (C) Same plot as part B for data acquired in the 
DIA mode (18 420 features with MS2) showing an increased coverage of fragmentation data compared to DDA. (D) HRMS 
spectrum recorded at the apex of the LC-peak at RT 3.66 displaying the features m/z 567.12 [M +H]+ of isoginkgetin as well as 
its dimer m/z 1133.25 [2M +H]+ obtained with ESI in positive ionization mode. (E) Zoom on the feature [M + H]+ of isoginkgetin 
showing the accurate mass and isotopic pattern of [M + H]+. This information is necessary to ascertain the corresponding 
molecular formula (MF): C32H22O10 (calculated for C32H22O10 566.1213, Δppm = 0.5). (F) DDA MS/MS spectrum of the 
precursor ionm/z 567.12 automatically selected during profiling and fragmented withHCDat three different normalized 
collision energies (NCE 15, 30, and 45) on the Orbitrap MS analyzer. (G) Raw DIA MS/MS spectrum at RT 3.66 min. All ions are 
fragmented at three different NCE. (H) Superposition of all ion traces of the fragment ions for selection of ions coeluting in LC 
at the apex of RT 3.66 min for the deconvolution of the raw DIA MS/MS spectrum in part F. (I) Deconvoluted DIA spectrum at 
RT 3.66 min associated with the feature m/z 567.12 eluting at the same retention time in the full scan spectra in part D. 
Comparison of the spectra in parts G and I allows a comparison of the DIA deconvolution, the DDA MS/MS spectrum in part F 
does not requires deconvolution since a specific precursor ion is selectively selected. (J) In silico simulated spectrum of 
isoginkgetin obtained by CFM-ID by input of its SMILES structural string. To be noted in the selected example a few fragments 
are common between the different MS/MS modes and the in silico spectra generated. The richness of fragment information 
generated is dependent on the type of NP scaffolds analyzed. Such information in addition to the MF formula assignment 
already allows a significant reduction of structural candidates. In this case, the isoginkgetin standard was also analyzed under 
the same conditions and its identity was confirmed. 

 

DIA results in more complex datasets but allows more comprehensive information to be obtained than 

DDA. It also permits the retrospective mining of data because all m/z are fragmented within the LC 

separations and there is no discrimination due to precursor ion selection. However, DIA applications 
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to NP metabolite profiling studies are still scarce, whilst this mode has been successfully used for 

qualitative/quantitative proteomics studies.122 The application of the MSE mode on a QTOF platform 

was found to be effective for the characterization of alkaloids of Hydrastis canadensis. The spectral 

data quality obtained using this method was comparable to that obtained by conventional DDA.123 

More recently, the use of DIA with MSE scan mode enabled the characterization of more than 110 

phenolics in green and red oak-leaf lettuce cultivars by UHPLC-QTOF/MS.124 In DIA, the SWATH mode 

was mainly applied to proteomic studies; to our knowledge, it has not yet been reported for the 

microbial metabolite profiling of plants but was successfully applied to small metabolites, such as 

pesticides in food125 or drug metabolites.126 Thus, DIA has very large potential.127 To date, however, 

most untargeted metabolome annotations are made from datasets acquired by DDA that provide 

good-quality spectra with more limited coverage. This is likely a result of the use of deconvolution 

algorithms that are not yet sufficiently fully able to handle complex metabolomics data sets, although 

metabolomics deconvolution software tools are emerging now.120 

3.1.3 Collision-induced (CID) fragmentation and normalization of fragmentation 

An important point common to all MS/MS spectra is the influence of the energy given to ions on the 

fragmentation patterns in collision-induced (CID) MS/MS experiments. The extent of analyte 

fragmentation is indeed dependent on the nature of the analytes, and similar energies of collision 

across MS platforms are difficult to standardize, unlike in GC-EI-MS128, where all obtained EI-MS 

spectra are normalized to a value of 70 ev worldwide, resulting in similar fragmentation patterns for a 

given volatile. 

A typical CID MS/MS experiment is easy to perform and ubiquitous in the MS field: precursor ions are 

selected and then accelerated to obtain their kinetic energy; they are then allowed to collide with 

neutral molecules, which results in charged fragments recorded in the MS/MS spectra. The 

fragmentation spectra change according to the MS platform used, and interested readers can refer to 

the following review for an excellent overview.113 

Normalizing energies in CID is a very challenging task. On the one hand, it depends on the internal 

excitation level of the ions related to the temperature of the ion source, the transfer ion optics and 

the thermalization of precursor ions prior to the CID. On the other hand, the type of CID process differs, 

as it will either represent the acceleration to a well-defined kinetic energy distribution prior to collision 

with a bath gas (in the case of a triple quadrupole instrument, QQQ) or the resonance excitation of 

selected precursor ions for some set time period by radio-frequency (in the case of ion traps, IT). In an 

IT system, fragments are off-resonance and will not be further excited once formed, while in QQQ, 

they may undergo consecutive collisions.129 Thus, the nature of the fragmentation impacts how a given 
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MS/MS spectrum changes with increasing energies. Optimizing such energies has been thoroughly 

investigated, particularly for proteomics, where clear fragmentation rules for deducing peptide 

sequences have been established.130 It is much more challenging to propose generic methods for NPs 

because of their very large chemodiversity and extended physicochemical properties that correspond 

to very different ionization and fragmentation behaviors. 

CID MS/MS spectra thus differ across MS platforms, limiting the efficiency of the search for 

experimental MS/MS spectra against the MS/MS spectra recorded with different energies. Often, ion 

intensities will differ, and specific fragments will appear only when a given energy is reached, while at 

too-elevated energies, other diagnostic fragment ions may disappear. As an example, variations in the 

MS/MS spectra on different platforms of the fragmentation of isomeric flavonoid C-glycosides were 

compared on TOF versus IT analyzers.131 Most modern mass spectrometers and acquisition software 

now allow for a “stepped collision energy” functionality where, during acquisition, several MS/MS 

spectra of different collision energies are merged to form one recorded spectrum.132 This can yield 

information-rich spectra, but choosing the right energies to combine remains challenging because not 

all molecules perform optimally under one given condition. 

One proposed solution to avoid missing characteristic fragments is to ramp collision energies at distinct 

individual voltages, which are then merged into a single MS/MS spectrum, much like the stepped 

collision energy functionality mentioned earlier.113 For improved and/or more generic matching with 

DBs, it is possible to build libraries of the resulting merged or consensus MS/MS spectra. The concept 

of consensus spectra has already been adopted for quality control in building libraries from ESI-MS/MS 

data at defined energies. This can be achieved by grouping similar spectra into a one consensus 

spectrum where peak intensity values are taken as the m/z median values of the underlying spectra, 

and outliers can be rejected.128 The consensus DDA MS/MS spectra of frequently occurring metabolites 

were also used to improve the annotation of untargeted quantitative metabolomics analysis in DIA 

MS/MS.133 

Instead of trying to determine all relevant experimental parameters by adjusting the CID conditions 

and determining the excitation energy from there, another approach is to calibrate the instrument by 

using thermometer ions with well-known fragmentation energetics. To do this, benzylpyridinium ions 

have been used.129 If the good implementations of such thermometer ions were available on a wide 

range of instruments, this could be used to help evaluate fragmentation energies across platforms, 

which is especially helpful when interrogating DBs acquired with specific parameters that can then be 

easily compared. Until then, it is important to take good note of the fragmentation conditions of a 

query in a spectral DB and then manually assess if the match is as expected. 
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3.1.4 ELSD and CAD for semi-quantitative estimations 

Another challenge in the acquisition of metabolite profiling data, which is slightly different than the 

above identification challenges but also important in relation to the possible biological roles of NPs, is 

the retrieval of semi-quantitative information about the abundance of a given metabolite in the 

metabolite profiles of NP extracts. Because ionization with atmospheric pressure ionization (API) 

methods is molecule-dependent, it is not possible to extract such information from the ion abundance 

data of precursor ions. However, the obtained abundances can still be used in differential 

metabolomics to evaluate the fold changes of given biomarkers across samples with similar matrix 

compositions. In particular, in ESI, it is not possible to correlate the responsiveness of small molecules 

to ESI-MS simply with a single parameter.134 Multivariate analyses are required to evaluate the ESI 

response, and some attempts have shown that correlations between different molecular descriptors 

with respect to the solvent pH and instrumental configuration are possible on a series of nitrogen-

containing compounds.135 This is promising but not yet applicable to general NP research because 

complex extracts are typically composed of a large variety of molecules. In addition to such efforts in 

untargeted metabolomics, the prediction of ESI response factors based on NP structures for semi-

quantitative estimation is still far from achievable. The quantification of NPs in a given extract is, 

however, important information and would be ideal to implement to focus the annotation efforts 

toward the main constituents to thus be able to extract more meaningful data in chemotaxonomy or 

bioactive NP prioritization studies. For the semi-quantitative estimation of metabolite levels, 

additional detection methods that have response factors independent of the chemical properties of 

the analyte are needed.136 This is the case for the evaporative light scattering detector (ELSD) or 

Corona-Charged Aerosol Detection (CAD),137 which represent interesting alternatives with lower 

sensitivity compared to MS and exhibit linearity issues in their response.138 Both methods have already 

been used to profile extracts concomitant with MS.139 Their integration with MS is still scarce in NP 

research and requires increasing the amount of extracts injected and defining efficient splitting 

strategies to divert most of the LC flow in ELSD and CAD without altering the LC resolution in the MS 

detector.136 In most LC-MS settings, the UV photodiode array detector (PDA) is coupled online with the 

MS detector. PDA detectors are very useful for the metabolite profiling of NPs because chromophore-

containing NP classes, such as polyphenols, can be well discriminated based on their characteristic UV 

PDA spectra.140 A “low” UV wavelength (203-215 nm) can be used for the broad generic detection of 

all NPs sharing at least a weak chromophore. The detection thresholds are, however, limited by the 

presence of buffer modifiers. In most cases, formic acid is used but has a higher UV cutoff than TFA, 

which is ideal for HPLC-UV detection; however, it results in MS signal suppression.141 
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3.1.5 Multistage mass spectrometry fragmentation and fragmentation trees 

Next to an optimized acquisition mode, good-quality dereplication and annotation require good-

quality precursor ion information to obtain the correct MF assignments and their associated denoised 

MS/MS spectra. However, even with high-quality MS/MS spectra the metabolite annotation process 

can still be very tedious in part because the relations between mass fragments cannot always be 

accurately determined or inferred from MS/MS data. To gain additional structural information about 

mass features and overcome the abovementioned bottleneck, with ion trap analyzers or ion-trap– 

orbitrap combinations, MS3 or MSn (MS to the “n”, as in multistage MS fragmentation where n can be 

4 or 5) can also be performed to further enhance fragmentation for deeper annotation using spectral 

tree approaches.142 In fact, multistage fragmentation records the fragmentation paths present in 

molecules that undergo CID fragmentation. By systematically fragmenting increasingly smaller 

fragments, an extensive spectral tree can be built that can be compared, as a whole or in parts, to 

other spectral trees. This method was successfully used to discriminate 121 fragmented polyphenol 

standards and to observe common fragmentation paths in related flavonoid species.142a Alternatively, 

the relations between fragments and thus fragmentation pathways can be inferred from MS/MS 

spectra, which result in fragmentation trees. These fragmentation trees can form the basis for 

successful annotation strategies, as discussed later in this review.143 The main difference between 

spectral trees and fragmentation trees is that the first are experimentally obtained (acquired) from 

multistage fragmentation data, whereas the latter are computed from MS/MS spectra based on the 

MFs assigned to the precursor and mass fragments. 

These in-depth fragmentation approaches have the benefit of obtaining detailed fragmentation 

information and thus can be used to obtain more structure-specific information; however, they come 

at the cost of more acquisition time, and the number of software tools that can efficiently handle and 

exploit multistage fragmentation data remains small. For example, the annotation tool MAGMa was 

the first to exploit the hierarchical information present in MSn spectral trees.144 

3.1.6 Processing raw data 

Once MS and MS/MS data have been acquired, ideally on the largest possible number of NPs in a given 

extract, they must be processed prior to entering the workflow for metabolite annotation. Mass 

spectrometry data come off the equipment in various so-called “raw” formats, which are typically 

vendor-specific. These raw data refer to the file formats in which the mass spectrometry data are 

stored; they typically include information about the analytical procedures followed, as well as scans 

with spectral information, i.e., masses and intensities. To analyze an experiment, e.g., to determine 

and prioritize the novel chemistries in a set of biological extracts, one must transform the raw data 

into tables with “features” representing metabolites and their intensities across different samples. 
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Only then, the prioritization of relevant metabolites can be performed by applying statistical 

approaches. Many tools have become available to perform this step.145 Typically, necessary steps 

include peak-picking (recognizing LC-MS peaks within a sample) and, for differential metabolomics that 

allow prioritizing differential MS features to annotate, peak alignment can be performed across 

samples, for which appropriate thresholds for noise signals and signal variations must be chosen. 

Moreover, if acquired, MS/MS data must be connected to the right LC-MS peaks and the corresponding 

precursor ions. 

Most vendors offer vendor-specific analysis toolkits that are able to visualize LC-MS runs, process mass 

spectrometry data, and perform metabolite annotations. Although the quality of many of these tools 

is good, it is expensive (and, for many labs, impossible) to reproduce specific data analysis steps when 

using proprietary software tools belonging to specific instruments. Furthermore, this results in data 

that are difficult to share between labs, to extend DBs with, and to improve annotation with in a 

generic manner. However, there is a strong need within the NP research community for data sharing 

and reuse. Therefore, various tools have been introduced in recent years that work using the open-

source principle. For example, when using data mining strategies132, 146 (see sections 3.1.2 and 3.1.3), 

conversion into an open format is a prerequisite. In this way, data can be effectively reused and 

reanalyzed by the scientific community. 

The latest non-textual standard format is mzML,147 which takes its key strengths from its predecessors 

mzXML and mzData. Although it has now been around for more than 5 years, its predecessors are still 

also in use. Alternatively, there are text-based formats, such as the Mascott Generic File format (MGF) 

and the NIST-originated MSP file format, which are widely used in proteomics as well.148 These text-

based formats have the benefit of being human-readable; however, despite being called “formats”, 

their exact contents and syntax may vary slightly, which can sometimes cause tools to hick-up during 

file parsing. It is therefore recommended to check the contents of converted and downloaded files for 

any obvious conversion artefacts because, they may impair MS annotation accuracy.149 

A key step in using recent data analysis tools is thus the conversion of raw data into an open format. 

Currently, the most widely used tool available to convert raw data formats into open formats is 

ProteoWizard.150 This is a very versatile tool that works from both the command line as well as through 

a graphical user interface (GUI), i.e., as an application that can usually be controlled with a mouse. 

There are some limitations, i.e., the vendor-to-open format conversions can only be performed on a 

Windows platform. However, most open formats can be converted into each other on both Windows 

and OSX platforms. 

Once these data are converted, a plethora of tools is available to convert chromatographic spectral 
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data into tables of “spectral features” (i.e., unique mass and RT combinations) with mass intensity 

information (i.e., area under the curve of the extracted peak) or to perform data mining with MS/MS 

data (see section 4.4). If LC-HRMS/MS experiments were performed, the mass spectral scans store not 

only the mass fragments and intensities but also information about the precursor ions. Ideally, one 

MS/MS scan is uniquely tied to one mass feature discovered by the LC-MS peak-picking software tool; 

however, in practice, not all mass features are selected for fragmentation by DDA analysis, and some 

are selected multiple times. Thus, good matching between full scan and fragmentation spectra is 

important for the optimal use of these data. 

In addition, statistical suites can perform comparative analysis to identify significantly enriched 

features in particular data sets when chemical markers or biomarkers must be identified in differential 

metabolomics studies.151 

After MS and eventually MS/MS data are exported, mined (see below) and/or statistically analyzed, 

potentially interesting biomarkers or new bioactive NPs can be discovered. It is, however, important 

to go back to the raw data to assess the LC-MS characteristics of the mass features belonging to the 

identified biomarker. Indeed, the peak-picking process may alter the genuine raw data, and such 

checks are still needed to verify, for example, the co-elution of biomarkers or NPs in extracts by 

extracting selected features. Moreover, if independent data sets are available, checking for the 

presence of the identified mass feature can also strengthen and support this discovery.151 

3.2 Dereplication based on LC-HRMS/MS 

Directly after metabolite profiling, the process of metabolite annotation, which is based on the 

untargeted HRMS and MS/MS data that are acquired, usually begins. From a general viewpoint, such 

annotation heavily relies on DB searching; however, depending on the goal behind the profiling, these 

strategies may differ and follow each other up. Clearly, targeted metabolomics approaches do not 

require such DB searches, and if the samples are well known and contain target NPs, targeted 

acquisition is favored; this would also enable quantification, if required. In untargeted experiments, 

however, the first and fastest strategy to achieve the accurate identification of observed peaks is based 

on an in-house DB query. This first dereplication strategy of (1) “Targeted manual dereplication” 

involves comparing the obtained RT and MS information with those of previously isolated compounds 

that were analyzed using the same conditions. This strategy is rather simple and has the advantage of 

identifying various molecules with a very high degree of certainty (level 1 in metabolomics, see section 

5). However, this strategy is limited to analyses of previously studied and known compounds. This has 

been done, however, at a rather large scale, as exemplified by the WEIZMASS library of NPs.152 When 

a metabolite is newly observed at a laboratory in a given profile, other advanced LC-MS-based 
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annotation strategies are instead needed to allow any NPs detected in a mixture to be identified. 

These advanced strategies can be grouped into three categories, which correspond to (2) “Automated 

annotation against known compounds”, (3) “Suspect analysis using known spectral features” and (4) 

“Extensive annotation of all compounds with generation of structural hypothesis for unknowns”. 

These strategies differ drastically considering the exhaustiveness of the DBs queried and their overall 

workflow. The first strategy is querying the DBs containing MS fragmentation spectra. The second 

strategy requires knowledge of the expected spectral features of the molecules of interest and then 

aims to find all related molecules in the mass spectral data to further annotate their structures, and 

the last strategy is based on searching, as exhaustively as possible, the NP DBs that mostly contain 

structures (most of which lack spectral data). In addition, while the first strategy focuses on the 

information available in DBs, the second one eventually tries to interpret all spectral information 

obtained from the LC-HRMS/MS profile as thoroughly as possible to reduce its structural possibilities. 

If successful, this latter strategy will end with only one structure for a given peak. Unfortunately, as 

mentioned earlier, the success of this annotation is directly related to the presence of the compounds 

in the DBs and the effective ranking of candidate molecules in the case of multiple possible structures. 

The first strategy, (2) “Automated annotation against known compounds”, was developed 

considering the difficult and time-consuming nature of the last strategy. This strategy is highly focused 

and consists of the direct comparison of the acquired MS/MS spectra with a DB containing 

fragmentation spectra. In addition, filtering based on precursor ion masses allows one to rapidly focus 

on accurate spectra. This search, however, must be achieved within the different experimental MS/MS 

DBs that are usually available online (see Table 1), as is the case, for example, with ReSpect DB.65 Such 

an approach remains very time-consuming due to the large number of DBs to query. However, many 

of them can be exported mostly as .MGF files, as it is the case for GNPS44, which allows for fast and 

automated searches using dedicated tools (i.e., TREMOLO153, GNPS44). Such a strategy efficiently 

highlights MS/MS spectra with accurate matches; however, most of the queried spectra often remain 

unannotated, mostly due to insufficient DB coverage, particularly for NPs. The current trend to 

overcome such limitations is the usage of extended in silico DBs instead of restricted experimental 

ones. For example, Allard et al. created the ISDB based on a large NP DB containing only structures.79 

All corresponding MS/MS spectra were simulated using a CFM-ID in silico MS fragmenter154, and this 

generated a massive DB of more than 170 000 spectra, which can be used for improved annotation.69 

To date, this remains the widest available in silico DB.113 Such simulated spectral DBs are currently 

being used to complement existing experimental DBs (i.e., ECMDB,42 HMDB,46 YMDB70 and FooDB43). 

This combined approach allows one to drastically expand the amount of available spectral information, 

thus yielding an improved selection of appropriate annotation.84 
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(3) “Suspect analysis using known spectral features” was introduced to reduce the search space in 

the extensive LC-HRMS/MS data sets to molecules of interest, such as the derivatives of molecules in 

waste water.155 In natural extracts, this can be done by restricting the search of NP structures to a given 

species or genus (literature/DB search) and generating in silico a restricted set of corresponding 

MS/MS fragments and a corresponding list of MF.156 Using known spectral features, such as masses or 

mass fragments from expected molecules (suspects), the data are queried for spectral data that 

contain those features. Then, the annotation process can be dedicated to a subset of the entire data 

set that can usually be related to certain compound classes, thereby saving both time and effort. Tools 

such as MS2Analyzer have capitalized on this idea to find specific user-defined mass fragments, neutral 

losses, or mass differences in spectral data.157 Such strategies are thus effective but are reliant on the 

pre-knowledge of fragmentation behavior and/or well-curated NP databases with well-documented 

biological sources that are currently not widely available for large amounts of NPs. 

The third strategy, (4) “Extensive annotation of all compounds with generation of structural 

hypothesis for unknowns”, consists of a step-by-step annotation following a more historical workflow 

(which was previously used when no large MS/MS DBs were easily available). This allows us to obtain 

more information, even though accurate annotations or identifications cannot always be achieved. 

The general workflow consists of 5 steps for each peak of a chromatogram with its associated MS and 

MS/MS spectra:19 

 Step (1) consists of the interpretation of MS spectra to search for adducts, isotopes and neutral 

losses. This analysis is generally not too complicated to perform manually for a few spectra, as 

ESI mostly produces molecular ion species that appear in the form of single or multiple 

adducts, such as [M + H]+, [M + Na]+, [M + H + CH3CN]+ (if acetonitrile is used as the solvent), 

and [M + H - H2O]+ in positive ion mode (PI) or [M - H]-, [M + HCO2]- and [M - H + CO2]- in 

negative ion mode (NI).158 This step is crucial for the determination of the MW of the detected 

molecule and the accurate determination of its mass. Additionally, the comparison of different 

ionization modes (PI or NI) may also help to unambiguously determine the nature of the 

molecular ions recorded and their accurate masses. If automatic peak-picking is performed 

prior to such spectral interpretation, which is clearly important for higher-throughput 

metabolomics studies, some tools can be used to automate this interpretation, which use a 

larger combination of adducts to propose the most likely molecular ions. Some examples of 

these tools are CAMERA,159 mz.unity160 or the adduct/isotope/complex search algorithms from 

MZmine 2.161 Unfortunately, sometimes, only one ion is observed, which corresponds to an 

unidentified adduct. In such cases, all typically observed adducts should be considered for the 

next step. 
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 Step (2) consists of the MF determination of the detected ion based on the MS information of 

its mass and spectral accuracy, heuristic filters and MS fragmentation pattern consistency.109-

110, 162 This latter principle relies on the possibility of determining the MF of all fragments 

observed in MS/MS within the limit of the MF of the detected precursor ion.163 This strategy 

clearly improves the MF determination accuracy, particularly when MSn is achieved (at least 

MS3).163 Many types of software can be used to ascertain MF, such as those dedicated to 

specific MS instruments or more generic ones (e.g., Sirius111, 164 or MZmine 2161), most of which 

take MS/MS data into consideration. Such tools, however, perform even better if the possible 

atoms present in the ionized molecules are accurately set; these are mainly CHONPS for many 

of the NPs but can also be CHO only, for example, for polyphenols.165 Considering the isotopic 

patterns of some atoms can also drastically improve their detection, for example, the isotopic 

distributions of Br, Cl and S show clear, unusually intense [M+2] isotopes, which allow their 

detection and can therefore be added to the “possible atom list” used during MF 

determination.166 The detection of such halogenated compounds is currently mostly achieved 

manually; however, it is possible to highlight all halogenated peaks within an LC-HRMS 

chromatogram automatically.167 

 Step (3) consists of searching the MF within available DBs (Table 1) to obtain putative 

annotations (a list of possible structures). Due to the large number of available DBs, this step 

is one of the most time-consuming steps in the entire process. To speed this process up, the 

use of more generic DBs, such as PubChem,76 can be considered; however, the number of 

putative annotations related to NPs is mixed within many synthetic compounds, which can 

possibly result in the more complex determination of the accurate annotation. It is interesting 

to note that step (2) may sometimes be skipped by searching directly within the DBs for an 

accurate mass (after correcting it based on the detected/considered adduct). Such a faster 

strategy, however, may lead to a larger number of putative annotations. This search can be 

restricted to NPs only when performed in the DNP, which is a proprietary DB that is commonly 

used in NP laboratories.7 

 Step (4) consists of reducing the number of putative annotations based on taxonomical 

information.81, 168 It is possible to reduce the number of selected structures in later steps based 

on the biological matrices from which the compounds were obtained.78, 156, 168a For example, it 

is obvious that, in the case of fungal extract profiling, plant reported metabolites matching MS 

should probably receive a lower candidate score (or even not be taken into consideration) for 

the annotation. However, such comparisons remain largely manual, even though this 
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information is available in some DBs (Table 1). Efforts to include chemotaxonomy weighting 

are currently in progress to automate such tasks.78, 169 

 Step (5) consists of using the acquired MS/MS spectra to determine the most likely structure 

among those generated after steps 1-4. First, it is of high interest to look for available spectra 

within DBs or literature data. Historically, when no fragmentation spectra were available, the 

manual interpretation of an acquired MS/MS spectrum was used to help with its structural 

determination.170 However, recent developments in in silico fragmentation171 have allowed for 

the determination of the appropriate annotations among all hypothetical structures. CFM-

ID154, 172 generates in silico fragmentation spectra that can be compared with an acquired 

MS/MS spectrum. Such a tool systematically breaks up molecules into possible fragments 

using various algorithms for manual or automated comparisons with experimental data. 

Various other tools, including MAGMA,172 MetFrag,173 and MS-Finder,174 search structural 

databases for possible candidate molecules and then search for possible fragments in them 

that match the experimental data; then, they use different scoring algorithms to rank the 

found candidates. It is important to note that most of these tools consider the fragmentation 

of [M+H]+ or [M-H]- adducts (in which [M+H]+ is usually more relevant due to the larger library 

of positively charged ion fragmentation, which represents a larger training set for 

fragmentation algorithm development); thus, fragmentations related to other adducts may 

not be accurately determined. Additionally, similar approaches querying structural databases 

for spectral to structural consistency without in silico MS fragmentation (using tools such as 

CSI:fingerID143 or ChemDistiller175) represent efficient alternatives. Strategies for the in silico 

interpretation of MS/MS spectra were recently reviewed in detail by Hufsky et al.171a and 

Blaženović et al.171b 

This last annotation strategy can also begin with a direct query of all MS/MS by MN approaches and 

filtering with MF information, as discussed in detail in section 3.3. 

The entire dereplication workflow described above is clearly a highly time-consuming process that 

needs to be improved by integrating these different steps into a pipeline that is at least semi-

automated. Even if such a workflow is close to being accessible to experts, it always provides many 

lists of possible candidates that need to be manually curated. Thus, even if the in silico annotation 

workflow efficiency is solved in terms of “calculation duration” and “good candidate ranking,” its 

curation steps will still need to be performed, which will represent another time-consuming manual 

task, particularly if the goal is deep metabolome annotation. 

Currently, the number of reported NPs is far less than the size of the theoretical NP chemical space.176 
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Therefore, annotation using traditional approaches is generally impaired by the absence of plausible 

candidate structures, i.e., many MS/MS spectra with associated MF do not yield any plausible database 

candidates.81 To overcome this limitation, various research teams have started to create structural DBs 

with extended chemical spaces while following rules that take chemical consistency into consideration. 

For example, Jeffryes et al. expanded the chemodiversity of KEGG177 or YMDB70 by applying expert-

curated enzymatic reaction rules by creating the MINEs DB, which contains more than half a million 

structures.178 Such biosynthetic rules were recently proposed as a DB of chemical modification 

references, i.e., RetroRules,179 which is able to propose lists of biosynthetically relevant compounds 

based on entries of structures (e.g., SMILES). A similar strategy could be adopted in combination with 

automatic in silico spectral match, such as that in MetWorks,180 which tries to propose new structures 

based on accurate, biosynthetically relevant chemical modification in combination with spectral 

similarities to a known compound entry. Alternative approaches were developed by other teams 

working with lipids, who took advantage of the consistency of lipid structures to create extended DBs 

containing a large variety of compounds with similar skeletons but very large variations in fatty acid 

moieties. Such an approach can be either applied using a specific in silico MS/MS DB (i.e., LipidBlast181) 

or using preliminarily defined interpretation rules (i.e., LipidXplorer182). To a larger extent, even if NPs 

represent a wide chemical space, many of them share common scaffolds. As such scaffolds generally 

share common MS fragmentation mechanisms, precise interpretations of their fragment ions should 

lead to an accurate structural determination.183 Hence, the abovementioned strategies used to expand 

the available set of candidate molecules following logical fragmentation rules should also make sense 

for many classes of NPs. In fact, such a strategy for the NP identification of unknown polyphenols or 

glycoalkaloids was recently applied in plant extracts to evaluate its potential.184 

However, when considering the above annotation strategies, it is important to keep in mind that, as 

mentioned for the MF determination, using orthogonal information usually improves the annotation 

process (see section 7). In this context, it remains important to consider UV-visible PDA spectra when 

they are available, as they can be very informative by indicating the presence of characteristic 

chromophores.139a, 185 As discussed in section 6, MS/NMR correlation approaches may also be very 

efficient, i.e., if they are generally limited to the main NPs in extracts. Ultimately, hyphenated 

strategies to NMR (see section 6.1) or organic synthesis approaches can yield certainties about 

metabolite structures. Methods to correctly filter the searched structural space or the usage of the 

orthogonal detection of MS and MS/MS can thus be efficiently used to improve the degree of 

confidence of metabolite annotation (see section 7.1). 

3.3 Clustering of molecules into molecular families by Molecular Networking 

The full elucidation of molecular structures is a common challenge when analyzing complex mixtures 
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with mass spectrometry. As discussed in section 3.1, tremendous advances in technology have now 

resulted in information-rich mass spectrometry data files in which, for a complex extract, more than 

thousands LC-MS features with their MS/MS data are typically recorded in a LC-MS/MS profile. 

To find known and novel chemistries, comparing the MS/MS spectra within and between extracts is 

the cornerstone of mass spectral analysis. The main reason for this is that spectral similarities are often 

representative of structural similarities.183 This can be understood as follows: minor modifications to a 

molecule, i.e., the addition of a methyl group, leave the overall structure intact. As this typically does 

not impact the major fragmentation pathways that together result in a fragmentation spectrum, 

structural similarities can thus be inferred based on spectral similarities. The following paragraphs 

explain how this concept was adapted in NP research and how computational tools were developed 

to allow its use at a large scale. 

It has long been recognized that NPs share scaffolds that result in a group of structurally similar NPs, 

i.e., an NP molecular family. Historically, such scaffolds were highlighted by the manual search of 

common fragment ions across different MS/MS spectra.186 Moreover, not only entire molecules or 

larger scaffolds but also smaller parts, i.e., substructures of those scaffolds, often result in similar 

fragmentation patterns, even when they are acquired from different molecules. However, until 

recently, it was not possible to exploit this concept at a larger scale. 

Fragmentation spectra can now be compared within a complete LC-HRMS/MS profile and between 

various profiles. Various strategies have been employed to compare fragmentation spectra at a large 

scale by comparing mass fragments187, neutral losses,188 or both.189 Thus, these approaches provide 

novel ways for researchers to represent and visualize LC-HRMS/MS data by exploiting different aspects 

of the similarities between fragmentation spectra. 

Molecular Networking (MN)69, 81, 132, 187a, 190 represents the most widely used tool to cluster molecules 

into molecular families based on their MS/MS spectral similarities, i.e., the more peaks that two 

MS/MS spectra share, the more similar they are. This is based on the so-called “modified cosine 

function” that i) looks at shared peaks between two spectra within a user-defined threshold, ii) 

considers the intensities of mass fragments, and iii) considers the difference between the two parent 

masses by shifting mass fragments within that difference and checking for improved matches between 

the mass fragments (see Figure 3). After comparing all MS/MS spectra to each other, each spectral 

combination is given a cosine score ranging from 0 (completely different) to 1 (identical). 
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Figure 3. (Top left to right) Key Molecular Networking concepts: all MS/MS spectra within a sample or across different samples 
are compared based on the similarity of mass fragments. The parent mass difference (indicated by blue dotted arrow) is 
considered by shifting both spectra with this m/z value and checking for improved or additional matches that will add to the 
final similarity score (left panel, bottom). Using all these comparison scores, Molecular Families can be formed (middle panel), 
where fragmented molecules are the nodes and connections (edges) are present when the similarity score is above a user-
defined threshold. Moreover, different layers of information can be displayed on the nodes and edges, such as where 
molecules result in a library match from reference MS/MS spectra (node in blue). Applying this to all the fragmented molecules 
typically results in a Molecular Network (MN) consisting of larger and smaller Molecular Families (right panel) as well as 
unconnected molecules (singletons). (Bottom left to right) Conceptualized MS2LDA substructure search: MS2LDA starts with a 
large set of MS/MS spectra from one or multiple samples (left panel) and then searches for Mass2Motifs (middle panel). These 
Mass2Motifs consist of often co-occurring mass fragments and/or neutral losses that can then be annotated by substructures. 
In the middle panel, one mass fragment-based (purple) and one neutral loss based (green) Mass2Motif are exemplified, where 
each Mass2Motif is present in a spectrum where its corresponding substructure is indicated in the structure on the left. Both 
Mass2Motifs are present in one MS/MS spectrum and in the corresponding structure on the right, and both corresponding 
substructures show how in this case the complete structure can be built from its substructures. Finally, by collecting all of the 
connections between fragmented molecules and Mass2Motifs, asubstructure network can be formed that connects 
Mass2Motifs/substructures (orange circles) with fragmented molecules (blue squares), as displayed on the right end. 

 

Then, a “network representation” can be built as follows: fragmented molecules serve as the “nodes”, 

and they have connectivity (“edges”) to other nodes if they share sufficient spectral similarity. After 

collecting all nodes and edges, a network can be drawn (see Figure 3). In practice, a researcher can 

influence the “network topology” using different thresholds and filters, i.e., an edge can be drawn only 

if the cosine score between two nodes is above a user-set threshold (typically between 0.55 and 0.7) 

and there is a minimum amount of shared fragment peaks (typically between 3 and 7 depending on 

the type of molecules in the extract). Very recently, a self-organized topology was proposed as an 

alternative to networks. The MetGem software allows to generate locally and in a reduced amount of 
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time a double visualisation of spectral similarity. One is based on the classical cosine score 

establishment and constitutes the classical “molecular network”, in parallel a different representation 

based on the t-SNE calculations (t-distributed stochastic neighbor embedding) allows to highlight 

relations between unrelated clusters in the molecular network visualisation.191 The platform is open-

source and is designed to be evolutive. It should become a tool of choice for quick and local molecular 

networks generation as-well as for the establishment of alternative spectral similarity visualisation 

within MSMS datasets. 

The selection of the correct networking parameters is important when performing MN to ensure that 

i) the right peaks are correlated with each other, ii) most of the noise is eliminated without losing the 

signal, as this affects the cosine score, and iii) the cosine threshold is set appropriately. The resulting 

MN will then contain “Molecular Families”, i.e., groups of fragmented molecules that are 

interconnected, as well as “singletons”, i.e., molecules without any connected neighbors (Figure 3). 

The discovered connections can then be exploited: for example, when one molecule is known, (part 

of) its structure can be inferred to be connected to other molecules in the network, thereby extending 

the identification and annotation of metabolites “into the unknown”. 

The large-scale clustering of molecules based on their spectral data has inspired several annotation 

tools that exploit the network topology.69, 84b Recently, the Global Natural Product Social Molecular 

Networking (GNPS) platform facilitated the performance and sharing of MN analyses.44 GNPS is a web-

based platform that connects both a data storage repository and metabolomics analysis tools and acts 

as a graphical user interface (GUI) for a number of tools. It is currently used in more than 140 different 

countries by more than 40,000 different users handling 109 spectra, which is indicative of its large scale. 

Because GNPS also contains a variety of public spectral libraries, including both reference MS/MS 

spectra and user-annotated spectra, fragmented molecules can be matched to those libraries. 

Subsequently, positive matches can “travel or propagate” through the MN, as explained above. 

Recently, peptidic natural product and other natural product annotation software were also made 

available through GNPS.192 Annotations from such tools can be further exploited in the MN as well 

since they also “propagate” within Molecular Families.84b 

Clustering molecules into molecular families based on their MS/MS spectral similarities has yielded 

many novel insights.69, 132, 193 These examples show how large complex data sets can be “digitized”, 

which allows researchers to quickly form hypotheses about which molecules are structurally linked 

and how they are distributed across samples (i.e., strains, species, or locations). For example, indexing 

the Pseudomonas specialized metabolome revealed the novel related cyclic lipopeptide bananamides 

1-3193e, and comparisons of more ca. 300 Euphorbiaceae species revealed a common trend in their 
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composition and allowed for the targeted isolation of new bioactive NPs.114 

In another context, a recent study showed how drug screening in urine samples can be enriched using 

an untargeted MN-based approach: antihypertensive drugs and metabolized drugs were found as 

families within complex urine extracts.132 This yielded information about drug adherence and drug 

metabolism as well as over-the-counter drug intake, in contrast to targeted LC-MS/MS assays, which 

look for specific drug molecules and do not monitor drug metabolism and over-the-counter drugs. The 

importance of data mining in future drug discovery approaches was recently reviewed.194 

3.4 Substructure search by MS2LDA 

NPs share not only large scaffolds that encompass almost the entire molecule but also smaller common 

building blocks such as sugars, amino acids, or O-methyl groups that can also be part of those scaffolds. 

Having information about which building blocks are present in NPs speeds up the process of structural 

elucidation, as lists of candidate molecules can be shortened based on this knowledge. MN clusters 

molecules based on their (larger) scaffolds into informative molecular families, whereby smaller 

substructures that molecules have in common are often overlooked by MN. In addition, moieties that 

are typically recognized as “neutral losses”, i.e., the difference between a precursor ion and a mass 

fragment, such as deoxyhexose or ribose in the case of NP glycosides, are not considered in many 

molecular clustering approaches. Finally, clustering methods typically force molecules into one cluster 

(i.e., molecular family), whereas many molecules contain more than one recognizable scaffold or 

building block. Therefore, a novel tool called MS2LDA has emerged, which, inspired by a text-mining 

approach, searches in an unsupervised manner for substructure fingerprints in MS fragmentation 

data.189b 

The LDA in MS2LDA stands for Latent Dirichlet Allocation.195 This technique was originally developed 

for text documents, where co-occurring words are oftentimes grouped into “topics” that humans can 

interpret and annotate, i.e., a collection of “club”, “manager”, and “stadium” would typically be 

described as a “football”-related topic. When a large amount of text documents is mined with LDA, the 

documents are “decomposed” into one or more topics, and it becomes easier to assign them to 

different categories. By monitoring the appearance of topics over time, one can pick up on “trending 

topics”. MS2LDA is the first implementation of LDA in metabolomics that decomposes fragmented 

molecules (the documents) into groups (the topics) of mass fragments and neutral losses (the words). 

MS2LDA exploits the realization that the same structural features often result in similar fragmentation 

patterns by searching for co-occurring mass fragments and/or neutral losses in MS/MS spectra (Figure 

3). For example, this resulted in a set of over 80 different fragmentation patterns, or so-called 

Mass2Motifs, that were discovered in reference MS/MS spectra from the GNPS and MassBank DBs 
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and could thus be validated; additionally, the Mass2Motifs of several amino acids and the loss of 

carboxylic acid were recognized. Moreover, the losses of hexose, deoxyhexose, and pentose were 

discovered by MS2LDA and subsequently validated using the structures of GNPS and MassBank entries. 

Figure 3 exhibits how two substructures present in adenosine can be recognized by their fragmentation 

patterns in MS2LDA. We also see how two other molecules only share one substructure with 

adenosine, namely, the adenine moiety or the sugar moiety. It is important to realize that MS2LDA 

recognizes adenosine as both a purine and glycoside moiety. Thus, when a researcher applies MS2LDA 

to a glycoside-containing extract, the Mass2Motifs for diverse glycoside moieties such as hexose or 

deoxyhexose can be expected, which is very helpful in the structural elucidation process. Finally, a 

network can be constructed in which molecules are connected to all substructures (Mass2Motifs) that 

were found so that, for example, different types of glycosides and adenine-containing molecules are 

connected by a shared Mass2Motif (Figure 3). 

To facilitate its use, MS2LDA.org was built; here, substructure searches in MS fragmentation data can 

be performed and the resulting model can be inspected, Mass2Motifs can be annotated, and analysis 

results can be shared.196 Since its creation, this web application has been used by over 70 different 

users who have run more than 300 analyses on diverse sample types, such as bacterial, beer, urine, 

fecal, plant, and organic matter extracts. 

Another MS2LDA implementation is MS2LDA+, where multiple files are subjected to MS2LDA at 

once.197 In this technique, Mass2Motifs are coupled between different samples, and based on the 

“Mass2Motif prevalence”, one can quickly observe which substructures are more abundant in each 

sample. For example, an MS2LDA+-based PCA based on two groups of urine and beer extracts exposed 

urine- and beer-related substructures. Moreover, after annotating the drug-related Mass2Motifs in 

urine samples, the prevalence of Mass2Motifs quickly revealed which urine extracts contained 

particular drug metabolites. 

Finally, work is in progress to integrate MN and MS2LDA analyses.198 In plant metabolomics, large 

molecular families of related NPs are present, and by mapping Mass2Motifs onto MN subfamilies, the 

specific modifications of diterpenoid molecules could easily be tracked. To conclude, clustering 

molecules based on their spectral similarities has been proven to be a successful way of obtaining 

insights into large amounts of spectral data so that hypotheses can be quickly formed and novel 

chemistries can be prioritized. 

3.5 Toward user-friendly interfaces 

To be used by a large community, all of these approaches need to be accessible and easy to use by NP 

chemists. However, it is clear that many of the steps described in the LC-HRMS part (part 3) rely on a 
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large variety of tools that can be used together or separately. In this review, these tools are divided 

into various groups depending on their use in the LC-HRMS/MS data analysis workflow. 

Initially, it is important to consider tools that are able to identify LC-MS peaks or MS/MS features from 

a raw data format (or a generic format after their conversion by vendor software or ProteoWizard150). 

Various tools can be used to extract reliable LC-MS/MS peaks by focusing on LC-MS peak detection. 

Such tools are mainly XCMS (an R command line interface199 or a web-based interface200) or 

MZmine2.161, 201 This latter software possesses an efficient GUI interface, which is clearly an added 

value in comparison to any command-line tools. In addition, both tools are able to extract the MS/MS 

data of all peaks from DDA MS/MS acquisition for further analyses of the information in the 

dereplication pipeline or MN. Alternatively, for DIA MS/MS acquisitions, MS-Dial120 represents an 

efficient alternative to extract MS/MS spectra. In parallel to software focused on LC-MS peak 

detection, which can be considered a more traditional approach, other tools are focused on the direct 

extraction of MS/MS spectra from raw data. These are generally integrated directly with the creation 

of MN, as is the case for GNPS.44 This latter tool represents an easy-to-use web interface; however, the 

direct use of MS/MS information remains less efficient in creating easily interpretable MN, and using 

preliminary peak-picking steps drastically improves the resulting MN.202 It is important to note that 

currently the creation of a relevant MN with GNPS remains a rather long process because it relies on 

the selection of appropriate parameters, and each parameter modification restarts the MN calculation. 

Therefore, use of MetGem could ease the selection of appropriate parameters as they can me modified 

to provide directly the new MN.191 

Similarly, various tools exist to achieve the dereplication of compounds within a given LC-HRMS/MS 

chromatogram depending on the strategy that is used (part 3.2). In the case of “Targeted manual 

dereplication”, researchers rely on a spreadsheet-based technique and manually interrogate a small 

local DB. Although this strategy is rather manual, it is very efficient. For other strategies, however, 

various tools remain accessible. The approaches used for “Automated annotation against known 

compounds” and “Suspect analysis using known spectral features” sometimes remain largely manual 

due to the use of specific DB interfaces. However, when the DB itself is downloadable under a .MGF 

format (see part 3.1.6), it can be rapidly analyzed using TREMOLO153 (a command line interface that is 

rather difficult to use) or GNPS44 (a web-based interface that is quite easy to use). It is interesting to 

note that in GNPS, a large number of real spectral DBs were implemented for the rapid search of 

spectral patches, and is also easily possible to add a specific DB.203 In addition, GNPS can also rapidly 

query in silico DBs to expand the MS/MS DB chemical space.69 Finally, for substructure searches, the 

MS2LDAviz web application196 provides the user with basic MS/MS spectral visualizations but also, 

more importantly, provides the user with visual information about Mass2Motifs that supports their 
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annotation, such as feature frequency plots and colored fragment peaks based on the Mass2Motifs. 

The last dereplication strategy, “Extensive annotation of all compounds with generation of structural 

hypothesis for unknowns” (part 3.2), requires more tools to perform the five steps described above. 

Finally, it is important that the people developing these tools keep in mind that these tools need to be 

sufficiently easy to learn and use for the NP chemist community. However, such recommendations 

seem to have been taken into consideration, as we can learn from various reviews of LC-HRMS/MS 

tools have provided information about their user-friendliness.171b, 204 

4 The NMR side 

4.1 Global overview of metabolic profiling by NMR 

Metabolic profiling in the context of NP studies should provide comprehensive information about the 

identity and quantity of the low-molecular-weight compounds produced by a living organism. If an 

organism must be kept alive, as in the definition of in vivo NMR spectroscopic imaging, only localized 

spectroscopy or low-speed HR-MAS spectroscopy should be used for this analysis.205 Even though 

these techniques have undergone some development, the sensitivity of NMR allows, at best, the 

characterization of only the most concentrated metabolites.206 Going beyond this approach implies the 

killing of the organism, a process that is likely to produce profound changes in the sample’s chemical 

composition. The killing and quenching of metabolic enzymatic reactions, for example by freeze-

drying, is generally followed by the cutting, crushing, and milling of the tissues of interest, as well as 

the extraction of metabolites by organic solvents of different polarities, which may include supercritical 

or subcritical fluids, ionic liquids or (natural) deep eutectic solvents.207 Solvents of broad polarity, such 

as methanol, are generally used to ensure a relatively large metabolite coverage, and in NMR profiling, 

at this stage, deuterated solvent can be used directly, thus minimizing the sample preparation steps.208 

Although the resulting extracts are supposed to reflect the metabolism of the living organism under 

consideration, they may have undergone transformations induced by these physical and chemical 

extraction processes. Such transformations include the disappearance of “fragile” compounds and the 

creation of new ones, which are referred to as extraction artifacts. The metabolic profiling of an 

organism by NMR is thus generally performed by liquid-state NMR on complex mixtures obtained after 

extraction for early identification purposes. In NP research, NMR is still generally applied on pure NPs 

obtained after isolation and represents, in most cases, the first step toward structure identification.209 

4.1.1 Dereplication and de novo structure elucidation of new NPs 

Fully and accurately reporting the physicochemical and spectroscopic properties of new NPs 

necessitates their isolation in pure form. However, the work required for the isolation of already 
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known compounds is considered a time-consuming but unavoidable task.18 Ongoing efforts are 

currently directed toward the early identification of known compounds to rationalize this approach. 

Achieving this task implies the capability of analyzing complex mixtures using NMR. In this context, 

only high-sensitivity liquid-state NMR is considered here. Dealing with mixtures constitutes a challenge 

in NMR spectroscopy in terms of resolution and sensitivity.210 The amount of sample in an NMR sample 

tube is limited, and the presence of numerous compounds in a mixture limits the amount of each 

mixture component and therefore limits the detection of the many minor mixture components. The 

amount of extract may also be a limiting factor because a few mg of dried extract are necessary for 

measurement in a 5-mm outer diameter tube, while only a few µg need to be injected onto the column 

for LC-MS profiling. The interpretation of the NMR spectra of a single compound requires the labeling 

of all spectral peaks, even though the signal superimposition in NMR profiles of the mixture can lead 

to undecipherable spectra; in such cases, only a few signals can be fully assigned.211 These sensitivity 

and resolution issues will be addressed in the next paragraphs. 

4.1.1.1 Overcoming sensitivity issues 

Overcoming sensitivity issues in NMR is a matter of increasing the signal intensity and decreasing noise 

intensity. Noise in NMR originates from the thermal agitation of electrons in the metal that constitutes 

the detection “coil” in the NMR probe. This noise is amplified by the electronic detection chain, which 

itself introduces additional noise. Reducing thermal noise can be achieved by the reduction of 

temperature within the detection device and by the careful choice of electronic components. 

Spectrometer manufacturers have provided cryo-probes and cooled preamplifiers with low-noise-

component technology for more than 20 years. The signal that arises from a given sample varies as the 

square of the intensity B0 of the static magnetic field. A first B0 factor originates from the influence of 

the sample magnetization precession speed on the signal intensity, and a second B0 factor originates 

from the population difference of nuclear spin states. Magnet manufacturers have provided 

increasingly stronger magnetic fields, and combining actual and innovative technologies will allow the 

resonance frequencies of 1H nuclei to reach 1.2 GHz in the near future.212 Boosting the population 

difference by Dynamic Nuclear Polarization is also an active research domain for which practical 

applications are still rare but promising. 213 Finally, the filling factor of the receiver coil is a parameter 

whose adjustment leads to a noticeable improvement in sensitivity: a sub-milligram amount of a 

compound dissolved in 30 µL of solvent and placed in a sample tube with a diameter of 1.7 mm, which 

is itself placed in a dedicated probe head, produces more signal than it would if it were placed in a 

standard 5-mm sample tube. Small-diameter, cryogenically cooled coil technology currently represents 

the best practical method for the study of minute amounts of NPs.214 Basically, increasing the 

sensitivity in NMR at a given field has always been a matter of increasing recording time through signal 
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averaging. Pushing to the extreme the limits of sensitivity in NMR by non-conventional experimental 

devices constitutes an active research field.215 The relationship between conventional NMR and 

recording time will be detailed in the following section. 

4.1.1.2 Overcoming resolution issues 

In 1D 1H NMR, resolution can be understood in two different ways. In spectroscopy, frequency 

resolution is usually related to the width at the half-height of a resonance peak, which is expressed in 

Hz. In NMR this resolution depends on the natural resonance linewidth and is related to the relaxation 

rate of sample transverse magnetization and to the residual static field homogeneity within the active 

volume. The inhomogeneities that arise from the introduction of the sample in the probe and its 

magnetization have to be corrected by a process define as “shimming” and a poor shimming prior to 

NMR acquisition may strongly lower the resolution. The magnetic field intensity has a very low impact 

on the latter factor, and the “line resolution” depends on the efficiency of the shimming strategy. 

Drawing a series of spectra of a compound (for example, sucrose) recorded on spectrometers with 

increasing magnetic field intensity (e.g., 60 MHz up to 1 GHz) with an identical chemical shift scale 

clearly shows that the multiplets become increasingly narrower, even though individual lines may have 

comparable widths when expressed in Hz.216 This increase in “multiplet resolution” yields the 

possibility of studying more complex molecules or samples at higher fields. Such considerations do not 

appear when dealing with 1H broadband-decoupled 13C NMR spectroscopy due to the absence of 

multiplet structures in spectra. The wide range of chemical shifts in 13C nuclei and the extreme 

narrowing of the resonance lines (which are most often intentionally broadened for spectral noise 

reduction purposes) would make13C NMR an ideal tool for the study of complex samples if it were not 

hampered by the low natural abundance of this nucleus.216 The removal of multiplet structures in 1H 

NMR spectra or, equivalently, the recording of “pure chemical shift” (“pure-shift” in brief) spectra, 

which look like 1H-decoupled 13C NMR spectra or 1H NMR spectra at ultrahigh fields, constitutes a quest 

for the “Holy Grail” of NMR spectroscopists. Beyond the first approaches that relied on 2D J-resolved217 

or 2D constant-time COSY218 spectra, pure-shift spectra recording strategies that are derived from the 

pioneering work of Zangger and Sterk219 on the application of static field gradients during adiabatic 

pulses constitute an active research field.220 The actual price to pay for the simplification of 1H spectra 

is however, a heavy decrease in sensitivity, which makes the practical use of this approach limited to 

the most concentrated compounds within mixtures. 

2D NMR spectroscopy is a way of spreading the NMR signals packed on a single chemical shift axis 

along an indirect dimension (F1).221 In 2D NMR intensity is plotted as a function of two frequencies F1 

and F2. Each frequency axis is associated with one of the two time variables from which the recorded 

signal depends. These variables are the duration of the evolution period (the evolution time t1; F1 
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indirect dimension) and the physical detection period (the detection time; F2 direct dimension). 1D 

slices of 2D spectra represent simplified parts of complex spectra. This second dimension is most often 

related to chemical shifts in the 2D chemical shift correlation spectroscopy routinely used by NP 

chemists for structure determination of pure NPs. Since 2D NMR refer to numerous complex acronyms 

for the pulse sequences applied, the reader can refer to the review of Breton et al. for an overview.209 

The 2nd NMR dimension may also be related to coupling patterns in J-spectroscopy, which is commonly 

practiced in metabolomics, since the 2D J-resolved spectra of common metabolites are present in 

public and commercial DBs.222 Another way of introducing a supplementary discriminating variable 

consists of modulating signal intensities according to translational diffusion coefficients. This is 

performed by an experiment defined as DOSY (Diffusion-ordered spectroscopy). The resulting 2D DOSY 

spectra allow for the extraction of the 1D spectra of mixture components along the F2 axis, in which 

each component is characterized by its own diffusion coefficient value, readable in the F1 axis.223 DOSY 

represents thus a way to obtain pure 1D 1H NMR of individual constituents of a mixture provided that 

they had sufficient enough difference in their diffusion coefficients.224 The DOSY principle was also 

applied to the recording of 3D spectra that contain a diffusion coefficient axis and from which 2D J-

resolved,225 COSY225 or HSQC225 planes can be extracted. A NOESY spectrum correlates the chemical 

shifts of pairs of 1H nuclei that can transfer magnetization through cross-relaxation or chemical 

exchange. Cross-relaxation originates from dipolar coupling between two nuclei and occurs when their 

distance through space is short (typically less than 0.5 nm). Cross correlation efficiency depends on the 

molecular tumbling speed in solution and leads easily to multiple-relayed NOESY correlations, in a 

process called spin diffusion, when tumbling is slow.226 More recently, the 2D NOESY spectra of 

mixtures dissolved in viscous solvents have been recorded so that spin diffusion correlates together all 

the resonances on a compound-by-compound basis within a mixture. Such an approach was 

exemplified by means of an artificial mixture of small NPs and a mixture of dipeptides.227 

For sensitivity reasons, recording a 2D NMR spectrum is based on 1H signal detection because the signal 

intensity depends on the third power of the nucleus magnetogyric ratio. The pure-shift approach may, 

in principle, enhance the resolution in the direct (F2) dimension of 2D spectra. This idea was 

successfully applied to HSQC spectra, for which pure-shift signals can be obtained at a minimal 

sensitivity cost. However, the decoupling artefacts makes this approach more suitable for pure 

compounds than for complex mixtures228, though recent advances may change that in the future.229 

Pure-shift along F2 was also involved in the spectral simplification of DOSY spectra.230 

The resonance resolution in the indirect dimension (F1) of 2D NMR spectra is related to the extent t1
max 

of the evolution delay t1. A longer t1
max will increase resolution, but if the indirect spectral width is 

preserved and a regular t1 sampling value is used, the resolution enhancement caused by a given factor 
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will require the recording time to increase by the same factor if the number of recorded transients per 

t1 value is left unchanged. Breaching this rule necessitates modifying the way that t1 values are chosen. 

The reduction of the spectral width, while maintaining regular sampling, leads to spectral aliasing in F1 

for increasing resolution in 2D NMR and has been used in NP studies, including de novo structure 

elucidation.231 High resolution may be obtained without aliasing in the F1-band-selective spectra, 

assuming that only a narrow band of resonances must be zoomed along the F1 dimension.232 More 

recently, the non-uniform sampling (NUS) of t1 has become popular because it allows for a long t1
max 

while keeping the number of used t1 values to practical values by “skipping” a user-supplied proportion 

of them, with the missing data being reconstructed by extrapolation from the recorded data using a 

specific algorithm.233 Another resolution enhancement technique relies on a special type of NMR data 

processing, known as covariance NMR, which provides cross peaks completely lacking multiplet 

structures in the correlation maps of homonuclear 1H 2D spectra such as COSY, NOESY and TOCSY.234 

4.1.1.3 Overcoming acquisition time issues 

Achieving the optimal use of available spectrometer time and the necessity of observing quickly 

evolving chemical or biochemical systems have triggered the search for innovative concepts in NMR to 

reduce the time needed for the recording of spectra. A recent article by J. Farjon et al. provides a good 

idea of what can be achieved by combining fast pulsing techniques, NUS, aliasing and pure-shift 

techniques for the recording of the HSQC spectrum of a mixture of low-molecular-weight 

metabolites.235 The term Ultra-Fast (UF) NMR is applied to a wide category of experiments in which nD 

(n ≥ 2) NMR data acquisition is performed on the order of one second. Nearly all conventional 2D NMR 

pulse sequences have UF counterparts available. Of course, some sacrifices in resolution and sensitivity 

have been made at the price of speed. The sensitivity question can be solved by dynamic nuclear 

polarization (see section 4.1.1.1). Likewise, UF methods are suited for the monitoring of HPLC effluents 

by 2D NMR.236 

Commercial NMR hardware has recently evolved so that two or more free precession signals can be 

recorded during a time lapse that was previously devoted to the acquisition of a single one. These 

multi-receiver systems will certainly become increasingly important in the field of NP chemical 

profiling.237 

4.1.2 Metabolite profiling by NMR as practiced today 

This section intends to expose the common practice of NMR in the field of the discovery of new NPs 

with significant biological activity. It does not attempt to present a thoroughly representative study 

but instead relies on 17 recently published articles, which were published from late August to mid-

September 2018 in a journal in which the structures of bioactive NPs are often reported, i.e., the 
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Journal of Natural Products. All presented NPs were isolated and purified before being subjected to 

structural analysis. The set of used NMR spectra includes 1D 1H, 13C (possibly APT or DEPT), 2D COSY, 

NOESY or ROESY, 1H-13C HSQC (if not HMQC) and 1H-13C HMBC. In one case, a 1H-15N HMBC spectrum 

was recorded, and in another case, a 1H-13C 2D HSQC-TOCSY spectrum was recorded. The underlying 

methodology has remained unchanged for at least 20 years,209, 238 with the only striking change being 

the recourse to high-field NMR, with resonance frequencies for 1H nuclei of 600 MHz (6 times), 800 

MHz (3 times) and 900 MHz (1 time). In all cases, the structure, data tables and spectrum drawings 

were only available in PDF format, thus making them unsuitable for subsequent computerized data 

extraction, an operation that would make the creation or improvement of spectro-structural DBs 

easier.34 The spectra drawings in the supplementary information documents attached to these articles 

still revealed some improper mastering of processing steps, such as phasing and baseline correction, 

which were overlooked by the reviewers. Some NOESY or ROESY spectra were drawn in poorly usable 

single-color mode. The selection of a proper resolution setting at the acquisition time was not always 

adequate. The analysis of this set of recent typical structural identification reports of NPs indicates that 

there is still significant room for improvement to exploit the full potential of NMR to better support 

the NP identification process. Stories from the past have shown that when a new method provides a 

decisive advantage, its use will spread rapidly among the concerned community; in this category, one 

can find “inverse detection” (HMBC instead of COLOC), pulsed field gradients (which most chemists 

ignore but benefit daily from), cryoprobes, NUS data acquisition, and ultrahigh field NMR. The 

resorting to a conservative choice of a limited subset of NMR spectra types may either prove that this 

subset is sufficient for most uses or that most newly proposed methodologies do not have enough 

advantages to break the barrier of habit. 

What is true for the analysis for pure NPs is also true for mixtures, even in the framework of natural 

extract profiling concepts such as HMBC barcoding,239 HMBC networking,240 2D NMR differential 

analysis,241 or heterocovariance processing.242 Hopefully, patient efforts from spectrometer 

manufacturers and the promoters of new methodologies will certainly allow pertinent innovations to 

diffuse through the community of NMR users, even if they only apply the methodology without being 

an expert in the field, as it the case for most NP or organic chemists. 

4.2 Dereplication strategies by NMR 

A rapid bibliometric study shows that LC-MS is generally preferred to NMR for the rapid annotation of 

known molecules. Although the former is praised for its sensitivity and the richness of its related 

ecosystem of DBs and software tools, the latter is often chosen for its reproducibility, its quantitative 

aspects, and the richness of the structural information carried by NMR spectra.211 This argument is 

hereafter discussed in more detail. 
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4.2.1 Identification of pure compounds 

The dereplication of pure NPs by NMR is a matter of recording NMR spectra, extracting spectral 

features, and searching for them in an NP DB containing the experimental or predicted (see below) 

values of these NMR signals. Considering that a few hundred thousand NP structures have been 

reported and that their associated descriptions are not all available from the same source, pure NP 

identification is not always easy but is often possible. 13C NMR has rapidly become the method of 

choice for NP identification, as proven by the existence of dedicated DB interrogation systems, such as 

those of NAPROC-13 for NPs only or those of NMRshiftDB, CSEARCH or ACD/Labs for more general DBs 

that also contain the 13C NMR data of NPs from experiments or in silico prediction (see section 2 for a 

discussion of DBs). 

4.2.2 Identification of compounds within mixtures 

In the field of metabolomics, metabolite profiling by 1D 1H NMR has been and is still intensively used 

as a primary source of data mainly for main metabolites monitoring in mixture.210 This is the most 

sensitive NMR technique and is therefore adapted to the time constraints of high-throughput analysis. 

In such a way 1D 1H NMR is mainly used in combination with chemometric data analysis to evidence 

NMR signals of given biomarker when large sets of samples are compared notably in approaches define 

as metaboNomics.243 Such methods are extensively used especially for metabolomics studies of body 

fluids where NMR robustness, holistic and intrinsically quantitative nature has clear advantages.244 The 

proprietary Chenomx suite combines a large in-house reference database with advanced 

deconvolution methods exposing overlapped and hidden signals in biofluids thereby combining 

identification and quantification for a number of clinically relevant small molecules.245 Statistical 

analysis performed on 1D 1H NMR profiles have been used for example to study the metabolic 

response of plant or microorganisms246 to stimuli or differences related to composition modifications 

related to the origin of the sample.211 As this is the case for body fluid metabolites,244 standard 

protocols NMR metabolite profiling of plant extract exist.208 These latter are however less generally 

applied than in the case of body fluid profiling (e.g., urine or plasma) probably because of solubility 

issues that may arise when specific classes of NPs have to be profiled. 

Once the characteristic resonances of biologically relevant compounds have been revealed by 

multivariate data analysis, the structures of these compounds remain to be unveiled. The identification 

of metabolites in mixtures using 1D 1H NMR spectra is possible provided that associated reference 

spectra DB exist obtained at the same magnetic strength and can be queried in solvent conditions that 

match the profiling experiment made and provided that, ideally, the adequate documentation of the 

original spectra is given.247 For human metabolomics studies the HMDB contains about 3’000 1D NMR 

spectra that can be queried either by 1D 1H NMR or 13C NMR chemical shifts.46 This DB contains, 
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however, very few NPs as it is targeted towards human metabolites (300 NPs versus > 110’000 

metabolites). A NP DB (CH-NMR-NP) has been released by Jeol that contains 30’500 NP for which data 

were reported in major journals between 2000 and 2014 this DB is however not exhaustive for 1H NMR 

data while 13C NMR is completed (Table 1). 

It has to be noted that even though statistical processing of 1H NMR data sets is sufficient to reveal the 

presence of biomarkers in metabolomics studies, their structural identification is most often ensured 

by the interpretation of 1D and 2D NMR spectra.246 

Indeed, while less sensitive than 1H NMR, 13C NMR is a very powerful method for the identification of 

compounds within mixture. The direct identification of low-molecular-weight compounds in mixtures 

by 13C NMR without separation was reported in the 1980s for fresh plant extracts248 and for petroleum 

distillates (presumably originating from extremely old plants).249 This process comprised the building 

of a DB, either an experimental or an in silico one, and the matching of the 13C NMR chemical shifts of 

the compounds stored in the DB with those from the spectrum of a mixture. Terpenes were also 

identified from essential oils using the SISTEMAT DB and associated SISCONST algorithm.249 The same 

approach was more recently reported and led to the unexpected identification of minor amounts of 

monoterpenes in an alkaloid extract of Peumus boldus.250 Another strategy combined extract 

fractionation by liquid-liquid partition chromatography and 1D 13C NMR spectroscopy for the 

compound-by-compound grouping of experimental chemical shift values based on their 

chromatographic emergence profile (Figure 4). This grouping proceeds through the hierarchical 

clustering of emergence profiles using the freely available PermutMatrix software. The chemical shift 

groups are used as search targets in a DB that was locally developed using ACD/Labs Workbook and 

enriched with data from the literature and ACD/CNMR-predicted chemical shifts. This protocol, which 

is named CARAMEL (CARActérisation de MELanges, in French), has been put into practice more than 

one hundred times over the last four years,251 most often for the characterization of plant extracts 

upon the request of the cosmetic industry, and it was recently routinely used by a start-up company 

(i.e., NatExplore - http://nat-explore.com/). 

Due to the richness of their information, 2D NMR spectra have also been employed for dereplication 

from mixtures. The correlation cross-peaks in the HMBC spectrum of a pure compound form a network 

that is a subset of the nodes of a rectangular grid structure. Such networks are superimposed in the 

HMBC spectrum of a mixture, but they can be disentangled using a community detection algorithm in 

case a chemical shift in the identity between compounds would erroneously connect two unrelated 

networks. Each network can then be assigned to a molecular structure by means of an HMBC and HSQC 

DB built in silico from structures and the corresponding 1D NMR data. Candidate structures are further 
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validated using HSQC data. This method was exemplified by the analysis of a bark extract from Picea 

abies.240 The pattern recognition (or barcoding) of HMBC spot clusters has also been investigated to 

identify known compounds from mixtures and even to obtain clues about the structures of unknown 

compounds by spectral subtraction. This approach was successfully applied to triterpenes from plants 

of the Actaea genus.239 The use of prior knowledge, such as the concentration or biological activity 

(which is related to concentration through some non-linear but increasing function) of a single 

component of a mixture, leads to the identification of the resonances of this component in 1D and 2D 

spectra (COSY, TOCSY, HSQC, HMBC, DOSY) by means of a completely automatic workflow for data 

acquisition, processing and interpretation.241 The term heterocovariance has been proposed to refer 

to the correlations between biological activities and spectroscopic features.242 

The instantaneous vision of the metabolite set of a living organism would not be decipherable without 

a vision of the chemical pathways that govern its transformations. The goal of fluxomics is the unveiling 

of these metabolic mechanisms.252 Fluxomics by NMR makes use of the organic compound precursors 

enriched in low-abundance isotopes, such as 13C and 15N.253 The identification of the metabolites that 

are produced by feeding an organism with such compounds can be achieved using dedicated methods. 

The presence of neighboring 13C nuclei within a molecule allows us to relate their chemical shifts by a 

TOCSY-type experiment, even within complex metabolite mixtures. This concept was illustrated by an 

E. coli cell lysate, which was fully enriched in 13C, and its compounds were identified by searching a 

dedicated in silico DB.254 

4.2.3 Chemical shift prediction 

Chemical shift prediction is the cornerstone for building NMR in silico DBs. The abstract of a publication 

by the Merck company in 1995 indicates that “Using spectra estimated from structures circumvents 

problems of inconsistent, incomplete, missing or irrelevant data. It also enables rapid generation of 

reasonably sized DBs that are unavailable from commercial sources.”82 A commercial company has 

integrated 22 million compounds from the public ChemSpider DB,75 along with the predicted chemical 

shifts for 1H, 13C, 15N, 19F and 31P nuclei. Although this DB contains only approximately 0.2% of NPs, 

their approach was validated by the identification of unknown NPs in pure form based on their 1H 

chemical shifts and the 13C chemical shifts deduced from a multiplicity-edited HSQC spectrum.255 The 

key point of this approach is the availability of reliable chemical shift predictors. Relating 1H chemical 

shift values to chemical group substitution was first published by J. H. Shoolery in 1959 for CH2 

groups.256 This first approach evolved to the finding of additivity rules that can be applied to a wide 

variety of structural contexts and was extended to 13C NMR. Other approaches rely on structural 

descriptors that resume the environment of a nucleus for which a prediction is searched. An 

environment coding scheme, named Hierarchically Ordered Spherical description of Environment, or 
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HOSE, was proposed by Bremser in 1978 and is still in use.257 A third approach aimed at relating 

environment descriptors and chemical shift values by means of an artificial neural network was 

reported in 2002, when no one spoke about Deep Learning and Artificial Intelligence was a forgotten 

concept.258 More accurate predictions may be obtained by combining the results of different methods. 

It is, however, rather difficult to know what happens behind the scenes in commercial prediction 

software, such as those developed by ACD/Labs or NMRpredict by Modgraph. Nevertheless, the 

NMRpredict website provides a free service for 13C NMR-based Spectral Similarity Search with Ranking 

based on more than 64 million compounds from the PubChem DB76 and for which 13C chemical shifts 

have been predicted (http://nmrpredict.orc.univie.ac.at/). Noncommercial predictors such as 

NMRshiftDB2259 or Spinus260 are available for 13C and 1H chemical shift prediction through web 

interfaces. The abovementioned software relies on a corpus of reference molecular structures and 

associated chemical shift values from which calculation models were elaborated. Most often, the 

reference data are hidden from the end-user, with the exception of NMRshiftdb2, for which the 

corresponding DB is available in SDF format. These prediction methods are extremely fast, and the goal 

of substituting experimental data with calculated data for the constitution of in silico DBs is not an 

overwhelming task. The level of 13C NMR prediction has reached such a level of accuracy that some NP 

journals recommend researchers to check their structure assignment by preforming in silico 13C signal 

prediction. 

The prediction of chemical shifts and coupling constants by ab initio methods is of interest for 

molecules presenting rare chemical functional groups261 and has allowed for the revision of structures 

or spectral assignments erroneously assigned to NPs.32 A recent article proposed optimized prediction 

conditions, namely, a wave function basis, a density function, a solvation model and a calculation 

method; this shows how this methodology can be adequately applied to the determination of the 

relative configuration of asymmetric centers in NPs and how the necessary conformation analysis step 

may lead to absolute configurations when used in conjunction with chiroptical methods, such as ECD 

or VCD.262 

4.3 Automated interpretation of NMR spectra 

As a general rule, full de novo structure elucidation follows unsuccessful dereplication. For this the 

manual structural assignment from NMR data can be efficiently assisted by software. The goal of 

computer-aided structure elucidation (CASE) software is to find solutions to structural problems by 

placing bonds between atoms based on the connectivity relationships inferred from NMR.263 The 

nature and number of these atoms are defined by the MF formula obtained by HRMS (see section 3.2). 

Solution structures fulfill constraints defined by the rules of organic chemistry, NMR data, and any 

information about the compound origin derived from another spectroscopic method or phylogenic 
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considerations. A chemical shift value places a constraint on the environment of the atom it concerns, 

and a correlation in a 2D spectrum or a coupling constant value imposes a constraint on the distance, 

measured in bonds, between two atoms. It may be noted at this point that the structure elucidation 

processes performed by humans and computers are not very different from each other, although 

computers never tire of finding solutions when one has been found and are less prone to be guided by 

false preconceptions about solution structures. 

The computer-aided structure elucidation of small organic compounds was one of the first application 

fields of Artificial Intelligence (AI) during the 1960s, when emerging computer technology started to 

reach the necessary efficiency level. Then, AI was then the science of automatic deduction, but it had 

very few possibilities for autonomous learning; since then, this paradigm has been inverted. 

Only a few companies presently produce CASE software, namely, ACD/Labs (Structure Elucidator), 

Bruker (CMC-se), and Mestrelab (Mnova v.12). Academic software such as SENECA264 and LSD265 (see 

Figure 4 for the operating principles of LSD) are available as free software, whereas COCON266 can be 

accessed through both through the web and as part of Mnova v.12. 
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Figure 4. Principle of structure generation by the LSD CASE software. The goal of the LSD software is to draw bonds between 
initially non-bonded atoms to find the possible planar solutions of a de novo structure elucidation problem. The number and 
nature of the atoms of the solution structure is supposed to be known from HRMS data. The set of atom statuses must be fully 
determined before the beginning of the problem resolution process. In the case this could not be reliably achieved, a software 
layer written above LSD, named pyLSD267,306 (a), can be invoked to resolve status ambiguities. LSD is not aware of the 
relationships between chemical shifts and structural features and places bonds between atoms solely based on 2D NMR 
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correlation data. The combination of COSY and HSQC data yields bonds between heavy (i.e., non-hydrogen) atoms from which 
the resolution process starts. The combination of HSQC and HMBC data yields proximity relationships between heavy atoms 
expressed as distances measured in number of bonds (1, 2, or more). HMBC correlations of close 13C resonances may be 
declared ambiguous, and all possible interpretations will be systematically considered. The resolution process starts by the 
recursive use of proximity relationships for the formation of bonds and removes those that become explained by the newly 
formed bonds. The atoms for which not all of their bonds are present, as inferred from their status, are thensystematically 
paired in a recursive process to build complete structures. Recursive processes are needed to explore all possibilities and 
reconsider choices (backtracking) opened by data interpretation so that the exhaustivity of the solution search is ensured. Each 
structure then passes through a series of validation steps. The distances between atoms are checked to address the HMBC 
correlations through 4 bonds or more. Double and triple bonds are placed between atoms to reach the needed coherence with 
their hybridization state. Anti-Bredt structures are eliminated. (b) The user may impose substructural elements to be present 
or absent in the solution structures (any combination of such constraints is allowed) according to external information sources, 
possibly spectroscopic or biogenetic. Ambiguous HMBC correlations may lead to duplicated solutions that need to be removed. 
The pyLSD software layer sorts the solutions according to the similarity of the 13C NMR chemical shifts with those predicted 
by NMRshiftDB. 

 
The publication entitled “Exploiting the Complementarity between Dereplication and Computer-

Assisted Structure Elucidation for the Chemical Profiling of Natural Cosmetic Ingredients: Tephrosia 

purpurea as a Case Study” provides a good example of how a non-conventional workflow can be 

applied to speed up the chemical analysis of a plant extract.268 This study relied on the CARAMEL 

dereplication workflow and on the LSD CASE software. Three compounds declared as unknowns after 

dereplication were identified as known compounds by structure elucidation but were never reported 

in the Tephrosia genus, likely due to the difficulty of their isolation by conventional chromatographic 

methods. In this example, as in many others, the dereplication process made it possible to quickly 

identify approximately 80% of the dry mass of an extract. This examples also highlight the usefulness 

of the inherent quantitative aspect of NMR since the metabolite coverage can be expressed in term of 

percentage of composition and not only in number of metabolites as is the case in most of the MS-

based metabolomic output results demonstrating again the complementarity of the MS/NMR 

approaches for natural extract composition assignments. 

SENECA operates in a stochastic way, which means that it starts from an initial guess of a solution 

structure and refines it by atom permutation to reduce the number of constraint violations. Many of 

these processes may be run in parallel, increasing the odds of rapidly finding a solution that presents 

a minimum number of constraint violations. The other CASE systems are deterministic, meaning that 

they systematically explore all possible interpretations of data.263 

The structural constraints provided by NMR are ambiguous by nature. A chemical shift value is 

generally associated with a multitude of possible molecular fragments, and even a COSY correlation 

may originate from a 2J coupling (which is easy to detect from an HSQC spectrum), a 3J coupling (as 

expected) or an nJ coupling with n≥4. A 1H-1H COSY correlation from an nJ coupling indicates n-2 bonds 

between the non-H atoms that bear the concerned 1H nuclei. Consequently, the ambiguity in the value 

of n leads to structural ambiguity because the NMR signal intensity is sensitive to coupling constant 

values but not to bond counts. In the same way, a 1H-13C HMBC correlation through n bonds (where n 
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may be equal to 2, 3, 4 or even more) indicates an n-1 bond distance between two non-H atoms. A 

given CASE software program must therefore be able to address coupling paths of nonstandard length. 

Resorting to complementary 2D NMR spectra is one possible way to reduce the size of the chemical 

space explored by a CASE algorithm.269 A 1H-13C H2BC (Heteronuclear 2 Bond Correlation) spectrum 

directly indicates the existence of a bond between two non-H atoms through a 1J(1H-13C) coupling and 

a 3J(1H-1H) coupling.270 Considering both a HMBC and a H2BC spectrum, the latter allows one to classify 

HMBC correlations as arising from either a 2J or a 3J correlation, with the limitation that a 4J(1H-1H) 

coupling may have a significantly non-zero value and that some 2J(1H-1H) couplings may not be 

detected, thus leading to the incorrect interpretation of the H2BC spectra. Ultimately, non-ambiguous 

1-bond connectivity between non-H atoms is revealed by a 2D 13C-13C INADEQUATE spectrum. The 

well-known limited sensitivity of INADEQUATE reduces its scope because the mass of the required 

substance is rarely, but possibly, available for an unknown compound.271 A 1,1-ADEQUATE spectrum, 

which is a 1H-detected version of INADEQUATE, benefits from better sensitivity and can be used as a 

reliable source of 1-bond connectivity in CASE software.266 The structure elucidation of H-poor 

molecules may incite one to search for data with very long distance connectivity, a goal that can be 

achieved using spectra such as 1,n-ADEQUATE272 or LR-HSQMBC,273 with a possible cross validation of 

the solution structures by the theoretical calculation of the small coupling constants by quantum 

mechanical methods. 

Another type of ambiguity arises from resolution issues in 2D NMR spectra. This point has already been 

addressed in section 4.1.1.2. The resolution in the indirect dimension of 1H-detected 2D 1H-13C 

correlation spectra is of great importance, and the impact of its improvement through spectral aliasing 

along F1 (see section 4.1.1.2) has been demonstrated by the reduction of the number of proposed 

solution structures.231 Band-selective HSQC and HMBC experiments have proven to be useful for 

recovering pertinent connectivity data from particularly crowded spectral regions.232 The 2D 

correlation spectra of other nuclei, mainly 15N, constitute useful sources of complementary constraints 

for proposed structures.232 

Unresolved contradictions between experimental structural constraints and the ways they are 

interpreted lead to a lack of solutions to a problem and necessitate the reexamination of software 

input data. A loosely constrained set produces a high number of solutions for which validation and 

ranking must be carried out. 

CASE software generally does not directly propose 3D structures for solution structures but instead 

proceeds by first proposing 2D structures. Elaborating a 3D structure from a 2D structure in an 

automatic way has recently been proposed; this process begins with the automatic generation of 
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diastereoisomers from a planar structure. Stereoisomer selection relies on ab initio chemical shift 

calculations and on the measurements of residual dipolar couplings and residual chemical shift 

anisotropies in anisotropic media. Molecular flexibility is handled through automatic conformer set 

generation and the averaging of NMR parameter values over the conformer population. This approach 

was exemplified by two well-known NPs and two recently reported ones for which structural revisions 

were proposed.274 

4.4 Toward user-friendly computer interfaces 

Currently, computers intervene during nearly every stage of metabolite profiling by NMR. 

Spectrometer manufacturers provide hardware and associated software tools that grant access to 

regularly updated libraries of pulse sequences for spectrum acquisition. The automated acquisition of 

spectra sets using sample changers has become standard in most NMR facilities and can be set up with 

minimal human intervention through specific user interfaces. Manufacturers also provide data 

processing tools, even though processing may be carried out using proprietary software, for which the 

ease of use is put forward as a major commercial argument. The capability of this software may extend 

toward automated spectrum interpretation, providing access to structure verification and structure 

elucidation tools. 

In contrast to metabolomics, NP research does not yet benefit from freely accessible data handling 

workflows leading from the collection of NMR raw data sets to statistical data analysis and possibly to 

the identification of biomarkers. One possible reason for this difference is the size and structural 

diversity of the chemical spaces related to these domains, which comprise a few tens of thousands of 

molecules of a reasonable number of compound classes for metabolomics and a few hundred 

thousand structurally very diverse molecules for NP chemistry. In fact, automated annotation and 

quantification of (very) small molecules in matrices like urine is starting to work;210 for NPs such 

automation in complex mixtures is currently still out of being reached. However, with current progress 

it is not unlikely that tools will emerge that could do a similar job as for (very) small molecules. For 

example, MetIDB54 is publicly available database containing 1H-NMR spectra predicted by PERCH NMR 

software275 for specific NP compound classes such as flavonoids and aurones that could in theory be 

linked within an automatic annotation framework. Another possible reason may lie in a difference 

between the organizational stages of the MS and NMR scientific communities. 

In the future, it can be expected that the structures of all known NPs will be freely accessible to the 

scientific community. These structures should be part of a global knowledge base that could possibly 

be designed as follows. Structures must be linked to other types of data, such as the original 

bibliographic reference, the storage location of spectroscopic raw data,33a the values of the extracted 
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spectroscopic parameters, and the biological origins of the compounds, thus altogether resulting in 

structure-spectra-origin triplets. Here, “origin” represents the full taxonomic data of the organism and, 

if relevant, the part of the organism that was studied. The DBs of simpler structure-spectra pairs, such 

as NAPROC-13, can be used to solve many problems, but using a given compound’s origin information 

can greatly speed up the search for a structure from spectral data, as compound classes are related to 

biogenesis, which is itself related to organism classes.276 

The possibility of combining the results of searches for structural, spectroscopic and taxonomic 

specifications is of great importance for dereplication and structure elucidation (see section 3.2). Such 

an integrated approach was put into practice in the 1980s with the creation of the “knowledge base” 

SISTEMAT, a project that was driven in Brazil by Pr. Emerenciano. These underlying concepts would 

certainly be worth being used as a source of inspiration for the design of future DBs and software 

dedicated to NP chemistry.277 

5 Quality and Reporting of Metabolite IDs 
Traditionally, in NP research, new purified compounds from extracts are reported with a complete 

interpretation of their NMR (1H, 13C and 2D) spectra and MS data as well as additional spectroscopic 

data (UV, IR, ECD), which can be used to obtain a full de novo structural determination. The NP 

structures reported in the literature are thus considered high-quality standards. Even under such ideal 

conditions, however, the misinterpretation of spectral data may lead to the misreporting of 

structures.278 

The accurate annotation of NP structures based on LC-HRMS/MS or NMR profiling in complex extracts 

remains a challenge. Therefore, it is important to keep in mind that such identifications may be (and 

often are) putative; thus, such annotations must be reported with care. Several very important 

questions remain: “are you sure of your annotation?” and “how do your peers gauge your 

confidence?”24, 279 It is crucial to avoid having a putative annotation later become incorrect knowledge 

that is considered true. While it is important to share the results of even approximate annotations 

throughout the NP chemistry community, reporting such results in a correct manner is still an issue. In 

dynamic systems, such as the GNPS platform, annotations can be refined by iteration cycles through 

various studies; for example, by sharing data about a given organism, annotations can be revised.44 To 

publish tables of annotations, reliable metabolite profiling reporting standards must be defined. 

In the field of metabolomics, this question has been a matter of debate since 2005. Thus, reporting 

standards are regularly discussed, and a common consensus was reached for reporting the annotation 

(or identification) of a compound, which is based on 4 different levels of identification that need to be 

indicated in addition to the proposed annotation along with accurate information about the analytical 
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method.84a These annotation levels correspond to the following: 

 Level I - Identified compounds: indicates that annotation is based on comparison with 

authentic standards and that two types of orthogonal information were used for confirmation. 

Thus, in principle, this level can only concern unambiguous identifications made by 

comparisons against reported NPs and cannot reflect the full characterization of unknowns. In 

the case of LC-HRMS/MS, accurate MS and RT matches are necessary for compound 

identification and usually require standards (fully identified by NMR). 

 Level II - Putatively annotated compounds: indicates that annotation was achieved without 

chemical standards but based on spectral similarities in comparison with previously reported 

data (in silico spectral data may be considered if no real data are available). In this context, 

there is a reasonable chance that the compound annotation is correct. When dealing with LC-

HRMS/MS data, this means that the mass accuracy of MS and MS/MS must reach level II, 

sometime complemented by biological source consistency. Similarity of all available NMR 

spectral data is warrantied. 

 Level III - Putatively characterized compound classes: indicates that partial structural 

annotation is possible based only on spectral information. This usually corresponds to partial 

spectral matches and thus yields a limited chance to achieve accurate compound annotation. 

In the case of LC-HRMS/MS, this corresponds to the accurate mass accuracy of MS completed 

with a partial MS/MS match and sometimes complemented by phylogenetic consistency. 

Characteristic NMR signals orient compound identification toward a particular class of 

compounds. 

 Level IV - Unknown compounds: only spectral (and chromatographic data, in the case of LC-

HRMS/MS) are available, but with no correct or partial matches. Thus, information is available 

for the latter observations under similar acquisition conditions, and identification can be 

performed later if structural information about this compound becomes available. 

Very recently, a Level 0 annotation of “Unambiguous 3D structure” was proposed by Blaženović et 

al.,171b corresponding to a “fully identified 3D structure with absolute identification”, as traditionally 

achieved by NP chemists and thus fully integrating 1D and 2D NMR interpretation as described in 

section 4.2. These 5 levels of identification have the advantage of being rather simple to determine; 

however, it remains difficult to compare different annotations within a level using such an approach 

as some terminology used within the level definitions remains arbitrary as are the requirements for 

each level and their implementation for the different analytical techniques and (hyphenated) 

combinations thereof. Therefore, some researchers are proposing a numeric quantification of the 

annotation quality, but they have not yet reached a consensus.24, 280 However, such a strategy is 
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difficult to generalize and ultimately depends on the analytical method, annotation strategy and tools 

used. Therefore, evaluating the knowledge and experience about the apparatus used is a good starting 

point with which to evaluate annotation confidence. 

In the specific case of NMR, a scoring process was proposed by J. R. Everett.281 This evaluation method 

was established in the frame of metabolomics but can be a source of inspiration in any other field of 

chemical analysis by NMR or even beyond. The publication by Everett defines two numerical criteria 

that indicate whether or not a compound can be safely identified by NMR by dividing the number of 

reported descriptive bits of spectroscopic information by either the number of carbon atoms or the 

number of heavy atoms in the considered molecule. The criteria values are obviously higher when all 

available spectra types are used than they are when using a 1D 1H NMR spectrum only. A molecule 

with a single 1H resonance cannot thus be identified by means of only a 1D 1H NMR spectrum due to 

its associated low value criteria. Once a set of spectra is defined, the experimental values of their 1H 

and 13C chemical shifts and 1H-1H coupling constants are compared to the expected ones. The typical 

deviation values for these parameters are provided as guidelines to determine whether a proposed 

identification is valid or not. In this way, a compound for which no reference sample is available and 

whose identification is precluded to reach the confidence level of 1 according to Sumner et al.84a can 

nevertheless be safely identified. The publication by Everett also nicely demonstrates the importance 

of leaving raw NMR data freely accessible: he was able, by reprocessing an FID from the HMDB DB,46 

to measure a small coupling constant that gave rise to a COSY correlation, a constant that was not 

detectable at the time the spectrum was first interpreted. Another important aspect in this paper is 

that it refers to only 75 metabolites for which NMR spectral features are available from a public DB. 

The lack of so many accurately known experimental spectral features for most specialized metabolites 

forces us to rely on in silico predicted (or evaluated) features, including 1H and 13C NMR chemical shifts 

and those that permit the simulation of COSY and HMBC spectra, namely, the values of the 1H-1H and 

1H-13C coupling constants. 

An intrinsic limitation of MS-based structural assignments compared to NMR ones is the limited 

possibilities of stereoisomeric differentiation based on MS/MS interpretations. Therefore, such 

annotation strategies usually yield only flat chemical structures. This represents a strong limitation of 

NP assignments because a majority of them exhibit complex 3D structures. To address this issue, 

orthogonal detection that can distinguish stereoisomers could be implemented in profiling studies. 

One method of choice would be detection by an ECD detector,282 which is easy to couple to liquid 

chromatography. LC-ECD-HRMS/MS could potentially enhance structural elucidation by additionally 

defining the stereochemistry of the flat structure by analyzing ECD spectra283 and therefore 

approaching a Level 0 annotation. 
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In this context, a new trend currently emerging in metabolomics is to improve the structural 

annotation confidence by combining multiple analytical platforms to take advantage of the benefits of 

each of them (see also section 7.1). 

To evaluate the quality of annotation strategies and their improvements over time, an international 

initiative was launched in 2012, which is called the Critical Assessment of Small Molecule Identification 

(CASMI, http://www.casmi-contest.org).284 CASMI was proposed to blindly solve annotation 

challenges based on MS/MS information (and sometimes additional metadata). Participants propose 

annotation(s) for every challenge on an approximately yearly basis, and the correct solution is later 

released. It remains important to note that in the CASMI contest, only flat chemical structures are 

considered due to the limitations of MS/MS annotations. In fact, only the first 16 characters of InChIKey 

(a hashed version of the full InChI)74a are used to highlight correct annotations. The results obtained in 

CASMI demonstrate that since 2014, MF determination is no longer an important issue for metabolites 

below 500 Da based on MS and MS/MS data.285 Since 2016, these challenges have clearly focused on 

the annotation of NPs; these results provide good examples for assessing the efficiency of the current 

trends in annotation strategies as they are typically larger than 500 Da and structurally very diverse. It 

is interesting to note that when dealing with a low number of challenges compatible with manual 

annotation, as was the case in 2016, semiautomatic annotation with human interpretation was able 

to achieve the correct annotation almost every time.286 However, this manual strategy was determined 

to be too slow to use for a large number of annotations. In 2017, a much larger number of challenges 

was proposed, and it was observed that strategies based on in silico spectral simulations performed 

“satisfactorily” for the large-scale annotation of LC-HRMS/MS data. Among all of the evaluated 

interpretation tools from CASMI 2017, CSI:FingerID111, 143, 164 and MS-Finder174, 287 were the most 

promising.169 However, very few proposed workflows were able to perform annotations automatically 

from raw LC-MS data.149, 169 The global feedback from CASMI 2016 and 2017 revealed that (1) 

annotation efficiency is directly related to the availability of the compounds within DBs; (2) efficient 

tools are currently being developed for compound annotations directly from LC-MS/MS data, even 

though accurate annotation is still yet to be achieved, as highlighted by the fact that at best, only half 

of the challenges were successfully solved; and (3) exhaustive spectral DBs are still necessary. These 

results also showed that the careful manual interpretation of the results obtained by in silico tools is 

still very much needed. Furthermore, many publications still do not report their metabolite annotation 

and identification strategies nor report metabolite identification levels hampering proper reuse of 

their findings. 

6 NMR/MS Combination 
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6.1 Recent advances in LC-NMR / LC-SPE-NMR 

One theoretically ideal way to link LC-MS information to NMR would be to perform LC-NMR either on-

line with MS or using similar LC conditions for separate NMR and MS detection to obtain matching and 

complementary MS and NMR structural information for all peaks detected. Such a solution is, however, 

not practical because of the inherent very low sensitivity of NMR compared to that of MS detection 

and the compatibility of the solvents needed for both the NMR and MS sides. In typical on-flow LC-

NMR experiments, deuterated water must be used, while the 1H-NMR organic solvent modifiers can 

be suppressed by dedicated NMR pulse sequences. The use of D2O, however, will cause the exchange 

of protons due to deuterium, which will then complicate the interpretation of MS spectra when 

recorded on-line.288 

The coupling of high-performance liquid chromatography with NMR spectroscopy (LC-NMR) 

represents one of the most powerful methods for the separation and structural elucidation of NPs in 

mixtures.289 The on-line coupling of both techniques is made feasible by the use of dedicated flow 

probes (30-60 µL) and has permitted the acquisition of the 1H-NMR spectra of the main NPs in various 

natural extracts. The sensitivity of the flow cell can be enhanced by using cryogenic flow probes.290 

However, on-flow LC-NMR is limited because of the need for solvent suppression, which compromises 

the quality of the spectra obtained.288 

An effective way to overcome this problem has been the introduction of the LC-Solid Phase Extraction 

(SPE)-NMR technique, which enables the efficient preconcentration of the sample prior to NMR 

detection and enables its measurement in fully deuterated solvent while HPLC separation is performed 

in standard HPLC solvents.291 The latest developments correspond to the fully automated integration 

of MS hyphenation for trapping in LC-MS-SPE-NMR setups.292 In brief, in such systems, LC peaks are 

automatically trapped on SPE cartridges and released in either an LC-NMR flow cell or 1.7-mm ID 

microtubes for the analysis of 1D and/or 2D-NMR spectra. Sampling is performed with multiple 

injections of extracts on the column, resulting in the efficient enrichment of given analytes on the SPE 

columns. An alternative consists of a single injection of extracts (typically a tenth of a mg) on 

semipreparative columns after the geometric chromatographic transfer293 of the LC-MS conditions 

used for the metabolite profiling for micro-fractionation and drying and subsequent NMR analysis.294 

Both approaches enable the full de novo characterization of NPs by NMR using only 1-5 µg of analytes 

with cryogenic probes295 or microprobes fitted to 1.7-mm microtubes (30-µL volume) on a high-field 

magnet (600 MHz).296 For a recent review of the applications of LC-SPE-NMR, see Sumner et al. and 

Gomes et al.296-297 

For example, such an approach was successfully applied for the unambiguous identification of 22 
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compounds in Pueraria lobata with the injection of ca. 700 µg of extract on the column298, and more 

than 20 coumarins, including several regioisomers that were difficult to separate, were identified in 

Coleonema album.299 

LC-MS-SPE-NMR is thus efficient for providing complete sets of NMR data about the main constituents 

of an extract. This method can be used for the selected full de novo identification of given LC peaks 

that cannot be dereplicated or for the identification of unknowns. It can also be used as a method for 

the identification of all major extract constituents (typically a few tenths of a plant extract) that can be 

used to unambiguously identify the main LC peak in deep metabolome studies for the further improved 

annotation of minor constituents by the propagation of annotation in MN, as discussed in section 3.3. 

However, such analyses are rather time-consuming, require complex automated procedures and SPE-

NMR setups and as a result are still relatively seldom applied in the NP community. To combine MS 

and NMR information, other approaches that make use of classical NMR profiling and MS data exist. 

Moreover, new cheminformatics and computational methods have recently been developed (see 

section 6.2).300 

6.2 MS/NMR data combination strategies 

Classically, NMR and MS metabolomics workflows are performed independently, and annotated 

metabolites are then compared based on their occurrence in a table of annotations.301 More recently, 

complementary structural information from MS and NMR was efficiently combined by obtaining the 

main substructures from MS/MS data and linking these building blocks using specific regions of the 1H-

NMR data only to solve the complete structures of conjugated phenylvalerolactones from human urine 

and large (>1000 Da) NPs in the form of glycosylated flavonoids at gram levels.295, 302 This very low 

amount of material needed was achieved by effectively combining MS and NMR analyses, thus 

allowing to zoom in on selected regions of the NMR spectra thereby ignoring regions with interfering 

impurities from the samples and column materials used during LC-MS-SPE-NMR. 

An interesting more systematic way to combine MS and NMR information without compromising both 

techniques consists of using HRMS for metabolite profiling data on one side to extract the MF of all 

metabolites and to generate all possible associated structures. Using this information, the NMR spectra 

of each member of a structural manifold are predicted and compared with the experimental NMR 

spectra to identify the molecular structures that match the information obtained from both the MS 

and NMR techniques. This approach is termed SUMMIT MS/NMR.303 It was applied to profile 

Escherichia coli extracts, and a wide range of different types of metabolites, including amino acids, 

nucleic acids, polyamines, nucleosides, and carbohydrate conjugates, were successfully identified. The 

integration of such information has the potential to link MS and NMR data, provided that the structural 
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annotations based on HRMS data are sufficiently well filtered, as in section 3.1. 

The approach can also be performed starting with NMR data by querying in the NMR profiles against 

an NMR DB of standards followed by the automated prediction of the masses (m/z) of all likely ions 

and adducts of metabolite candidates with their characteristic isotope distributions made available; 

this approach has been termed “NMR/MS Translator”.304 The expected m/z ratios are then compared 

with the experimental MS spectrum for the direct assignment of the signals of the MS that correspond 

to the generated metabolites. For example, this approach was used to identify 88 metabolites in 

human urine by combining 2D 13C-1H HSQC with direct infusion ESI-MS spectra that have consensus 

signals in both NMR and MS spectra. 

Both the SUMMIT and “NMR/MS Translator” approaches can be nicely integrated.301 Because chemical 

shift and accurate mass data are co-analyzed, such a method of combining MS and NMR was found to 

significantly increase the accuracy of metabolite identification compared with approaches where 

samples were independently profiled and processed in both MS and NMR. Having MS and NMR data 

at hand acquired in mixture on the same samples also makes it possible to search for unknowns by in 

depth investigation of 2D NMR spectra obtained on mixtures.305 This technique thus has the potential 

to overcome the need for experimental MS and NMR metabolite DBs since the approached rely on 

predicted spectra.303 

An intermediate approach between the correlation of MS and NMR data from crude extracts and those 

of fully separated metabolites, such as LC-SPE-NMR, could be the application of MS/NMR correlation 

approaches to the 13C-NMR spectra acquired from the rapid coarse chromatographic fractionation of 

NP extracts, as is the case for the CARAMEL approach (see section 4.2.2 and Figure 4).306 Here, the 

structures annotated from the LC-MS/MS profiles of the enriched fractions could be correlated to NMR 

by the 13C-NMR simulation of a candidate structure, similar to the SUMMIT approach. A similar 

approach can also be achieved by coupling the data obtained by semi-preparative micro-fractionation 

with their analysis by both NMR and LC/MS. This was recently demonstrated on a standard compound 

mixture where 1H-NMR signals were correlated with MS signals among all micro-fractions.307 Then, 

analyzing the most abundant signals in the NMR spectra may benefit from additional semi-quantitative 

detection methods, such as ELSD or CAD (see section 3.1.4), during the profiling of fractions. Such an 

approach may, in the future, represent an interesting alternative to tackling the complexity of NP 

structures in natural extracts and unambiguously annotating the main metabolites as these semi-

quantitative detection methods allow for better linking between NMR signals and their corresponding 

MS peaks based on quantitative relationships that do not exist in MS due to ionization and matrix 

effects. 
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7 Toward improved confidence in metabolite ID 

7.1 Additional orthogonal methods (RT/CCS) and weighting meta-scores 

As discussed in sections 3 and 4, LC-HRMS/MS profiling provides in-depth metabolite profiling over a 

large dynamic range with a high sensitivity but with a relatively restricted capacity for the unambiguous 

annotation of NPs when used in a generic approach. On the other hand, NMR provides detailed 

structural elements for the identification and semi-quantitative estimation of the amount of 

metabolites present, but its inherent sensitivity is one or more orders of magnitude lower. 

Today, the challenge for improving confidence in annotating LC-HRMS/MS data relies, in our view, on 

combining different information sources that can further filter the structural hypothesis assignment 

generated by similarity scores in MS/MS for candidate structures with a given MF. Indeed, an 

annotation is only valuable if it can be scored within an established reference system to rate its 

confidence. The ideal reference system would be a score of good-quality HRMS/MS spectra acquired 

with optimal fragmentation energy compared to a DB of experimentally acquired spectra recorded 

with identical parameters.81 As discussed above, such a DB does not exist for all NPs and would very 

difficult to create because fragmentation conditions will evolve with the continuous development of 

MS platforms, unless efficient ways to precisely standardize CID conditions are developed (see section 

3.1.3). 

Thus, using only the ranking of possible NP structures based on MF determinations and partial matches 

against in silico DBs, or experimental DBs acquired under conditions that do not perfectly match those 

under which reference spectra were recorded, we cannot obtain perfect scores. 

Thus, presently, most NP annotations obtained in this way provide only hints about their structures 

and yield MSI annotation levels of 2 or 3.24 To further improve on the currently existing identification 

levels and make them compatible with NP research, we argue that the scoring system should be 

multifactorial and take into account additional factors leading to higher confidence in annotation, such 

as the retention behavior of the analyte or the consistency of the annotated structure with its 

metabolic context.73 Ideally, a meta-score integrating these various aspects should be established.81 

Such a meta-score may be based on various information sources as shown in Figure 5. 
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Figure 5. Schematic view of possibilities to improve the annotation scoring by weighting different partial and imperfect scores 
given by all methods on both LC−MS and NMR for maximum confidence in the compound identification (ID) process. NMR and 
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MS are the main spectroscopic techniques for the identification of a chemical structure. Whether on the NMR side or the MS 
side, orthogonal techniques are used to increase the ID level of confidence (e.g., liquid chromatography for both MS and NMR 
often offline or ionic mobility on the MS side). Moreover, some extra-data (brown boxes) are combined with spectroscopic 
data, leading to workflows that can be organized in the same way for MS and NMR approaches. They start from the lowest ID 
level (scoreMS or NMR 1) when only (HR)MS or 1D NMR are recorded and compared with calculated or experimental spectra, 
for instance, by means of in silico or experimental databases, and they reach the highest score (scoreMS or NMR 4) after 
complementary data acquisition and processing (e.g., MSn, 2D NMR) and usage of extra-data (e.g., taxonomy, biosynthetic 
pathways, NMR data for MS-based workflows and MS data for NMR ones). Thus, ideally a meta-score (meta-scoreNMR or 
meta-scoreMS) resulting from the addition of the scores validated for the NMR side (Σx = 14 scoreNMRx) or the MS (Σx = 14 
scoreMSx) side can be thus calculated. For 3D sutural aspects relative configuration is generally proposed by combining 
coupling constant analysis and the Overhauser effect in NMR, sometimes together with conformational analysis and molecular 
modeling. Absolute configuration determination must resort from chiroptical techniques such as ECD, VCD, or X-ray 
crystallography (scoreCHIR). If all aspects can be taken into consideration with a correct weighting of all scores, in the future, 
a GLOBAL-meta-score could ideally be defined as a combination of the three individual meta-scores. The exclamation marks 
highlight critical steps in metabolite ID. 

 
In NP research, a key aspect is to contextualize an annotation based on taxonomy. As mentioned in 

section 3.2, such information is important to reduce the number of possible candidate structures to 

those previously reported for a given species, genus or family. From a scoring perspective, hits that 

structurally relate an NP to a metabolite previously reported in a phylogenetically related species 

should thus be ranked better than an NP that has been reported to occur in unrelated organisms. Such 

deductions are usually made manually when integrating the metadata associated with a given sample 

(e.g., in the literature or in a specialized structural DB for NP research, such as the DNP7), but ideally, 

such information should be weighted in quantitative terms automatically in the future and taken into 

consideration for scoring. 

When performing LC-MS metabolite profiling, another source of structural information that is 

orthogonal to MS and is linked to the physicochemical properties of the analyte is its retention time 

(RT). Being able to score calculated RTs versus experimental ones would also be important for 

improving metabolite annotation. In GC-MS, RT prediction tools are efficient308, and the relative Kovats 

retention index is used to convert RTs into system-independent constants. In contrast to GC, in HPLC, 

the standardization and prediction of RT is a much more challenging task to undertake. This is due to 

the wide variety of chromatographic conditions available (e.g., solvents, buffers, column chemistries) 

and the difficulty of having access to a large set of experimental RTs for the NPs in a given condition 

when building a model.171b Some of these difficulties can be partly overcome because the large 

majority of NP separation is usually performed under RP-C18 conditions using a generic 

acetonitrile/water gradient with formic acid as a modifier, and large libraries of NP standards, such as 

the WEIZMASS spectral library, contain experimental RT values that have been reported for more than 

3500 plant metabolites.152 Furthermore, when initiatives, such as the PredRet DB309 that collects RTs 

from standards across LC platforms, gain momentum the underlying models used to predict RTs across 

different platforms will become more accurate.309 

To predict RTs based on structure annotation, some attempts have been made to build models that 
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use calculated physicochemical parameters (e.g., hydrogen bond acidity/basicity, 

polarity/polarizability, volume, MW, lipophilicity coefficient, topological polar surface, number of 

rotatable bonds) and can establish relationships with the RTs measured under generic RP metabolite 

profiling conditions. Quantitative structure retention relationship (QSRR) models were proposed on a 

representative training set of 260 non-alkaloid NPs that allowed RT predictions with an accuracy of 

approximately 3.3 min over a 30-min UHPLC gradient for 90% of the tested metabolites analyzed.310 A 

similar type of RT prediction was calculated using a much more focused group of 91 steroid standards 

under any gradient mode condition. This model was able to predict RTs with an average error of 4.4%, 

which allowed the significant reduction of the list of steroid candidate structures associated with 

identical monoisotopic masses.311 These examples show that good-quality predictions are partially 

achievable but mainly on a series of structurally related analytes. In biological fluid metabolomics, a 

set of 1955 synthetic compounds was recently analyzed and used to predict the RTs of an independent 

set of 202 human metabolites; the results showed reasonable predictions of this very chemodiverse 

group of metabolites, as well as some limitations.312 In the current state of NP research, such tools 

should permit the elimination of hits that clearly cannot match the observed chromatographic 

behavior of the analytes of interest, but these models need to be fed with much more experimental 

data, which may have to be divided into chemical classes or subclasses to improve their accuracy. In 

addition, ways to compare RT behaviors between various LC conditions must be further investigated. 

Another orthogonal dimension to MS that can be retrieved from state-of-the-art LC-MS platforms that 

can acquire IMS is the collisional cross section (CCS). CCS values are not only dependent on the 

molecular weight but also influenced by conformational parameters and by the molecule size of the 

analytes. They have a very high reproducibility (RSD <1-2%). As mentioned in section 3.1.1, IMS enables 

us to separate isomeric compounds based on shape; thus, associated CCS values have the potential to 

be used for such discrimination during annotation. Very interestingly, CCS values can be predicted 

based on computational and quantum chemical models, as well as machine learning predictions, such 

as artificial neural networks.171b Comparted to RT predictions, very low errors of <3% have been 

reported for CCS models performed using a very large dataset.313 In this study, training was performed 

on 400 metabolites, and the model used 14 common molecular descriptors. A large-scale predicted 

CCS DB was built for 35000 metabolites from the Human Metabolome Database (HMDB).46 Having 

such data at hand should effectively improve the accuracy and efficiency of identification in untargeted 

metabolomics, and similar efforts must be made for more accurate dereplication in NP research. 

Moreover, IMS could also reveal novel structural isomers that could so far not be resolved using 

chromatography. To effectively use this orthogonal structural information, an IMS-MS needs to be 

available in the lab which is currently one of the limiting factors in its more widespread use. 
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In addition to parameters that can be measured in metabolite profiles, such as RT and CCS, ways to 

quantitatively estimate the consistency of an annotation in clusters by MN approaches should be used 

for scoring. This task is usually performed by the visual inspection of structures, but calculating 

structural comparison scores, e.g., the Tanimoto index,278 should be possible to automate.81 In this 

regard, methods using the MN topology and structural similarities to improve in silico annotations have 

been implemented by creating a network consensus using re-ranked structural candidates, most 

notably by using Tanimoto scoring.84b This recently developed tool, termed “Network Annotation 

Propagation” (NAP), is accessible through the GNPS platform discussed in section 3.3. Such approaches 

allow us to rerank candidate structures that do not match the majority of scored candidates within a 

Molecular Family (see section 3.3) after the MN analysis of MS/MS spectra, which has been defined as 

“MN consistency”. 

Finally, a significant improvement in the confidence of an annotation is obtained when standards are 

analyzed and compared to experimental data. As mentioned above, MN allows the efficient linking of 

structural analogues to standards. The co-occurrence of identified standards in clusters showing 

relationships with a metabolite of interest should also have a weight that should be considered during 

annotation. Similarly, the co-occurrence of substructures (Mass2Motifs) could also weight the 

annotation score. 

To our knowledge, there are no tools that are capable of weighting various scores, as shown in Figure 

5, and automatically converting them into a meta-score for a higher-confidence annotation. However, 

many individual methods exist, as discussed in this review, and their algorithms should be further 

developed and combined to enable such scoring for NP dereplication. We are convinced that this 

would boost the quality of the annotation of NPs in the future. Likewise, we expect that effective 

merging of experimental and in silico data would provide a significant breakthrough to the field as well. 

7.2 Linking structural information between the genome and metabolome 

With the increase in available whole genome sequences and so-called “paired data sets”, i.e., samples 

for which both genome and metabolome information is available, another interesting route to obtain 

complementary structural information for NPs is now possible. Indeed, the biosynthesis of many NPs 

is encoded by a physically close set of biosynthesis genes termed biosynthesis gene clusters (BGCs). 

The presence of such gene clusters has been well established in microbial research and represents a 

growing field of investigation in plants.314 Based on recognizable gene functions, genome mining tools 

such as AntiSmash315 or PRISM316 are able to predict such BGCs in bacterial genomes. When those BGCs 

can be linked to the MS/MS spectral data of the molecules they encode, valuable complementary 

structural information can be retrieved that is not easy to obtain using only MS.317 For example, in 
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some cases, their regioselectivity and stereochemistry could be inferred based on their genome 

annotations. This is particularly helpful for peptidic NPs in which bacteria can alternate between L and 

D amino acid variants. In addition, modifications such as methylations and glycosylations could take 

place at different sites; in some cases, the transferase enzymes have clear preferences. If such 

structural information can be efficiently transferred from the genome to the metabolome, it would 

then be possible to further narrow down possible NP structural candidates. Vice versa, the structural 

information obtained from the MS/MS data could then be transferred to the genome to functionally 

annotate current genes with hypothetical functions. This field of research is expected to grow rapidly 

in the future and will very likely improve the quality of mining metabolomics and genomics data. 

8 Full metabolome coverage 

How far are we today from achieving full NP metabolome coverage in terms of both detection and 

annotation by NMR and MS? 

The first point to consider is that extraction is generally necessary prior to LC-MS and NMR profiling, 

and as a result the chemical profiles obtained may provide a biased view of the metabolite content of 

an organism in its living form. Furthermore, the compartmentalization of given metabolites, such as 

those in plants, can generate profiles that may greater differ than those if one were to consider 

specialized cell types compared to the mean metabolome profile of an entire leaf.318 Thus, the 

metabolite profile of a crude extract, even if it is perfect, will only represent what has been 

extracted,207 and multiple extracts of different cell types would probably be required to obtain a 

cumulative view of a given metabolome.319 

The NMR spectrum of an extract will theoretically provide the universal and unbiased metabolite 

coverage of an extract and the quantitative relationship between metabolites. A 1H 1D NMR spectrum 

can easily be recorded under conditions that allow for concentration measurements, even in the 

absence of a reference compound in the sample. Such measurements proceed through direct signal 

integration or signal modeling.320 This means that a compound can be detected and quantified by 1H 

NMR in an extract, provided that the sensitivity and dynamic range of the spectrometer is sufficiently 

high, which represents the current main limitation of NMR toward the detection of minor metabolites. 

A clear advantage of NMR quantitation is that it does not need a standard because at least one of its 

1H NMR signals is clearly distinguishable from overlapping signals, but this condition is rarely fulfilled 

in complex extracts. The occurrence of intra- or inter-molecular chemical exchange constitutes a 

common reason for the invisibility of a present 1H NMR signal. The overlapping of 1H NMR signals is 

also a source of trouble for the identification of compounds in mixtures. Compound detection and 

identification by 13C NMR, either directly (by 1D NMR) or indirectly (by 2D NMR), is the ultimate 
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technique applicable to hydrogen-poor or hydrogen-lacking organic molecules, which are rare in the 

field of NP chemistry. The detection of nitrogen-containing compounds by 15N NMR is relevant for 

many bioactive NP classes, such as alkaloids and peptides. The low magnetogyric ratio of the 15N 

nucleus (approximately one tenth of that of 1H) and its low natural abundance (0.37%) prevent its 

direct observation. The indirectly detected 15N resonances in 1H-15N HSQC spectra, if the 1H nuclei are 

not chemically exchanged, and in the 1H-15N HMBC spectra provide complementary clues to compound 

identification. Similar considerations apply to the numerically smaller but biologically important class 

of phosphorus-containing compounds, even inorganic ones, but they have low constraints on 

detection sensitivity due to the 100% natural abundance of the 31P nucleus and its high magnetogyric 

ratio (approximately 40% of that of 1H). The exhaustiveness of metabolome analysis by NMR is thus 

fundamentally a problem of sensitivity, for which the best practical solutions are currently an increase 

in the static magnetic field intensity and a decrease in the probe head active volume. Possible future 

developments may include sensitivity enhancement by dynamic nuclear polarization and subsequent 

spectra recording on liquid-state samples combined with ultrafast data acquisition methods. 

In contrast, LC-MS/MS metabolite detection is selective because MS requires the ionization of the 

analytes prior to detection but, compared to NMR, MS is orders of magnitude more sensitive than 

NMR and has a higher dynamic range. Thus, MS can provide a very large metabolite coverage provided 

that the necessary conditions for the ionization of the analytes are met. To be “exhaustive”, the 

reaction should be performed in PI and NI modes, and this reaction should be performed on LC-MS 

interfaces that provide complementary ionization methods to ESI. Such ionization can be obtained by 

APCI and/or APPI, which generates molecular ion species with different mechanisms than ESI and are 

better suited for less polar metabolites.321 Ideally, state-of-the-art MS platforms should switch 

between all these ionization modes and ion polarities over a single run and at an acquisition frequency 

that is high enough to maintain a sufficiently high chromatographic resolution integrity (enough data 

points per LC peak over each ionization and polarity mode). Some instrument manufacturers provide 

ion sources with dual ionizations, but MS platforms that provide ideal coverage for all possible 

ionization modes in a single run do not yet exist. Instead, natural extracts are usually profiled in 

separate analytical runs to maintain good data quality. On the other hand, ideally, all detected 

methods should have their associated MS/MS spectra recorded at different CID energies. Here, as 

discussed in section 3.1.5, more extensive coverage will result from the usage of DIA MS/MS, provided 

that the associated deconvolution methods continue to improve. All of these points can be sorted out 

by the continuous improvement of MS platforms, mainly in terms of an increase in the frequency of 

acquisition and the development of sufficiently stable electronics to alternate over all acquisition 

modes. 
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In LC-MS metabolite profiling, full metabolome coverage also necessitates the use of complementary 

column phase chemistries for the separations of the analytes, as discussed in section 3.1.1. Currently, 

in NP research, mostly single profiles are acquired on RP C18 columns, but dual RP and HILIC separation 

may be envisaged, as in the case of body fluid metabolomics.322 Furthermore, for the better coverage 

of the lipophilic constituent, SFC-MS must also be considered. Finally, it should be kept in mind that 

full metabolome coverage also encompasses volatile compound profiling, for which GC-MS must be 

used, and such methods is also very effective for profiling primary metabolites in natural extracts after 

derivatisation;323 however, this was not the topic of the present review. 

LC-MS is thus capable of providing very extensive metabolite coverage but still requires multiple 

injections of the same sample of different-phase chemistries and ionization modes. In the future, the 

improvement of methods for the data integration of multiple profiles would be beneficial to simplify 

this aspect. A limitation of MS compared to NMR is that no generic quantification of the detected 

metabolite is possible by MS alone, and complementary universal detection methods such as CAD or 

ELSD should be used and integrated to at least differentiate the major and minor constituents in 

extracts. In LC-MS, from the acquisition side, full metabolome coverage can thus probably be achieved 

with good spectral quality over the vast majority of NPs, but, as discussed here, the annotation 

workflows should still be considerably improved to annotate all the detected analytes with confidence. 

9 Conclusions 

Our review highlights the enormous progress that has been made in NP research over the last decade, 

in particular, by starting to embrace the developments made in the field of metabolomics. Moreover, 

it also shows that the unambiguous annotation of NPs, possibly in “all” detectable NP mixtures, is still 

far from reality, and interrogating what is called “dark matter” remains an important challenge. Dark 

matter essentially consists of chemical signatures that remain uncharacterized23b and encompasses 

compounds that remain invisible because they are not covered or detected by conventional isolation, 

bioactivity-based screening or other analytical techniques.324 Furthermore, it has generally been stated 

that in metabolomics, less than 2% of the spectra in untargeted metabolomics can be annotated.23b As 

discussed in this review, many powerful tools are emerging approaches that may have a large impact 

on improving this situation, but at present, rapid unambiguous annotation can only be performed using 

cross searches in experimental DBs with the same acquisition conditions, while generic in silico DBs 

will mainly help with confirming the structural elucidation processes in the near future. The latter 

methods and workflows are not yet advanced enough to ascertain, for example, the position of a given 

hydroxyl group on an NP scaffold with precision. Furthermore, without NMR, determining the 

configuration of a carbon-bearing hydroxyl group is not possible and remains hypothetical without 
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considering the biosynthetic information known for a specific organism under study. One interesting 

complementary method to NMR, is the use of X-ray diffraction by means of the “crystalline sponge” 

methods, which allow the crystallographic analysis of even oily compounds in dilute quantities. It is 

thus well suitable for the absolute structure determination of NPs.325 For unambiguous metabolite 

identification the emergence of micro electron diffraction (ED) methods such as the CryoEM method 

MicroED for the analysis of nanocrystals are worth mentioning. Indeed a very recent paper 

demonstrates that simple powders, even solids isolated via silica gel chromatography and dried could 

be directly used in MicroED studies, rapidly leading to high quality molecular structures often at atomic 

resolutions (better than 1Å).326 This was even possible on heterogeneous mixture of natural products 

mixed together.326 

Thus, many challenges remain during the metabolite annotation and identification process that need 

to be addressed in the future to assist with the structural elucidation of complex mixtures of NPs. In 

our view, the following set of recommendations forms the foundations upon which future solutions 

can be based. 

Novel NP structures are discovered every day, but in practice, we cannot use all this novel information 

in a straightforward manner. To do so for future novel findings, we need to improve our reporting of 

known and novel chemical structures and their accompanying spectral data in papers using the 

following guidelines: i) always include a computer-extractable list of computer-readable structures 

with links to the spectral data; ii) share the relevant raw and spectral data in public repositories; iii) 

report metabolite identification confidences for all identifications and annotations; and iv) add the 

annotated and identified NPs to public MS/MS and/or NMR libraries. This will ease the future 

dereplication of identified molecules and provide the input data needed to train future annotation 

tools. 

A wide variety of tools and pipelines are currently being developed in different groups around the 

globe. To further develop the field, we therefore recommend that groups working in the NP research 

area, to ensure the compatibility of novel tools with other processing and annotation tools, follow a 

modular plan to allow others to mix and match different tools into novel pipelines. Additionally, as we 

foresee dedicated pipelines of integrated mining and annotation tools for diverse aims, it is essential 

that developers clearly indicate the purpose of their tools and highlight the key areas where they can 

be used. It is hereby important to keep the end result user-friendly and provide typical examples of 

use cases. Finally, the number of adjustable parameters should be kept to a minimum, as it can have a 

massive impact on the outcome, which is often not communicated very clearly with the end users. 

An increasing number of databases has appeared, each of which covers different aspects of metabolite 
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metadata. Ensuring structural consistency between those databases is essential to allow the linking of 

the collected metadata. Moreover, the creation of freely accessible metabolite resources with 

extensive and community-curated metadata will further assist in the selection of candidates from the 

lists of possible structures produced by annotation tools, as described above. 

In summary, most of these recommendations require the NP field to think like a large community 

rather than as individual islands of knowledge: if we all keep adding findable, accessible, interoperable, 

and reproducible (i.e., following the FAIR principles) NP structures to the existing large pool of known 

NPs, we can all more effectively exploit the fruits of our labor as a community to illuminate the “dark 

matter” in the field of NP chemistry. 

NP chemists have been and are still involved in the unambiguous full de novo identification of unknown 

compounds from complex natural biological matrices. Their involvement in metabolomics can help 

with the development of methods to improve metabolite ID, a key point that represents a major 

bottleneck in the metabolomics field. With the tremendous development of bioinformatics tools, 

analytical platforms and the access to increasing amounts of genome data, it is a safe bet to say that 

NP metabolomics will evolve rapidly toward full metabolome annotations of organisms and change 

the paradigm on how NP research is performed, which will open new gateways to discoveries. 
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13 Figure Captions 

Figure 1. Schematic workflow of structure elucidation/dereplication in natural product chemistry. The 

principal task consists of connecting the space of samples such as extracts, chemically simplified 

fractions (FRs) or isolated compounds (NPs) (left panel) and the space of molecular structures (right 

panel). Extracts are obtained by different extractions process that lead to complex mixtures of NPs 

with given physicochemical properties according to the nature of the solvent used. Fractions and pure 

NPs are obtained after single or multiple preparative chromatographic steps. This task is achieved by 

a combination of physico-chemical spectroscopic methods, mainly MS and NMR (central panel). 

‘Others’ indicate additional method eg. X-ray diffractions for pure NPs, LC-ECD for fractions or extracts. 

When a mixture of NPs is submitted to spectroscopic analysis, often an orthogonal analytical 
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separation method is used prior spectral acquisition (liquid chromatography, ion mobility, etc.). The 

space of physico-chemical spectroscopic data is divided into two subspaces; i) acquired “raw data” 

(e.g. FID time domain data in NMR, LC-MS raw data files) ii) “processed data” (e.g. NMR spectra 

expressed in HZ/ppm calculated by the Fourier transformation FIDs, Peak picking of MS features and 

combination of related MS and MS/MS spectra in LC-MS). Molecular structure determination results 

from data interpretation through two different strategies: de novo structure elucidation or 

dereplication. The latter is generally computer-assisted for the database search step, whereas the de 

novo approach resorts from manual or computer-assisted strategies interpretation of the 

spectroscopic data. Connection between NP mixtures and the space of molecular structures may 

involve the use of chemometrics for deconvolution purposes for finally generating composition 

information on extracts or fractions. Consistency of the structural data generated are cheek based on 

taxonomy and the known biosynthetic pathways of the organisms studied. 

Figure 2. Example of data acquisition in a typical UHPLC-HRMS/MS metabolite profiling of plant 

extracts in both data dependent (DDA) and data independent (DIA) MS/MS modes. The analysis of a 

mixture of five plants extracts presenting a broad chemodiversity is shown.119 The HRMS and MS/MS 

spectra are displayed for a specific feature m/z 567.17@3.66 min corresponding to the [M+H]+ of the 

biflavonoid isoginkgetin (Accurate Mass: 566.1213; Formula: C32H22O10) present in the extract of 

Gingko biloba, one the extracts of the mix. A) UHPLC-ESI-HRMS metabolite profile acquired in the in PI 

mode (m/z 150-1200) on an Orbitrap mass spectrometer on a C18 column (50x2.0mm i.d.; 1.7 µm) with 

a generic acetonitrile gradient 5-95% in 8 min for a broad profiling over a large NP polarity range. B) 

Visualization in the form of an ion map (m/z vs RT) of all features having an associated MS/MS with 

the MS-Dial software120 (2631 features with MS2). On the attached panel isotopic clustering of MS-Dial 

of all features corresponding to a given analyte. C) Same plot as (B) for data acquired in the DIA mode 

(18420 features with MS2) showing an increased coverage of fragmentation data compared to DDA. D) 

HRMS spectrum recorded at the apex of the LC-peak at RT 3.66 displaying the features m/z 567.12 

[M+H]+ of isoginkgetin as well as its dimer m/z 1133.25 [2M+H]+ obtained with ESI in positive ionisation 

mode. E) Zoom on the feature [M+H]+ of isoginkgetin showing the accurate mass and isotopic pattern 

of [M+H]+. This information is necessary to ascertain the corresponding molecular formula (MF): 

C32H22O10 (calculated for C32H22O10 566.1213, Δppm = 0.5). F) DDA MS/MS spectrum of the precursor 

ion m/z 567.12 automatically selected during profiling and fragmented with HCD at 3 different 

normalized collision energies (NCE 15, 30 and 45) on the Orbitrap MS analyser. G) Raw DIA M/MS 

spectrum at RT 3.66 min. All ions are fragmented at 3 different NCE. H) Superposition of all ion traces 

of the fragment ions for selection of ions coeluting in LC at the apex of RT 3.66 min for the 

deconvolution of the raw DIA MS/MS spectrum (F). I) Deconvoluted DIA spectrum at RT 3.66 min 
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associated to the feature m/z 567.12 eluting at the same retention time in the full scan spectra (D). 

Comparison of the spectra (G) and (I) allows a comparison of the DIA deconvolution, the DDA MS/MS 

spectrum (F) does not requires deconvolution since a specific precursor ion is selectively selected. J) In 

silico simulated spectrum of isoginkgetin obtained by CFM-ID121 by input of its SMILES structural string. 

To be noted in the selected example a few fragments are common between the different MS/MS 

modes and the in silico spectra generated. The richness of fragment information generated is 

dependent on the type of NP scaffolds analysed. Such information in addition to the MF formula 

assignment already allows a significant reduction of structural candidates. In this case, the isoginkgetin 

standard was also analysed under the same conditions and its identity was confirmed. 

Figure 3. Top left to right – Key Molecular Networking concepts: all MS/MS spectra within a sample or 

across different samples are compared based on the similarity of mass fragments. The parent mass 

difference (indicated by blue dotted arrow) is considered by shifting both spectra with this m/z value 

and checking for improved or additional matches that will add to the final similarity score (left panel, 

bottom). Using all these comparison scores, Molecular Families can be formed (middle panel), where 

fragmented molecules are the nodes and connections (edges) are present when the similarity score is 

above a user-defined threshold. Moreover, different layers of information can be displayed on the 

nodes and edges, such as where molecules result in a library match from reference MS/MS spectra 

(node in blue). Applying this to all the fragmented molecules typically results in a Molecular Network 

(MN) consisting of larger and smaller Molecular Families (right panel) as well as unconnected 

molecules (singletons). Bottom left to right – conceptualized MS2LDA substructure search: MS2LDA 

starts with a large set of MS/MS spectra from one or multiple samples (left panel) and then searches 

for Mass2Motifs (middle panel). These Mass2Motifs consist of commonly occurring mass fragments 

and/or neutral losses that can then be annotated by substructures. In the middle panel, one mass 

fragment-based (purple) and one neutral loss-based (green) Mass2Motif are exemplified, where each 

Mass2Motif is present in a spectrum where its corresponding substructure is indicated in the structure 

on the left. Both Mass2Motifs are present in one MS/MS spectrum and in the corresponding structure 

on the right, and both corresponding substructures show how in this case the complete structure can 

be built from its substructures. Finally, by collecting all of the connections between fragmented 

molecules and Mass2Motifs, a substructure network can be formed that connects 

Mass2Motifs/substructures (orange circles) with fragmented molecules (blue squares), as displayed 

on the right end. 

Figure 4. Principle of structure generation by the LSD CASE software. The goal of the LSD software is 

to draw bonds between initially non-bonded atoms to find the possible planar solutions of a de novo 

structure elucidation problem. The number and nature of the atoms of the solution structure is 
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supposed to be known from HRMS data. The set of atom statuses must be fully determined before the 

beginning of the problem resolution process. In the case this could not be reliably achieved, a software 

layer written above LSD, named pyLSD267, 306 (a), can be invoked to resolve status ambiguities. LSD is 

not aware of the relationships between chemical shifts and structural features and places bonds 

between atoms solely based on 2D NMR correlation data. The combination of COSY and HSQC data 

yields bonds between heavy (i.e., non-hydrogen) atoms from which the resolution process starts. The 

combination of HSQC and HMBC data yields proximity relationships between heavy atoms expressed 

as distances measured in number of bonds (1, 2 or more). HMBC correlations of close 13C resonances 

may be declared ambiguous, and all possible interpretations will be systematically considered. The 

resolution process starts by the recursive use of proximity relationships for the formation of bonds and 

removes those that become explained by the newly formed bonds. The atoms for which not all of their 

bonds are present, as inferred from their status, are then systematically paired in a recursive process 

to build complete structures. Recursive processes are needed to explore all possibilities and reconsider 

choices (backtracking) opened by data interpretation so that the exhaustivity of the solution search is 

ensured. Each structure then passes through a series of validation steps. The distances between atoms 

are checked to address the HMBC correlations through 4 bonds or more. Double and triple bonds are 

placed between atoms to reach the needed coherence with their hybridization state. Anti-Bredt 

structures are eliminated. (b) The user may impose sub-structural elements to be present or absent in 

the solution structures (any combination of such constraints is allowed) according to external 

information sources, possibly spectroscopic or biogenetic. Ambiguous HMBC correlations may lead to 

duplicated solutions that need to be removed. The pyLSD software layer sorts the solutions according 

to the similarity of the 13C NMR chemical shifts with those predicted by NMRshiftDB. 

Figure 5. Schematic view of possibilities to improve the annotation scoring by weighting different 

partial and imperfect scores given by all methods on both LC-MS and NMR for maximum confidence 

in the compound identification (ID) process. NMR and MS are the main spectroscopic techniques for 

the identification of a chemical structure. Whether on the NMR side or the MS side, orthogonal 

techniques are used to increase the ID level of confidence (e.g., liquid chromatography for both MS 

and NMR often offline, or ionic mobility on the MS side). Moreover, some extra-data (brown boxes) 

are combined with spectroscopic data, leading to workflows that can be organized in the same way for 

MS and NMR approaches. They start from the lowest ID level (scoreMS or NMR 1) when only (HR)MS or 

1D NMR are recorded and compared with calculated or experimental spectra, for instance, by means 

of in silico or experimental databases, and they reach the highest score (scoreMS or NMR 4) after 

complementary data acquisition and processing (e.g., MSn, 2D NMR) and usage of extra-data (e.g., 

taxonomy, biosynthetic pathways, NMR data for MS-based workflows and MS data for NMR ones). 
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Thus ideally a meta-score (meta-scoreNMR or meta-scoreMS) resulting from the addition of the scores 

validated for the NMR side (∑ scoreNMRx4
x=1 ) or the MS (∑ scoreMSx4

x=1 ) side can be thus calculated. 

For 3D sutural aspects relative configuration is generally proposed by combining coupling constant 

analysis and the Overhauser effect in NMR, sometimes together with conformational analysis and 

molecular modeling. Absolute configuration determination must resort from chiroptical techniques 

such as ECD, VCD or X-ray crystallography (scoreCHIR). If all aspects can be taken into consideration with 

a correct weighting of all scores, in future, a GLOBAL-meta-score could ideally be defined as a 

combination of the three individual meta-scores. Exclamation marks ( ) highlight critical steps in 

metabolite ID. 
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